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This paper studies sufficient conditions for the existence of solutions to the problem of sequential derivatives of nonlinear q-
difference equations with three-point q-integral boundary conditions. Our results are concerned with several quantum numbers of
derivatives and integrals. By using Banach’s contraction mapping, Krasnoselskii’s fixed-point theorem, and Leray-Schauder degree
theory, some new existence results are obtained. Two examples illustrate our results.

1. Introduction

The study of 𝑞-calculus or quantum calculus was initiated by
the pioneer works of Jackson [1], Carmichael [2], Mason [3],
Adams [4], Trjitzinsky [5], and so forth. Since then, in the last
few decades, this subject has evolved into a multidisciplinary
research area withmany applications; for example, see [6–14].
For some recent works, we refer the reader to [15–21] and
references therein. However, the theory of boundary value
problems for nonlinear 𝑞-difference equations is still in the
beginning stages and it needs to be explored further.

In [22], Ahmad investigated the existence of solutions
for a nonlinear boundary value problem of third-order 𝑞-
difference equation:

𝐷
3

𝑞
𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) , 0 ≤ 𝑡 ≤ 1,

𝑢 (0) = 0, 𝐷
𝑞
𝑢 (0) = 0, 𝑢 (1) = 0.

(1)

Using Leray-Schauder degree theory and standard fixed-
point theorems, some existence results were obtained. More-
over, he showed that if 𝑞 → 1, then his results corresponded
to the classical results. Ahmad et al. [23] studied a boundary

value problem of a nonlinear second-order 𝑞-difference
equation with nonseparated boundary conditions

𝐷
2

𝑞
𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ [0, 𝑇] ,

𝑢 (0) = 𝜂𝑢 (𝑇) , 𝐷
𝑞
𝑢 (0) = 𝜂𝐷

𝑞
𝑢 (𝑇) .

(2)

They proved the existence and uniqueness theorems of the
problem (2) using the Leray-Schauder nonlinear alternative
and some standard fixed-point theorems. For some very
recent results on nonlocal boundary value problems of
nonlinear 𝑞-difference equations and inclusions, see [24–26].

In this paper, we discuss the existence of solutions for the
following nonlinear 𝑞-difference equation with three-point
integral boundary condition:

𝐷
𝑞
(𝐷
𝑝
+ 𝜆) 𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ [0, 𝑇] ,

𝑥 (0) = 0, 𝛽∫

𝜂

0

𝑥 (𝑠) 𝑑
𝑟
𝑠 = 𝑥 (𝑇) ,

(3)

where 0 < 𝑝, 𝑞, 𝑟 < 1, 𝑓 ∈ 𝐶([0, 𝑇] × R, R), 𝛽 ̸= 𝑇(1 + 𝑟)/𝜂
2,

𝜂 ∈ (0, 𝑇) is a fixed point, and 𝜆 is a given constant.
The aim of this paper is to prove some existence and

uniqueness results for the boundary value problem (3). Our
results are based on Banach’s contraction mapping, Kras-
noselskii’s fixed-point theorem, and Leray-Schauder degree
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theory. Since the problem (3) has different values of the
quantum numbers of the 𝑞-derivative and the 𝑞-integral, the
existence results of such problem are also new.

2. Preliminaries

Let us recall some basic concepts of quantum calculus [15].
For 0 < 𝑞 < 1, we define the 𝑞-derivative of a real-valued

function 𝑓 as

𝐷
𝑞
𝑓 (𝑡) =

𝑓 (𝑡) − 𝑓 (𝑞𝑡)

(1 − 𝑞) 𝑡
, 𝐷

𝑞
𝑓 (0) = lim

𝑡→0

𝐷
𝑞
𝑓 (𝑡) . (4)

The higher-order 𝑞-derivatives are given by

𝐷
0

𝑞
𝑓 (𝑡) = 𝑓 (𝑡) , 𝐷

𝑛

𝑞
𝑓 (𝑡) = 𝐷

𝑞
𝐷
𝑛−1

𝑞
𝑓 (𝑡) , 𝑛 ∈ N. (5)

The 𝑞-integral of a function 𝑓 defined on the interval [0, 𝑇] is
given by

∫

𝑡

𝑎

𝑓 (𝑠) 𝑑
𝑞
𝑠 :=

∞

∑

𝑛=0

(1 − 𝑞) 𝑞
𝑛

× [𝑡𝑓 (𝑡𝑞
𝑛
) − 𝑎𝑓 (𝑞

𝑛
𝑎)] , 𝑡 ∈ [0, 𝑇] ,

(6)

and for 𝑎 = 0, we denote

𝐼
𝑞
𝑓 (𝑡) = ∫

𝑡

0

𝑓 (𝑠) 𝑑
𝑞
𝑠 =

∞

∑

𝑛=0

𝑡 (1 − 𝑞) 𝑞
𝑛
𝑓 (𝑡𝑞
𝑛
) , (7)

provided the series converges. If 𝑎 ∈ [0, 𝑇] and 𝑓 is defined
on the interval [0, 𝑇], then

∫

𝑏

𝑎

𝑓 (𝑠) 𝑑𝑞𝑠 = ∫

𝑏

0

𝑓 (𝑠) 𝑑𝑞𝑠 − ∫

𝑎

0

𝑓 (𝑠) 𝑑𝑞𝑠. (8)

Similarly, we have

𝐼
0

𝑞
𝑓 (𝑡) = 𝑓 (𝑡) , 𝐼

𝑛

𝑞
𝑓 (𝑡) = 𝐼

𝑞
𝐼
𝑛−1

𝑞
𝑓 (𝑡) , 𝑛 ∈ N. (9)

Observe that

𝐷
𝑞
𝐼
𝑞
𝑓 (𝑡) = 𝑓 (𝑡) , (10)

and if 𝑓 is continuous at 𝑡 = 0, then

𝐼
𝑞
𝐷
𝑞
𝑓 (𝑡) = 𝑓 (𝑡) − 𝑓 (0) . (11)

In 𝑞-calculus, the product rule and integration by parts
formula are

𝐷
𝑞
(𝑔ℎ) (𝑡) = (𝐷

𝑞
𝑔 (𝑡)) ℎ (𝑡) + 𝑔 (𝑞𝑡)𝐷𝑞ℎ (𝑡) ,

∫

𝑡

0

𝑓 (𝑠)𝐷
𝑞
𝑔 (𝑠) 𝑑

𝑞
𝑠 = [𝑓 (𝑠) 𝑔 (𝑠)]

𝑡

0
− ∫

𝑡

0

𝐷
𝑞
𝑓 (𝑠) 𝑔 (𝑞𝑠) 𝑑

𝑞
𝑠.

(12)

In the limit 𝑞 → 1, the 𝑞-calculus corresponds to the classical
calculus.The above results are also true for quantumnumbers
𝑝, 𝑟 such that 0 < 𝑝 < 1 and 0 < 𝑟 < 1.

Lemma 1. Let 𝑇(1 + 𝑟) ̸= 𝛽𝜂
2, 0 < 𝑝, 𝑞, 𝑟 < 1, and let 𝜆

be a constant. Then for any ℎ ∈ 𝐶[0, 𝑇], the boundary value
problem

𝐷
𝑞
(𝐷
𝑝
+ 𝜆) 𝑥 (𝑡) = ℎ (𝑡) , 𝑡 ∈ [0, 𝑇] , (13)

𝑥 (0) = 0, 𝛽∫

𝜂

0

𝑥 (𝑠) 𝑑
𝑟
𝑠 = 𝑥 (𝑇) , 0 < 𝜂 < 𝑇, (14)

is equivalent to the integral equation

𝑥 (𝑡) = ∫

𝑡

0

∫

𝑠

0

ℎ (𝑢) 𝑑𝑞𝑢𝑑𝑝𝑠 − 𝜆∫

𝑡

0

𝑥 (𝑠) 𝑑𝑝𝑠

+
𝛽 (1 + 𝑟) 𝑡

𝑇 (1 + 𝑟) − 𝛽𝜂2

× ∫

𝜂

0

∫

V

0

(∫

𝑠

0

ℎ (𝑢) 𝑑𝑞𝑢 − 𝜆𝑥 (𝑠)) 𝑑𝑝𝑠𝑑𝑟V

+
𝜆 (1 + 𝑟) 𝑡

𝑇 (1 + 𝑟) − 𝛽𝜂2
∫

𝑇

0

𝑥 (𝑠) 𝑑
𝑝
𝑠

−
(1 + 𝑟) 𝑡

𝑇 (1 + 𝑟) − 𝛽𝜂2
∫

𝑇

0

∫

𝑠

0

ℎ (𝑢) 𝑑
𝑞
𝑢𝑑
𝑝
𝑠.

(15)

Proof. For 𝑡 ∈ [0, 𝑇], 𝑞-integrating (13) from 0 to 𝑡, we obtain

(𝐷
𝑝
+ 𝜆) 𝑥 (𝑡) = ∫

t

0

ℎ (𝑠) 𝑑
𝑞
𝑠 + 𝑐
1
. (16)

Equation (16) can be written as

𝐷
𝑝
𝑥 (𝑡) = ∫

𝑡

0

ℎ (𝑠) 𝑑
𝑞
𝑠 − 𝜆𝑥 (𝑡) + 𝑐

1
. (17)

For 𝑡 ∈ [0, 𝑇], 𝑝-integrating (17) from 0 to 𝑡, we have

𝑥 (𝑡) = ∫

𝑡

0

∫

𝑠

0

ℎ (𝑢) 𝑑𝑞𝑢𝑑𝑝𝑠

− 𝜆∫

𝑡

0

𝑥 (𝑠) 𝑑
𝑝
𝑠 + 𝑐
1
𝑡 + 𝑐
2
.

(18)

From the first condition of (14), it follows that 𝑐
2
= 0. For

𝑡 ∈ [0, 𝑇], 𝑟-integrating equation (18) from 0 to 𝑡, we get

∫

𝑡

0

𝑥 (V) 𝑑
𝑟
V = ∫

𝑡

0

∫

V

0

∫

𝑠

0

ℎ (𝑢) 𝑑
𝑞
𝑢𝑑
𝑝
𝑠𝑑
𝑟
V

− 𝜆∫

𝑡

0

∫

V

0

𝑥 (𝑠) 𝑑
𝑝
𝑠𝑑
𝑟
V + 𝑐
1

𝑡
2

1 + 𝑟
.

(19)
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The second boundary condition (14) implies that

𝛽∫

𝜂

0

𝑥 (V) 𝑑𝑟V

= 𝛽∫

𝜂

0

∫

V

0

∫

𝑠

0

ℎ (𝑢) 𝑑
𝑞
𝑢𝑑
𝑝
𝑠𝑑
𝑟
V

− 𝛽𝜆∫

𝜂

0

∫

V

0

𝑥 (𝑠) 𝑑𝑝𝑠𝑑𝑟V + 𝑐1
𝛽𝜂
2

1 + 𝑟

= 𝛽∫

𝜂

0

∫

V

0

(∫

𝑠

0

ℎ (𝑢) 𝑑
𝑞
𝑢 − 𝜆𝑥 (𝑠)) 𝑑

𝑝
𝑠𝑑
𝑟
V + 𝑐
1

𝛽𝜂
2

1 + 𝑟

= ∫

𝑇

0

∫

𝑠

0

ℎ (𝑢) 𝑑𝑞𝑢𝑑𝑝𝑠 − 𝜆∫

𝑇

0

𝑥 (𝑠) 𝑑𝑝𝑠 + 𝑐1𝑇.

(20)

Therefore,

𝑐
1
=

𝛽 (1 + 𝑟)

𝑇 (1 + 𝑟) − 𝛽𝜂2
∫

𝜂

0

∫

V

0

(∫

𝑠

0

ℎ (𝑢) 𝑑𝑞𝑢 − 𝜆𝑥 (𝑠)) 𝑑𝑝𝑠𝑑𝑟V

+
𝜆 (1 + 𝑟)

𝑇 (1 + 𝑟) − 𝛽𝜂2
∫

𝑇

0

𝑥 (𝑠) 𝑑𝑝𝑠

−
1 + 𝑟

𝑇 (1 + 𝑟) − 𝛽𝜂2
∫

𝑇

0

∫

𝑠

0

ℎ (𝑢) 𝑑𝑞𝑢𝑑𝑝𝑠.

(21)

Substituting the values of 𝑐
1
and 𝑐
2
in (18), we obtain (15).This

completes the proof.

For the forthcoming analysis, letC = 𝐶([0, 𝑇],R) denote
the Banach space of all continuous functions from [0, 𝑇] to
R endowed with the norm defined by ‖𝑥‖ = sup{|𝑥(𝑡)|, 𝑡 ∈
[0, 𝑇]}.

In the following, for the sake of convenience, we set

Ω =
1

1 + 𝑝

× (𝑇
2
+

𝛽
 𝑇𝜂
3
(1 + 𝑟)

𝑇 (1 + 𝑟) − 𝛽𝜂
2 (1 + 𝑟 + 𝑟

2)

+
𝑇
3
(1 + 𝑟)

𝑇 (1 + 𝑟) − 𝛽𝜂
2

) ,

(22)

Φ = |𝜆| 𝑇 +

𝛽
 |𝜆| 𝑇𝜂

2

𝑇 (1 + 𝑟) − 𝛽𝜂
2

+
|𝜆| 𝑇
2
(1 + 𝑟)

𝑇 (1 + 𝑟) − 𝛽𝜂
2

. (23)

3. Main Results

Now, we are in the position to establish the main results. We
transform the boundary value problem (3) into a fixed-point

problem. In view of Lemma 1, for 𝑡 ∈ [0, 𝑇], 𝑥 ∈ C, we define
the operator 𝐴 : C → C as

(𝐴𝑥) (𝑡)

= ∫

𝑡

0

∫

𝑠

0

𝑓 (𝑢, 𝑥 (𝑢)) 𝑑
𝑞
𝑢𝑑
𝑝
𝑠 − 𝜆∫

𝑡

0

𝑥 (𝑠) 𝑑
𝑝
𝑠

+
𝛽 (1 + 𝑟) 𝑡

𝑇 (1 + 𝑟) − 𝛽𝜂2

× ∫

𝜂

0

∫

V

0

(∫

𝑠

0

𝑓 (𝑢, 𝑥 (𝑢)) 𝑑
𝑞
𝑢 − 𝜆𝑥 (𝑠)) 𝑑

𝑝
𝑠𝑑
𝑟
V

+
𝜆 (1 + 𝑟) 𝑡

𝑇 (1 + 𝑟) − 𝛽𝜂2
∫

𝑇

0

𝑥 (𝑠) 𝑑𝑝𝑠

−
(1 + 𝑟) 𝑡

𝑇 (1 + 𝑟) − 𝛽𝜂2
∫

𝑇

0

∫

𝑠

0

𝑓 (𝑢, 𝑥 (𝑢)) 𝑑𝑞𝑢𝑑𝑝𝑠.

(24)

Note that the problem (3) has solutions if and only if the
operator equation 𝐴𝑥 = 𝑥 has fixed points.

Our first result is based on Banach’s fixed-point theorem.

Theorem 2. Assume that 𝑓 : [0, 𝑇] × R → R is a jointly
continuous function satisfying the conditions

(𝐻
1
) |𝑓(𝑡, 𝑥)−𝑓(𝑡, 𝑦)| ≤ 𝐿|𝑥−𝑦|, for all 𝑡 ∈ [0, 𝑇],𝑥, 𝑦 ∈ R;

(𝐻
2
) Λ := (Φ + 𝐿Ω) < 1,

where 𝐿 is a Lipschitz constant, Ω and Φ are defined by (22)
and (23), respectively.

Then, the boundary value problem (3) has a unique
solution.

Proof. Assume that sup
𝑡∈[0,𝑇]

|𝑓(𝑡, 0)| = 𝑀
0
; we choose a

constant

𝑅 ≥
𝑀
0
Ω

1 − Λ
. (25)

Now, we will show that 𝐴𝐵
𝑅
⊂ 𝐵
𝑅
, where 𝐵

𝑅
= {𝑥 ∈ C :

‖𝑥‖ ≤ 𝑅}. For any 𝑥 ∈ 𝐵
𝑅
, we have

‖(𝐴𝑥)‖

= sup
𝑡∈[0,𝑇]


∫

𝑡

0

∫

𝑠

0

𝑓 (𝑢, 𝑥 (𝑢)) 𝑑
𝑞
𝑢𝑑
𝑝
𝑠 − 𝜆∫

𝑡

0

𝑥 (𝑠) 𝑑
𝑝
𝑠

+
𝛽 (1 + 𝑟) 𝑡

𝑇 (1 + 𝑟) − 𝛽𝜂2

× ∫

𝜂

0

∫

V

0

(∫

𝑠

0

𝑓 (𝑢, 𝑥 (𝑢)) 𝑑𝑞𝑢 − 𝜆𝑥 (𝑠)) 𝑑𝑝𝑠𝑑𝑟V

+
𝜆 (1 + 𝑟) 𝑡

𝑇 (1 + 𝑟) − 𝛽𝜂2
∫

𝑇

0

𝑥 (𝑠) 𝑑
𝑝
𝑠

−
(1 + 𝑟) 𝑡

𝑇 (1 + 𝑟) − 𝛽𝜂2
∫

𝑇

0

∫

𝑠

0

𝑓 (𝑢, 𝑥 (𝑢)) 𝑑
𝑞
𝑢𝑑
𝑝
𝑠
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≤ sup
𝑡∈[0,𝑇]

{∫

𝑡

0

∫

𝑠

0

(
𝑓 (𝑢, 𝑥 (𝑢)) − 𝑓 (𝑢, 0)

 +
𝑓 (𝑢, 0)

) 𝑑𝑞𝑢𝑑𝑝𝑠

+ |𝜆| ∫

𝑡

0

|𝑥 (𝑠)| 𝑑𝑝𝑠

+

𝛽
 (1 + 𝑟) 𝑡

𝑇 (1 + 𝑟) − 𝛽𝜂
2

× (∫

𝜂

0

∫

V

0

∫

𝑠

0

(
𝑓 (𝑢, 𝑥 (𝑢)) − 𝑓 (𝑢, 0)

 +
𝑓 (𝑢, 0)

)

× 𝑑
𝑞
𝑢𝑑
𝑝
𝑠𝑑
𝑟
V

+ |𝜆| ∫

𝜂

0

∫

V

0

|𝑥 (𝑠)| 𝑑𝑝𝑠𝑑𝑟V)

+
|𝜆| (1 + 𝑟) 𝑡

𝑇 (1 + 𝑟) − 𝛽𝜂
2

∫

𝑇

0

|𝑥 (𝑠)| 𝑑𝑝𝑠

+
(1 + 𝑟) 𝑡

𝑇 (1 + 𝑟) − 𝛽𝜂
2

× ∫

𝑇

0

∫

𝑠

0

(
𝑓 (𝑢, 𝑥 (𝑢)) − 𝑓 (𝑢, 0)



+
𝑓 (𝑢, 0)

) 𝑑𝑞𝑢𝑑𝑝𝑠}

≤ sup
𝑡∈[0,𝑇]

{∫

𝑡

0

∫

𝑠

0

(𝐿 |𝑥 (𝑢)| +
𝑓 (𝑢, 0)

) 𝑑𝑞𝑢𝑑𝑝𝑠

+ |𝜆| ∫

𝑡

0

|𝑥 (𝑠)| 𝑑𝑝𝑠 +

𝛽
 (1 + 𝑟) 𝑡

𝑇 (1 + 𝑟) − 𝛽𝜂
2

× (∫

𝜂

0

∫

V

0

∫

𝑠

0

(𝐿 |𝑥 (𝑢)| +
𝑓 (𝑢, 0)

) 𝑑𝑞𝑢𝑑𝑝𝑠𝑑𝑟V

+ |𝜆| ∫

𝜂

0

∫

V

0

|𝑥 (𝑠)| 𝑑𝑝𝑠𝑑𝑟V)

+
|𝜆| (1 + 𝑟) 𝑡

𝑇 (1 + 𝑟) − 𝛽𝜂
2

∫

𝑇

0

|𝑥 (𝑠)| 𝑑𝑝𝑠

+
(1 + 𝑟) 𝑡

𝑇 (1 + 𝑟) − 𝛽𝜂
2

× ∫

𝑇

0

∫

𝑠

0

(𝐿 |𝑥 (𝑢)| +
𝑓 (𝑢, 0)

) 𝑑𝑞𝑢𝑑𝑝𝑠}

≤ sup
𝑡∈[0,𝑇]

{(𝐿 ‖𝑥‖ +𝑀0) ∫

𝑡

0

∫

𝑠

0

𝑑
𝑞
𝑢𝑑
𝑝
𝑠

+ |𝜆| ‖𝑥‖ ∫

𝑡

0

𝑑
𝑝
𝑠 +

𝛽
 (1 + 𝑟) 𝑡

𝑇 (1 + 𝑟) − 𝛽𝜂
2

× ((𝐿 ‖𝑥‖ +𝑀0) ∫

𝜂

0

∫

V

0

∫

𝑠

0

𝑑
𝑞
𝑢𝑑
𝑝
𝑠𝑑
𝑟
V

+ |𝜆| ‖𝑥‖∫

𝜂

0

∫

V

0

𝑑
𝑝
𝑠𝑑
𝑟
V)

+
|𝜆| ‖𝑥‖ (1 + 𝑟) 𝑡
𝑇 (1 + 𝑟) − 𝛽𝜂

2

∫

𝑇

0

𝑑
𝑝
𝑠

+
(1 + 𝑟) 𝑡

𝑇 (1 + 𝑟) − 𝛽𝜂
2

(𝐿 ‖𝑥‖ +𝑀0) ∫

𝑇

0

∫

𝑠

0

𝑑
𝑞
𝑢𝑑
𝑝
𝑠}

= sup
𝑡∈[0,𝑇]

{(𝐿 ‖𝑥‖ +𝑀0)
𝑡
2

1 + 𝑝
+ |𝜆| ‖𝑥‖ 𝑡

+

𝛽
 (1 + 𝑟) 𝑡

𝑇 (1 + 𝑟) − 𝛽𝜂
2

× ((𝐿 ‖𝑥‖+𝑀0)
(1−𝑟) 𝜂

3

(1 + 𝑝) (1 − 𝑟3)
+|𝜆| ‖𝑥‖

𝜂
2

1+𝑟
)

+
|𝜆| ‖𝑥‖ (1 + 𝑟) 𝑡
𝑇 (1 + 𝑟) − 𝛽𝜂

2

𝑇

+
(1 + 𝑟) 𝑡

𝑇 (1 + 𝑟) − 𝛽𝜂
2

(𝐿 ‖𝑥‖ +𝑀0)
𝑇
2

1 + 𝑝
}

= sup
𝑡∈[0,𝑇]

{‖𝑥‖(|𝜆| 𝑡+

𝛽
 |𝜆| 𝜂
2
𝑡

𝑇 (1 + 𝑟)−𝛽𝜂
2

+
|𝜆| 𝑇 (1 + 𝑟) 𝑡

𝑇 (1 + 𝑟) − 𝛽𝜂
2

)

+
(𝐿 ‖𝑥‖ +𝑀0)

1 + 𝑝

× (𝑡
2
+

𝛽
 (1 + 𝑟) 𝜂

3
𝑡

𝑇 (1 + 𝑟) − 𝛽𝜂
2 (1 + 𝑟 + 𝑟

2)

+
𝑇
2
(1 + 𝑟) 𝑡

𝑇 (1 + 𝑟) − 𝛽𝜂
2

)}

≤ 𝑅(|𝜆| 𝑇 +

𝛽
 |𝜆| 𝑇𝜂

2

𝑇 (1 + 𝑟) − 𝛽𝜂
2

+
|𝜆| 𝑇
2
(1 + 𝑟)

𝑇 (1 + 𝑟) − 𝛽𝜂
2

)

+
(𝐿𝑅 +𝑀

0
)

1 + 𝑝

× (𝑇
2
+

𝛽
 𝑇𝜂
3
(1 + 𝑟)

𝑇 (1 + 𝑟) − 𝛽𝜂
2 (1 + 𝑟 + 𝑟

2)

+
𝑇
3
(1 + 𝑟)

𝑇 (1 + 𝑟) − 𝛽𝜂
2

)

= 𝑅Φ + (𝐿𝑅 +𝑀)Ω ≤ 𝑅.

(26)

Next, we will show that 𝐴 is a contraction. For any 𝑥, 𝑦 ∈

C and for each 𝑡 ∈ [0, 𝑇], we have

(𝐴𝑥) − (𝐴𝑦)


= sup
𝑡∈[0,𝑇]

(𝐴𝑥) (𝑡) − (𝐴𝑦) (𝑡)


= sup
𝑡∈[0,𝑇]


∫

𝑡

0

∫

𝑠

0

(𝑓 (𝑢, 𝑥 (𝑢)) − 𝑓 (𝑢, 𝑦 (𝑢))) 𝑑
𝑞
𝑢𝑑
𝑝
𝑠
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− 𝜆∫

𝑡

0

(𝑥 (𝑠) − 𝑦 (𝑠)) 𝑑
𝑝
𝑠

+
𝛽 (1 + 𝑟) 𝑡

𝑇 (1 + 𝑟) − 𝛽𝜂2

× ∫

𝜂

0

∫

V

0

(∫

𝑠

0

(𝑓 (𝑢, 𝑥 (𝑢)) − 𝑓 (𝑢, 𝑦 (𝑢))) 𝑑
𝑞
𝑢

−𝜆 (𝑥 (𝑠) − 𝑦 (𝑠))) 𝑑
𝑝
𝑠𝑑
𝑟
V

+
𝜆 (1 + 𝑟) 𝑡

𝑇 (1 + 𝑟) − 𝛽𝜂2
∫

𝑇

0

(𝑥 (𝑠) − 𝑦 (𝑠)) 𝑑𝑞𝑠

−
(1 + 𝑟) 𝑡

𝑇 (1 + 𝑟) − 𝛽𝜂
2

× ∫

𝑇

0

∫

𝑠

0

(𝑓 (𝑢, 𝑥 (𝑢)) − 𝑓 (𝑢, 𝑦 (𝑢))) 𝑑
𝑞
𝑢𝑑
𝑝
𝑠



≤ sup
𝑡∈[0,𝑇]

{𝐿
𝑥 − 𝑦

 ∫

𝑡

0

∫

𝑠

0

𝑑
𝑞
𝑢𝑑
𝑝
𝑠

+ |𝜆|
𝑥 − 𝑦

 ∫

𝑡

0

𝑑
𝑝
𝑠

+

𝛽
 (1 + 𝑟) 𝑡

𝑇 (1 + 𝑟) − 𝛽𝜂
2

× (𝐿
𝑥 − 𝑦

 ∫

𝜂

0

∫

V

0

∫

𝑠

0

𝑑
𝑞
𝑢𝑑
𝑝
𝑠𝑑
𝑟
V

+ |𝜆|
𝑥 − 𝑦

 ∫

𝜂

0

∫

V

0

𝑑
𝑝
𝑠𝑑
𝑟
V)

+
|𝜆| (1 + 𝑟) 𝑡

𝑇 (1 + 𝑟) − 𝛽𝜂2

𝑥 − 𝑦


× ∫

𝑇

0

𝑑
𝑞
𝑠 +

(1 + 𝑟) 𝑡
𝑇 (1 + 𝑟) − 𝛽𝜂

2

×𝐿
𝑥 − 𝑦

 ∫

𝑇

0

∫

𝑠

0

𝑑
𝑞
𝑢𝑑
𝑝
𝑠}

= sup
𝑡∈[0,𝑇]

{𝐿
𝑥 − 𝑦



𝑡
2

1 + 𝑝
+ |𝜆|

𝑥 − 𝑦
 𝑡

+

𝛽
 (1 + 𝑟) 𝑡

𝑇 (1 + 𝑟) − 𝛽𝜂
2

× (𝐿
𝑥 − 𝑦



(1 − 𝑟) 𝜂
3

(1 + 𝑝) (1 − 𝑟3)

+ |𝜆|
𝑥 − 𝑦



𝜂
2

1 + 𝑟
)

+ |𝜆|
𝑥 − 𝑦



(1 + 𝑟) 𝑡
𝑇 (1 + 𝑟) − 𝛽𝜂

2

𝑇

+
(1 + 𝑟) 𝑡

𝑇 (1 + 𝑟) − 𝛽𝜂
2

𝐿
𝑥 − 𝑦



𝑇
2

1 + 𝑝
}

≤
𝑥 − 𝑦

 (|𝜆| 𝑇 +

𝛽
 |𝜆| 𝑇𝜂

2

𝑇 (1 + 𝑟) − 𝛽𝜂
2

+
|𝜆| 𝑇
2
(1 + 𝑟)

𝑇 (1 + 𝑟) − 𝛽𝜂
2

)

+
𝐿
𝑥 − 𝑦



1 + 𝑝
(𝑇
2
+

𝛽
 𝜂
3
𝑇 (1 + 𝑟)

𝑇 (1 + 𝑟) − 𝛽𝜂
2 (1 + 𝑟 + 𝑟

2)

+
𝑇
3
(1 + 𝑟)

𝑇 (1 + 𝑟) − 𝛽𝜂
2

)

= (Φ + 𝐿Ω)
𝑥 − 𝑦



≤ Λ
𝑥 − 𝑦

 .

(27)

Since Λ < 1, 𝐴 is a contraction. Thus, the conclusion of the
theorem follows by Banach’s contraction mapping principle.
This completes the proof.

Our second result is based on the following Krasnosel-
skii’s fixed-point theorem [27].

Theorem 3. Let 𝐾 be a bounded closed convex and nonempty
subset of a Banach space𝑋. Let 𝐴, 𝐵 be operators such that

(i) 𝐴𝑥 + 𝐵𝑦 ∈ 𝐾 whenever 𝑥, 𝑦 ∈ 𝐾;
(ii) 𝐴 is compact and continuous;
(iii) 𝐵 is a contraction mapping.

Then, there exists 𝑧 ∈ 𝐾 such that 𝑧 = 𝐴𝑧 + 𝐵𝑧.

Theorem 4. Assume that (𝐻
1
) and (𝐻

2
) hold with

(𝐻
3
) |𝑓(𝑡, 𝑥)| ≤ 𝜇(𝑡), for all (𝑡, 𝑥) ∈ [0, 𝑇] × R, with 𝜇 ∈

𝐿
1
([0, 𝑇],R+).
If

𝛽
 |𝜆| 𝑇𝜂

2

𝑇 (1 + 𝑟) − 𝛽𝜂
2

+
|𝜆| 𝑇
2
(1 + 𝑟)

𝑇 (1 + 𝑟) − 𝛽𝜂
2

+
1

1 + 𝑝
(

𝛽
 𝜂
3
𝑇 (1 + 𝑟)

𝑇 (1 + 𝑟) − 𝛽𝜂
2 (1 + 𝑟 + 𝑟

2)

+
𝑇
3
(1 + 𝑟)

𝑇 (1 + 𝑟) − 𝛽𝜂
2

) < 1,

(28)

then the boundary value problem (3) has at least one solution
on [0, 𝑇].

Proof. Settingmax
𝑡∈[0,𝑇]

|𝜇(𝑡)| = ||𝜇|| and choosing a constant

𝑅 ≥

𝜇
Ω

1 − Φ
, (29)

where Ω and Φ are given by (22) and (23), respectively, we
consider that 𝐵

𝑅
= {𝑥 ∈ C : ||𝑥|| ≤ 𝑅}.
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In view of Lemma 1, we define the operators 𝐹
1
and 𝐹
2
on

the set 𝐵
𝑅
as

(𝐹
1
𝑥) (𝑡) = ∫

𝑡

0

∫

𝑠

0

𝑓 (𝑢, 𝑥 (𝑢)) 𝑑
𝑞
𝑢𝑑
𝑝
𝑠 − 𝜆∫

𝑡

0

𝑥 (𝑠) 𝑑
𝑝
𝑠,

(𝐹
2
𝑥) (𝑡) =

𝛽 (1 + 𝑟) 𝑡

𝑇 (1 + 𝑟) − 𝛽𝜂2

× ∫

𝜂

0

∫

V

0

(∫

𝑠

0

𝑓 (𝑢, 𝑥 (𝑢)) 𝑑
𝑞
𝑢 − 𝜆𝑥 (𝑠)) 𝑑

𝑝
𝑠𝑑
𝑟
V

+
𝜆 (1 + 𝑟) 𝑡

𝑇 (1 + 𝑟) − 𝛽𝜂2
∫

𝑇

0

𝑥 (𝑠) 𝑑𝑝𝑠

−
(1 + 𝑟) 𝑡

𝑇 (1 + 𝑟) − 𝛽𝜂2
∫

𝑇

0

∫

𝑠

0

𝑓 (𝑢, 𝑥 (𝑢)) 𝑑𝑞𝑢𝑑𝑝𝑠,

(30)

for 𝑥, 𝑦 ∈ 𝐵
𝑅
. By computing directly, we have

(𝐹1𝑥) + (𝐹2𝑦)


≤
𝜇
 ∫

𝑡

0

∫

𝑠

0

𝑑
𝑞
𝑢𝑑
𝑝
𝑠 + |𝜆| ‖𝑥‖ ∫

𝑡

0

𝑑
𝑝
𝑠

+

𝛽
 (1 + 𝑟) 𝑡

𝑇 (1 + 𝑟) − 𝛽𝜂
2

× (
𝜇
 ∫

𝜂

0

∫

V

0

∫

𝑠

0

𝑑
𝑞
𝑢𝑑
𝑝
𝑠𝑑
𝑟
V + |𝜆|

𝑦
 ∫

𝜂

0

∫

V

0

𝑑
𝑝
𝑠𝑑
𝑟
V)

+
|𝜆| (1 + 𝑟) 𝑡

𝑇 (1 + 𝑟) − 𝛽𝜂
2

𝑦
 ∫

𝑇

0

𝑑
𝑝
𝑠

+
(1 + 𝑟) 𝑡

𝑇 (1 + 𝑟) − 𝛽𝜂
2

𝜇
 ∫

𝑇

0

∫

𝑠

0

𝑑
𝑞
𝑢𝑑
𝑝
𝑠,

≤ 𝑅Φ +
𝜇
Ω ≤ 𝑅.

(31)

Therefore, (𝐹
1
𝑥) + (𝐹

2
y) ∈ 𝐵

𝑅
. The condition (28) implies

that 𝐹
2
is a contraction mapping. Next, we will show that

𝐹
1
is compact and continuous. Continuity of 𝑓 coupled

with the assumption (𝐻
3
) implies that the operator 𝐹

1

is continuous and uniformly bounded on 𝐵
𝑅
. We define

sup
(𝑡,𝑥)∈[0,𝑇]×𝐵𝑅

|𝑓(𝑡, 𝑥)| = 𝑓max < ∞. For 𝑡
1
, 𝑡
2
∈ [0, 𝑇] with

𝑡
2
< 𝑡
1
and 𝑥 ∈ 𝐵

𝑅
, we have

𝐹1𝑥 (𝑡1) − 𝐹2𝑥 (𝑡2)


≤ sup
(𝑡,𝑥)∈[0,𝑇]×𝐵𝑅


∫

𝑡1

0

∫

𝑠

0

𝑓 (𝑢, 𝑥 (𝑢)) 𝑑𝑞𝑢𝑑𝑝𝑠 − 𝜆∫

𝑡1

0

𝑥 (𝑠) 𝑑𝑝𝑠

− ∫

𝑡2

0

∫

𝑠

0

𝑓 (𝑢, 𝑥 (𝑢)) 𝑑
𝑞
𝑢𝑑
𝑝
𝑠

+𝜆∫

𝑡2

0

𝑥 (𝑠) 𝑑
𝑝
𝑠



= sup
(𝑡,𝑥)∈[0,𝑇]×𝐵𝑅



∫

𝑡1

𝑡2

∫

𝑠

0

𝑓 (𝑢, 𝑥 (𝑢)) 𝑑
𝑞
𝑢𝑑
𝑝
𝑠 − 𝜆∫

𝑡1

𝑡2

𝑥 (𝑠) 𝑑
𝑝
𝑠



≤ 𝑓max


𝑡
2

1
− 𝑡
2

2



1 + 𝑝
+ |𝜆| (𝑡1 − 𝑡2) 𝑅.

(32)

Actually, as 𝑡
1
− 𝑡
2
→ 0, the right-hand side of the above

inequality tends to zero. So 𝐹
1
is relatively compact on 𝐵

𝑅
.

Hence, by the Arzelá-Ascoli theorem, 𝐹
1
is compact on 𝐵

𝑅
.

Therefore, all the assumptions of Theorem 5 are satisfied and
the conclusion of Theorem 5 implies that the three-point
integral boundary value problem (3) has at least one solution
on [0, 𝑇]. This completes the proof.

As the third result, we prove the existence of solutions of
(3) by using Leray-Schauder degree theory.

Theorem 5. Let 𝑓 : [0, 𝑇] × R → R. Assume that there exist
constants 0 ≤ 𝜅 < (1−Φ)Ω

−1, whereΩ andΦ are given by (22)
and (23), respectively, and𝑀 > 0 such that |𝑓(𝑡, 𝑥)| ≤ 𝜅|𝑥|+𝑀

for all 𝑡 ∈ [0, 𝑇], 𝑥 ∈ C. Then, the boundary value problem (3)
has at least one solution.

Proof. Let us define an operator 𝐴 : C → C as in (24). We
will prove that there exists at least one solution 𝑥 ∈ C of the
fixed-point equation

𝑥 = 𝐴𝑥. (33)

We define a ball 𝐵
𝑅
⊂ C, with a constant radius 𝑅 > 0, given

by

𝐵
𝑅
= {𝑥 ∈ C : max

𝑡∈[0,𝑇]

|𝑥 (𝑡)| < 𝑅} . (34)

Then, it is sufficient to show that 𝐴 : 𝐵
𝑅
→ C satisfies

𝑥 ̸= 𝜃𝐴𝑥, ∀𝑥 ∈ 𝜕𝐵
𝑅
, ∀𝜃 ∈ [0, 1] . (35)

Now, we set

𝐻(𝜃, 𝑥) = 𝜃𝐴𝑥, 𝑥 ∈ C, 𝜃 ∈ [0, 1] . (36)

Then, by the Arzelá-Ascoli theorem, we get that ℎ
𝜃
(𝑥) =

𝑥−𝐻(𝜃, 𝑥) = 𝑥−𝜃𝐴𝑥 is completely continuous. If (35) holds,
then the following Leray-Schauder degrees are well defined.
From the homotopy invariance of topological degree, it
follows that

deg (ℎ
𝜃
, 𝐵
𝑅
, 0) = deg (𝐼 − 𝜃𝐴, 𝐵

𝑅
, 0)

= deg (ℎ, 𝐵
𝑅
, 0)

= deg (ℎ
0
, 𝐵
𝑅
, 0)

= deg (𝐼, 𝐵
𝑅
, 0) = 1 ̸= 0, 0 ∈ 𝐵

𝑅
,

(37)

where 𝐼 denotes the unit operator. By the nonzero property
of Leray-Schauder degree, ℎ

1
(𝑥) = 𝑥−𝐴𝑥 = 0 for at least one
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𝑥 ∈ 𝐵
𝑅
. Let us assume that 𝑥 = 𝜃𝐴𝑥 for some 𝜃 ∈ [0, 1].Then,

for all 𝑡 ∈ [0, 𝑇], we obtain

|𝑥 (𝑡)| = |𝜃 (𝐴𝑥) (𝑡)|

≤ ∫

𝑡

0

∫

𝑠

0

𝑓 (𝑢, 𝑥 (𝑢))
 𝑑𝑞𝑢𝑑𝑝𝑠

+ |𝜆| ∫

𝑡

0

|𝑥 (𝑠)| 𝑑𝑝𝑠

+

𝛽
 (1 + 𝑟) 𝑡

𝑇 (1 + 𝑟) − 𝛽𝜂
2

× ∫

𝜂

0

∫

V

0

(∫

𝑠

0

𝑓 (𝑢, 𝑥 (𝑢))
 𝑑𝑞𝑢 + |𝜆𝑥 (𝑠)|) 𝑑𝑝𝑠𝑑𝑟V

+
|𝜆| (1 + 𝑟) 𝑡

𝑇 (1 + 𝑟) − 𝛽𝜂
2

× ∫

𝑇

0

|𝑥 (𝑠)| 𝑑𝑝𝑠 +
(1 + 𝑟) 𝑡

𝑇 (1 + 𝑟) − 𝛽𝜂
2

× ∫

𝑇

0

∫

𝑠

0

𝑓 (𝑢, 𝑥 (𝑢))
 𝑑𝑞𝑢𝑑𝑝𝑠

≤ (𝜅 |𝑥| + 𝑀)∫

𝑡

0

∫

𝑠

0

𝑑
𝑞
𝑢𝑑
𝑝
𝑠 + |𝜆| |𝑥| ∫

𝑡

0

𝑑
𝑝
𝑠

+

𝛽
 (1 + 𝑟) 𝑡

𝑇 (1 + 𝑟) − 𝛽𝜂
2

× ((𝜅 |𝑥| + 𝑀)∫

𝜂

0

∫

V

0

∫

𝑠

0

𝑑
𝑞
𝑢𝑑
𝑝
𝑠𝑑
𝑟
V

+ |𝜆| |𝑥| ∫

𝜂

0

∫

V

0

𝑑
𝑝
𝑠𝑑
𝑟
V)

+
|𝜆| |𝑥| (1 + 𝑟) 𝑡
𝑇 (1 + 𝑟) − 𝛽𝜂

2

× ∫

𝑇

0

𝑑
𝑝
𝑠 +

(1 + 𝑟) 𝑡
𝑇 (1 + 𝑟) − 𝛽𝜂

2

(𝜅 |𝑥| + 𝑀)

× ∫

𝑇

0

∫

𝑠

0

𝑑
𝑞
𝑢𝑑
𝑝
𝑠

≤ (𝜅 |𝑥| + 𝑀)
𝑇
2

1 + 𝑝
+ |𝜆| |𝑥| 𝑇

+

𝛽
 (1 + 𝑟) 𝑇

𝑇 (1 + 𝑟) − 𝛽𝜂
2

× ((𝜅 |𝑥| + 𝑀)
(1 − 𝑟) 𝜂

3

(1 + 𝑝) (1 − 𝑟3)
+ |𝜆| |𝑥|

𝜂
2

1 + 𝑟
)

+
|𝜆| |𝑥| (1 + 𝑟) 𝑇

2

𝑇 (1 + 𝑟) − 𝛽𝜂
2

+ (𝜅 |𝑥| + 𝑀)
(1 + 𝑟) 𝑇

3

𝑇 (1 + 𝑟) − 𝛽𝜂
2 (1 + 𝑝)

= |𝑥| (|𝜆| 𝑇 +

𝛽
 |𝜆| 𝑇𝜂

2

𝑇 (1 + 𝑟) − 𝛽𝜂
2

+
|𝜆| 𝑇
2
(1 + 𝑟)

𝑇 (1 + 𝑟) − 𝛽𝜂
2

)

+
(𝜅 |𝑥| + 𝑀)

1 + 𝑝
(𝑇
2
+

𝛽
 𝑇𝜂
3
(1 + 𝑟)

𝑇 (1 + 𝑟) − 𝛽𝜂
2 (1 + 𝑟 + 𝑟

2)

+
𝑇
3
(1 + 𝑟)

𝑇 (1 + 𝑟) − 𝛽𝜂
2

)

= |𝑥|Φ + (𝜅 |𝑥| + 𝑀)Ω.

(38)

Taking norm sup
𝑡∈[0,𝑇]

|𝑥(𝑡)| = ‖𝑥‖ and solving for ‖𝑥‖, this
yields

‖𝑥‖ ≤
𝑀Ω

1 − (Φ + 𝜅Ω)
. (39)

Let𝑅 = 𝑀Ω/(1−(Φ+𝜅Ω))+1, then (35) holds.This completes
the proof.

4. Examples

In this section, we give two examples to illustrate our results.

Example 6. Consider the following nonlinear 𝑞-difference
equation with boundary value problem:

𝐷
1/2

(𝐷
1/3

−
2

7
) 𝑥 (𝑡) =

1

(𝑡 + 2)
2
⋅

|𝑥|

|𝑥| + 1
, 𝑡 ∈ [0, 1] ,

𝑥 (0) = 0, 𝑥 (1) +
2

3
∫

3/4

0

𝑥 (𝑠) 𝑑
1/4
𝑠 = 0.

(40)

Set 𝑞 = 1/2, 𝑝 = 1/3, 𝑟 = 1/4, 𝑇 = 1, 𝜆 = −2/7, 𝜂 = 3/4,
𝛽 = −2/3, and 𝑓(𝑡, 𝑥) = (1/(𝑡 + 2)

2
)(‖𝑥‖/(1 + ‖𝑥‖)). Since

|𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦)| ≤ (1/4)‖𝑥 − 𝑦‖, then, (𝐻
1
) and (𝐻

2
) are

satisfied with 𝑇(1 + 𝑟) − 𝛽𝜂2 = 13/8 ̸= 0,

Ω =
1

1 + 𝑝
(𝑇
2
+

𝛽
 𝑇𝜂
3
(1 + 𝑟)

𝑇 (1 + 𝑟) − 𝛽𝜂
2 (1 + 𝑟 + 𝑟

2)

+
𝑇
3
(1 + 𝑟)

𝑇 (1 + 𝑟) − 𝛽𝜂
2

) =
132

91
,

Φ = |𝜆| 𝑇 +

𝛽
 |𝜆| 𝑇𝜂

2

𝑇 (1 + 𝑟) − 𝛽𝜂
2

+
|𝜆| 𝑇
2
(1 + 𝑟)

𝑇 (1 + 𝑟) − 𝛽𝜂
2

=
4

7
,

(41)

𝐿 = 1/4. Hence, Λ =: Φ + 𝐿Ω = 85/91 < 1. Therefore, by
Theorem 2, the boundary value problem (40) has a unique
solution on [0, 1].
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Example 7. Consider the following nonlinear 𝑞-difference
equation with boundary value problem:

𝐷
2/3

(𝐷
4/5

+
1

9
) 𝑥 (𝑡) =

sin (5𝜋𝑥)
25𝜋

+
|𝑥|

|𝑥| + 1
, 𝑡 ∈ [0,

3

2
] ,

𝑥 (0) = 0, 𝑥 (
3

2
) =

1

4
∫

1

0

𝑥 (𝑠) 𝑑
1/2
𝑠.

(42)

Set 𝑞 = 2/3, 𝑝 = 4/5, 𝑟 = 1/2, 𝑇 = 3/2, 𝜆 = 1/9, 𝜂 = 1,
and 𝛽 = 1/4. Here, |𝑓(𝑡, 𝑥)| = | sin(5𝜋𝑥)/25𝜋+|𝑥|/(1+|𝑥|)| ≤
(|𝑥|/5) + 1. So,𝑀 = 1, 𝑇(1 + 𝑟) − 𝛽𝜂2 = 2 ̸= 0, and

Ω =
1

1 + 𝑝

× (𝑇
2
+

𝛽
 𝑇𝜂
3
(1 + 𝑟)

𝑇 (1 + 𝑟) − 𝛽𝜂
2 (1 + 𝑟 + 𝑟

2)

+
𝑇
3
(1 + 𝑟)

𝑇 (1 + 𝑟) − 𝛽𝜂
2

) =
615

224
,

Φ = |𝜆| 𝑇 +

𝛽
 |𝜆| 𝑇𝜂

2

𝑇 (1 + 𝑟) − 𝛽𝜂
2

+
|𝜆| 𝑇
2
(1 + 𝑟)

𝑇 (1 + 𝑟) − 𝛽𝜂
2

=
3

8
,

𝜅 =
1

5
< (1 − Φ)Ω

−1
=

28

123
.

(43)

Hence, by Theorem 5, the boundary value problem (42) has
at least one solution on [0, 3/2].
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