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The universal form of univariate Quasi-Bézier basis functions with multiple shape parameters and a series of corresponding Quasi-
Bézier curveswere constructed step-by-step in this paper, using themethod of undetermined coefficients.The series ofQuasi-Bézier
curves had geometric and affine invariability, convex hull property, symmetry, interpolation at the endpoints and tangent edges at
the endpoints, and shape adjustability while maintaining the control points. Various existing Quasi-Bézier curves became special
cases in the series. The obvious geometric significance of shape parameters made the adjustment of the geometrical shape easier
for the designer. The numerical examples indicated that the algorithm was valid and can easily be applied.

1. Introduction

The Bézier curve 𝛾
1
(𝑡) listed as follows has a direct-viewing

structure and can be computed using a simple process; it
is also one of the most important tools in computer-aided
geometric design (CAGD). Consider

𝛾
1
(𝑡) =

𝑛

∑

𝑖=0

P
𝑖
𝐵
𝑛

𝑖
(𝑡) , 𝑡 ∈ [0, 1] . (1)

Here, Bernstein basis functions {𝐵𝑛
𝑖
(𝑡)}
𝑛

𝑖=0
are defined as:

𝐵
𝑛

𝑖
(𝑡) = (

𝑛

𝑖
) (1 − 𝑡)

𝑛−𝑖
𝑡
𝑖
, 𝑖 = 0, 1, . . . , 𝑛. (2)

Given that the shape of the curve is characterized by
the control polygon, the designer always adjusts the control
point {P

𝑖
}
𝑛

𝑖=0
when necessary. However, in the actual process,

designing the geometrical shape is usually not completed
at one time. The designer prefers to have more satisfactory
geometrical shapes by maintaining control polygon, which
allows him or her to make minute adjustments on the shape
of the curve with fixed control points.

The rational Bézier curve 𝛾
2
(𝑡) listed as follows is a natural

choice to meet this requirement [1].

𝛾
2
(𝑡) =

∑
𝑛

𝑖=0
P
𝑖
𝐵
𝑛

𝑖
(𝑡)

∑
𝑛

𝑖=0
P
𝑖
𝜔
𝑖
𝐵
𝑛

𝑖
(𝑡)

, 𝑡 ∈ [0, 1] . (3)

By assigning a weight 𝜔
𝑖
for each control point P

𝑖
, the

designer can adjust the shape of the curve by changing the
value of theweights {𝜔

𝑖
}
𝑛

𝑖=0
[2, 3]. Although the rational Bézier

curve has goodproperties and can express the conic section, it
also has disadvantages, such as difficulty in choosing the value
of the weight, the increased order of rational fraction caused
by the derivation, and the need for a numerical method of
integration.

In addition, the algebraic trigonometric/hyperbolic curve
𝛾
3
(𝑡) with the definition domain 𝛼 as the shape parameter is

a feasible method [4–6]. Consider

𝛾
3
(𝑡) =

𝑛

∑

𝑖=0

P
𝑖
𝑢
𝑛

𝑖
(𝑡) , 𝑡 ∈ [0, 𝛼] . (4)

The simple form of the algebraic trigonometric/hyper-
bolic curve 𝛾

3
(𝑡) can express transcendental curves (e.g., spi-

ral and cycloid) that cannot be expressed by the Bézier curve.
Nevertheless, the basis functions {𝑢

𝑛

𝑖
(𝑡)}
𝑛

𝑖=0
include trigono-

metric/hyperbolic functions, such as sin 𝑡, cos 𝑡, sinh 𝑡, and
cosh 𝑡. So, the algebraic trigonometric/hyperbolic curve is
incompatible with the existing NURBS system, thereby
restricting its application in the actual project.

In view of the fact that the expression of the parametric
curve is determined by the control points and the basis func-
tions, the properties of such functions identify the properties
of the curve with its fixed control points. Therefore, several
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Table 1: Properties of the basis functions and the curves with shape parameters.

Property [7] [8] [9] [10] [11] [12] This paper

Basis functions with multiple shape
parameters

Nonnegativity ✓ ✓ ✓ ✓ ✓ ✓ ✓

Partition of unity ✓ ✓ ✓ ✓ ✓ ✓ ✓

Symmetry ✓ ∗ ∗ ∗ × ✓ ✓

Multiple shape parameters × ✓ ✓ ✓ ✓ × ✓

Linear independence ✓ × × ✓ ✓ ✓ ✓

Degeneracy ✓ ✓ ✓ × × ✓ ✓

Curve with multiple shape parameters

Geometric and affine invariability ✓ ✓ ✓ ✓ ✓ ✓ ✓

Convex hull property ✓ ✓ ✓ ✓ ✓ ✓ ✓

Symmetry ✓ ∗ ∗ ∗ × ✓ ✓

Interpolation at the endpoints ✓ ✓ ✓ ✓ ✓ ✓ ✓

Tangent at the end edge ✓ ✓ ✓ ✓ × ✓ ✓

∗The property of symmetry in [8–10] is based on the shape parameters.

kinds of polynomial basis functions with shape parameters
[7–12] and the corresponding curve have been constructed
as follows.

By letting {𝑏𝑛1 ,𝑛2
𝑖

(𝑡; 𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑚
)}
𝑛
1

𝑖=0
be 𝑛
1
+1 polynomial

functions of degree 𝑛
2
(called order 𝑛

1
and degree 𝑛

2
) and

{P
𝑖
}
𝑛
1

𝑖=0
be 𝑛
1
+ 1 points in spaces, the parametric curve with

multiple shape parameters {𝜆
𝑖
}
𝑚

𝑖=0
is constructed as follows:

P (𝑡; 𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑚
) =

𝑛
1

∑

𝑖=0

P
𝑖
𝑏
𝑛
1
,𝑛
2

𝑖
(𝑡; 𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑚
) . (5)

For the sake of concision, the notations
{𝑏
𝑛
1
,𝑛
2

𝑖
(𝑡; 𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑚
)}
𝑛
1

𝑖=0
and P(𝑡; 𝜆

1
, 𝜆
2
, . . . , 𝜆

𝑚
) will

be replaced by {𝑏
𝑛
1
,𝑛
2

𝑖
(𝑡)}
𝑛
1

𝑖=0
and P(𝑡). And {𝑏

𝑛
1
,𝑛
2

𝑖
(𝑡)}
𝑛
1

𝑖=0
and

P(𝑡) will be called Quasi-Bernstein basis and Quasi-Bézier
curve, respectively.

With the extra degree of freedom provided by the shape
parameters {𝜆

𝑖
}
𝑚

𝑖=1
in {𝑏
𝑛
1
,𝑛
2

𝑖
(𝑡)}
𝑛
1

𝑖=0
, the curveP(𝑡) can be freely

adjusted and controlled by changing the value of {𝜆
𝑖
}
𝑚

𝑖=1

instead of changing the control points {P
𝑖
}
𝑛
1

𝑖=0
. The existing

works are compared in detail in Table 1.
The construction of the basis functionswith shape param-

eters is the key step in [7–12]. Although many kinds of basis
functions with shape parameters have been obtained in the
existing research, two problems need to be solved.

(1) In all existing research, the basis functions with
shape parameters are initially given, and whether or
not these functions and the corresponding curves
have inherited the characteristics of the Bernstein

basis functions and the Bézier curve, respectively,
is examined. However, the method of obtaining the
complex expressions of the basis functions remains
unclear. Are these basis functions obtained through
intuition or through an aimless attempt?

(2) There are numerous known basis functions with
shape parameters in varying forms. Is there a type of
Quasi-Bernstein basis function, whichmakes existing
basis functions with shape parameters be its special
case?

To answer the previous two questions, this paper uses the
method of undetermined coefficients, which clarifies the con-
struction process of the Quasi-Bernstein basis functions. A
series of Quasi-Bernstein basis functions are finally obtained,
rendering the existing basis function with shape parameters
as their special case.

2. Quasi-Bézier Curve

2.1. Notation. First, the following vectors are introduced:

b𝑛1,𝑛2 = (𝑏
𝑛
1
,𝑛
2

0
(𝑡) , 𝑏
𝑛
1
,𝑛
2

1
(𝑡) , . . . , 𝑏

𝑛
1
,𝑛
2

𝑛
1

(𝑡)) ,

P𝑛1 = (P
0
,P
1
, . . . ,P

𝑛
1

)
𝑇

.

(6)

Equation (5) can be rewritten as

P (𝑡) = b𝑛1 ,𝑛2P𝑛1 . (7)
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Given that {𝑏𝑛1 ,𝑛2
𝑖

(𝑡)}
𝑛
1

𝑖=0
are polynomials with degree 𝑛

2
,

they can be seen as the linear combination of the Bernstein
basis functions {𝐵𝑛2

𝑖
(𝑡)}
𝑛
2

𝑖=0
with degree 𝑛

2
given by

b𝑛1 ,𝑛2 = B𝑛2M𝑛2 ,𝑛1 ,

B𝑛2 = (𝐵
𝑛
2

0
(𝑡) , 𝐵
𝑛
2

1
(𝑡) , . . . , 𝐵

𝑛
2

𝑛
2

(𝑡)) ,

M𝑛2 ,𝑛1 = (𝑚
𝑖𝑗
)
𝑖=𝑛
2
,𝑗=𝑛
1

𝑖,𝑗=0
.

(8)

Thus, as long as the elements in the matrix M𝑛2 ,𝑛1 are
determined, the Quasi-Bernstein basis functions {𝑏𝑛1,𝑛2

𝑖
(𝑡)}
𝑛
1

𝑖=0

with order 𝑛
1
and degree 𝑛

2
are completely constructed.

Except for several elements that can be determined inM𝑛2 ,𝑛1 ,
the rest are shape parameters of the Quasi-Bernstein basis
functions and theQuasi-Bézier curve. Here, thematrixM𝑛2,𝑛1
is called the shape parameter matrix.

2.2. Construction of the Shape Parameter Matrix M𝑛2 ,𝑛1 . The
(𝑛
2
+1)(𝑛

1
+1) elements of𝑚

𝑖𝑗
inM𝑛2,𝑛1 must be determined so

that {𝑏𝑛1 ,𝑛2
𝑖

(𝑡)}
𝑛
1

𝑖=0
and P(𝑡) become the Quasi-Bernstein basis

functions and the Quasi-Bézier curve, respectively.

2.2.1. Determination of 𝑚
𝑖𝑗
according to the Characteristics

of the Quasi-Bernstein Basis Functions. The Quasi-Bernstein
basis functions {𝑏𝑛1 ,𝑛2

𝑖
(𝑡)}
𝑛
1

𝑖=0
with order 𝑛

1
and degree 𝑛

2
must

satisfy the characteristics of nonnegativity, normalization,
symmetry, linear independence, and degeneracy.

Proposition 1 (nonnegativity). A sufficient condition for
𝑏
𝑛
1
,𝑛
2

𝑖
(𝑡) ≥ 0 (𝑖 = 0, 1, . . . , 𝑛

2
) is

𝑚
𝑖𝑗
≥ 0 (𝑖 = 0, 1, . . . , 𝑛

2
, 𝑗 = 0, 1, . . . , 𝑛

1
) . (9)

Proof. Here, 𝑏
𝑛
1
,𝑛
2

𝑗
(𝑡) = ∑

𝑛
2

𝑖=0
𝑚
𝑖𝑗
𝐵
𝑛
2

𝑖
(𝑡) is known to have

been extracted from (8). Based on the non-negativity of the
Bernstein basis functions {𝐵

𝑛
2

𝑖
(𝑡)}
𝑛
2

𝑖=0
, a sufficient condition

for the non-negativity of the Quasi-Bernstein basis functions
{𝑏
𝑛
1
,𝑛
2

𝑖
(𝑡)}
𝑛
1

𝑖=0
is the non-negativity of the elements 𝑚

𝑖𝑗
in

M𝑛2 ,𝑛1 . Hence,𝑚
𝑖𝑗
must satisfy (9).

Note 1. Clearly, there is no row with all elements being 0 in
M𝑛2 ,𝑛1 . In other words,

𝑛
2

∑

𝑖=0

𝑚
𝑖𝑗

̸= 0 (𝑗 = 0, 1 . . . , 𝑛
1
) . (10)

Proposition 2 (normalization). The necessary and sufficient
condition for ∑𝑛1

𝑗=0
𝑏
𝑛
1
,𝑛
2

𝑗
(𝑡) = 1 is given by

𝑛
1

∑

𝑗=0

𝑚
𝑖𝑗
= 1 (𝑖 = 0, 1, . . . , 𝑛

2
) . (11)

Proof. It is known that

𝑛
1

∑

𝑗=0

𝑏
𝑛
1
,𝑛
2

𝑗
(𝑡) − 1

=

𝑛
1

∑

𝑗=0

(

𝑛
2

∑

𝑖=0

𝑚
𝑖𝑗
𝐵
𝑛
2

𝑖
(𝑡)) − 1

=

𝑛
2

∑

𝑖=0

(

𝑛
1

∑

𝑗=0

𝑚
𝑖𝑗
)𝐵
𝑛
2

𝑖
(𝑡) − 1

=

𝑛
2

∑

𝑖=0

(

𝑛
1

∑

𝑗=0

𝑚
𝑖𝑗
)𝐵
𝑛
2

𝑖
(𝑡) −

𝑛
2

∑

𝑖=0

𝐵
𝑛
2

𝑖
(𝑡)

=

𝑛
2

∑

𝑖=0

(

𝑛
1

∑

𝑗=0

𝑚
𝑖𝑗
− 1)𝐵

𝑛
2

𝑖
(𝑡) .

(12)

According to the linear independence of the Bernstein
basis functions {𝐵

𝑛
2

𝑖
(𝑡)}
𝑛
2

𝑖=0
, the necessary and sufficient con-

dition for ∑
𝑛
1

𝑗=0
𝑏
𝑛
1
,𝑛
2

𝑗
(𝑡) − 1 = 0 is ∑

𝑛
1

𝑗=0
𝑚
𝑖𝑗

= 1 (𝑖 =

0, 1, . . . , 𝑛
2
).

Note 2. By combining (9) and (11), 𝑚
𝑖𝑗
satisfies 0 ≤ 𝑚

𝑖𝑗
≤

1 (𝑖 = 0, 1, . . . , 𝑛
2
, 𝑗 = 0, 1, . . . , 𝑛

1
).

Proposition 3 (symmetry). The necessary and sufficient con-
dition for 𝑏𝑛1 ,𝑛2

𝑗
(𝑡) = 𝑏

𝑛
1
,𝑛
2

𝑛
1
−𝑗

(1 − 𝑡) (𝑗 = 0, 1, . . . , 𝑛
1
) is given by

𝑚
𝑖𝑗
= 𝑚
𝑛
2
−𝑖,𝑛
1
−𝑗

(𝑖 = 0, 1, . . . , 𝑛
2
, 𝑗 = 0, 1, . . . , 𝑛

1
) . (13)

Proof. According to the symmetry of the Bernstein basis
functions {𝐵

𝑛
2

𝑖
(𝑡)}
𝑛
2

𝑖=0
of 𝐵𝑛2
𝑖
(𝑡) = 𝐵

𝑛
2

𝑛
2
−𝑖
(1 − 𝑡), the following

can be derived:

𝑏
𝑛
1
,𝑛
2

𝑛
1
−𝑗

(1 − 𝑡) − 𝑏
𝑛
1
,𝑛
2

𝑗
(𝑡)

=

𝑛
2

∑

𝑖=0

𝐵
𝑛
2

𝑖
(1 − 𝑡)𝑚

𝑖,𝑛
1
−𝑗

−

𝑛
2

∑

𝑖=0

𝐵
𝑛
2

𝑖
(𝑡)𝑚
𝑖𝑗

=

𝑛
2

∑

𝑖=0

𝐵
𝑛
2

𝑛
2
−𝑖
(𝑡)𝑚
𝑖,𝑛
1
−𝑗

−

𝑛
2

∑

𝑖=0

𝐵
𝑛
2

𝑖
(𝑡)𝑚
𝑖𝑗

=

𝑛
2

∑

𝑖=0

𝐵
𝑛
2

𝑖
(𝑡)𝑚
𝑛
2
−𝑖,𝑛
1
−𝑗

−

𝑛
2

∑

𝑖=0

𝐵
𝑛
2

𝑖
(𝑡)𝑚
𝑖𝑗

=

𝑛
2

∑

𝑖=0

𝐵
𝑛
2

𝑖
(𝑡) (𝑚

𝑛
2
−𝑖,𝑛
1
−𝑗

− 𝑚
𝑖𝑗
) ,

𝑗 = 0, 1, . . . , 𝑛
1
.

(14)

According to the linear independence of the Bernstein
basis functions {𝐵

𝑛
2

𝑖
(𝑡)}
𝑛
2

𝑖=0
, the necessary and sufficient con-

dition for 𝑏𝑛1 ,𝑛2
𝑗

(𝑡) − 𝑏
𝑛
1
,𝑛
2

𝑛
1
−𝑗

(1 − 𝑡) = 0 is (13).
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Proposition 4 (linear independence). The necessary and
sufficient condition for the linear independence of {𝑏𝑛1,𝑛2

𝑖
(𝑡)}
𝑛
1

𝑖=0

is given by

𝑟 (M𝑛2 ,𝑛1) = 𝑛
1
+ 1. (15)

Proof. It is known that

𝑛
1

∑

𝑗=0

𝑘
𝑗
𝑏
𝑛
1
,𝑛
2

𝑗
(𝑡) =

𝑛
1

∑

𝑗=0

𝑘
𝑗
(

𝑛
2

∑

𝑖=0

𝑚
𝑖𝑗
𝐵
𝑛
2

𝑖
(𝑡))

=

𝑛
2

∑

𝑖=0

(

𝑛
1

∑

𝑗=0

𝑘
𝑗
𝑚
𝑖𝑗
)𝐵
𝑛
2

𝑖
(𝑡) .

(16)

According to the linear independence of the Bernstein
basis functions {𝐵

𝑛
2

𝑖
(𝑡)}
𝑛
2

𝑖=0
, the necessary and sufficient con-

dition for ∑𝑛1
𝑗=0

𝑘
𝑗
𝑏
𝑛
1
,𝑛
2

𝑗
(𝑡) = 0 is given by

𝑛
1

∑

𝑗=0

𝑘
𝑗
𝑚
𝑖𝑗
= 0 (𝑖 = 0, 1, . . . , 𝑛

2
) . (17)

M𝑗 = (𝑚
0,𝑗

, 𝑚
1,𝑗

, . . . , 𝑚
𝑛
2
,𝑗
)
𝑇 is defined as the 𝑗th column

vector ofM𝑛2,𝑛1 . Equation (17) is equivalent to∑
𝑛
1

𝑗=0
𝑘
𝑗
M𝑗 = 0.

Thus, the necessary and sufficient condition for the linear
independence of {𝑏𝑛1 ,𝑛2

𝑖
(𝑡)}
𝑛
1

𝑖=0
is also the linear independence

of the column vectors {M𝑗}𝑛1
𝑖=0

of the matrix M𝑛2 ,𝑛1 . Conse-
quently, the necessary and sufficient condition for the linear
independence of {𝑏

𝑛
1
,𝑛
2

𝑖
(𝑡)}
𝑛
1

𝑖=0
is that the rank of the shape

parameter matrixM𝑛2 ,𝑛1 satisfies 𝑟(M𝑛2,𝑛1) = 𝑛
1
+ 1.

Note 3. When (15) is true, 𝑛
2
≥ 𝑛
1
.

Proposition 5 (degeneracy). If the elements {𝑚
𝑖𝑗
}
𝑖=𝑛
2
,𝑗=𝑛
1

𝑖,𝑗=0
in

the matrixM𝑛2 ,𝑛1 are represented by (18), the Quasi-Bernstein
basis functions {𝑏

𝑛
1
,𝑛
2

𝑖
(𝑡)}
𝑛
1

𝑖=0
with order 𝑛

1
and degree 𝑛

2
are

degenerated into the Bernstein basis functions {𝐵𝑛1
𝑖
(𝑡)}
𝑛
1

𝑖=0
with

order 𝑛
1
.

𝑚
𝑖𝑗

=

{{{{

{{{{

{

(
𝑛
2
−𝑛
1

𝑖−𝑗
) (
𝑛
1

𝑗 )

(
𝑛
2

𝑖
)

, max (0, 𝑖 − (𝑛
2
− 𝑛
1
)) ≤ 𝑗 ≤ min (𝑛

1
, 𝑖) ,

0 ≤ 𝑖 ≤ 𝑛
2
, 0 ≤ 𝑗 ≤ 𝑛

1
;

0, else.
(18)

Proof. When the elements {𝑚
𝑖𝑗
}
𝑖=𝑛
2
,𝑗=𝑛
1

𝑖,𝑗=0
in the matrix M𝑛2,𝑛1

are represented by (18), the following is obtained:

B𝑛1 = B𝑛2M𝑛2,𝑛1 . (19)

Comparing (19) with (8), Proposition 5 is proven.

Note 4. If 𝑛
1
= 𝑛
2
,M𝑛2 ,𝑛1 is an identity matrix here.

2.2.2. Determination of 𝑚
𝑖𝑗
according to the Characteristics of

the Quasi-Bézier Curve

Proposition6 (interpolation at the endpoints). Thenecessary
and sufficient condition for P(0) = P

0
and P(1) = P

𝑛
1

is given
by

𝑚
00

= 1, 𝑚
0𝑗

= 0 (𝑗 = 1, 2, . . . , 𝑛
1
) , (20)

𝑚
𝑛
2
,𝑛
1

= 1, 𝑚
𝑛
2
,𝑗
= 0 (𝑗 = 0, 1, . . . , 𝑛

1
− 1) . (21)

Proof. Clearly, the necessary and sufficient condition for
P(0) = P

0
is the Quasi-Bernstein primary functions

{𝑏
𝑛
1
,𝑛
2

𝑖
(𝑡)}
𝑛
1

𝑖=0
satisfying the following:

𝑏
𝑛
1
,𝑛
2

𝑖
(0) = {

1, 𝑖 = 0,

0, 𝑖 ̸= 0.
(22)

It is known that

(𝑏
𝑛
1
,𝑛
2

0
(0) , 𝑏
𝑛
1
,𝑛
2

1
(0) , . . . , 𝑏

𝑛
1
,𝑛
2

𝑛
1

(0))

= (𝐵
𝑛
2

0
(0) , 𝐵

𝑛
2

1
(0) , . . . , 𝐵

𝑛
2

𝑛
2

(0)) ⋅ (𝑚
𝑖𝑗
)
𝑖=𝑛
2
,𝑗=𝑛
1

𝑖,𝑗=0

= (1, 0, . . . , 0) ⋅ (𝑚
𝑖𝑗
)
𝑖=𝑛
2
,𝑗=𝑛
1

𝑖,𝑗=0

= (𝑚
00
, 𝑚
01
, . . . , 𝑚

0,𝑛
1
−1
, 𝑚
0𝑛
1

) .

(23)

Thus, the necessary and sufficient condition for (𝑏𝑛1 ,𝑛2
0

(0),
𝑏
𝑛
1
,𝑛
2

1
(0), . . . , 𝑏

𝑛
1
,𝑛
2

𝑛
1

(0)) = (1, 0, . . . , 0) is (20).
Similarly, the necessary and sufficient condition for

P(1) = P
𝑛
1

is the Quasi-Bernstein primary functions
{𝑏
𝑛
1
,𝑛
2

𝑖
(𝑡)}
𝑛
1

𝑖=0
satisfying the following:

𝑏
𝑛
1
,𝑛
2

𝑖
(1) = {

1, 𝑖 = 𝑛
1
,

0, 𝑖 ̸= 𝑛
1
.

(24)

It is known that

(𝑏
𝑛
1
,𝑛
2

0
(1) , 𝑏
𝑛
1
,𝑛
2

1
(1) , . . . , 𝑏

𝑛
1
,𝑛
2

𝑛
1

(1))

= (𝐵
𝑛
2

0
(1) , 𝐵

𝑛
2

1
(1) , . . . , 𝐵

𝑛
2

𝑛
2

(1)) ⋅ (𝑚
𝑖𝑗
)
𝑖=𝑛
2
,𝑗=𝑛
1

𝑖,𝑗=0

= (0, . . . , 0, 1) ⋅ (𝑚
𝑖𝑗
)
𝑖=𝑛
2
,𝑗=𝑛
1

𝑖,𝑗=0

= (𝑚
𝑛
2
,0
, 𝑚
𝑛
2
,1
, . . . , 𝑚

𝑛
2
,𝑛
1
−1
, 𝑚
𝑛
2
,𝑛
1

) .

(25)

Thus, the necessary and sufficient condition for
(𝑏
𝑛
1
,𝑛
2

0
(1), 𝑏
𝑛
1
,𝑛
2

1
(1), . . . , 𝑏

𝑛
1
,𝑛
2

𝑛
1

(1)) = (0, . . . , 0, 1) is (21).
Hence, the necessary and sufficient condition for P(1) =

P
𝑛
1

is (21).

Note 5. When {𝑏
𝑛
1
,𝑛
2

𝑖
(𝑡)}
𝑛
1

𝑖=0
have the property of symmetry,

(21) is equivalent to (20) according to (13).
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Proposition 7 (tangent edges at the endpoints). The neces-
sary and sufficient condition for P󸀠(0)‖P

1
P
0
,P󸀠(1)‖P

𝑛
P
𝑛−1

is
given by

𝑚
10

+ 𝑚
11

= 1, 𝑚
10

̸= 1,

𝑚
1𝑗

= 0 (𝑗 = 2, 3, . . . , 𝑛
1
) ,

(26)

𝑚
𝑛
2
−1,𝑛
1
−1

+ 𝑚
𝑛
2
−1,𝑛
1

= 1, 𝑚
𝑛
2
−1,𝑛
1

̸= 1,

𝑚
𝑛
2
−1,𝑗

= 0 (𝑗 = 0, 1, . . . , 𝑛
1
− 2) .

(27)

Proof. It is known that

P󸀠 (0) = P󸀠 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑡=0

= (𝑏
𝑛
1
,𝑛
2

0
(𝑡) , 𝑏
𝑛
1
,𝑛
2

1
(𝑡) , . . . , 𝑏

𝑛
1
,𝑛
2

𝑛
1

(𝑡))
󸀠󵄨󵄨󵄨󵄨󵄨󵄨𝑡=0

× (P
0
,P
1
, . . . ,P

𝑛
1

)
𝑇

= (𝐵
𝑛
2

0
(𝑡) , 𝐵
𝑛
2

1
(𝑡) , . . . , 𝐵

𝑛
2

𝑛
2

(𝑡))
󸀠󵄨󵄨󵄨󵄨󵄨󵄨𝑡=0

⋅ (𝑚
𝑖𝑗
)
𝑖=𝑛
2
,𝑗=𝑛
1

𝑖,𝑗=0

⋅ (P
0
,P
1
, . . . ,P

𝑛
1

)
𝑇

= 𝑛
2
(−1, 1, 0, . . . , 0) ⋅ (𝑚

𝑖𝑗
)
𝑖=𝑛
2
,𝑗=𝑛
1

𝑖,𝑗=0
⋅ (P
0
,P
1
, . . . ,P

𝑛
1

)
𝑇

= 𝑛
2
(𝑚
10

− 𝑚
00
, 𝑚
11

− 𝑚
01
, . . . , 𝑚

1𝑛
1

− 𝑚
0𝑛
1

)

× (P
0
,P
1
, . . . ,P

𝑛
1

)
𝑇

.

(28)

Clearly, the necessary and sufficient condition for
P󸀠(0)‖P

1
P
0
is (𝑚
10

− 𝑚
00
)/(𝑚
11

− 𝑚
01
) = −1, 𝑚

1𝑗
− 𝑚
0𝑗

=

0 (𝑗 = 2, 3, . . . , 𝑛
1
) which verifies (26).

Similarly, the necessary and sufficient condition for
P󸀠(1)‖P

𝑛
P
𝑛−1

is (27).

Note 6. When {𝑏
𝑛
1
,𝑛
2

𝑖
(𝑡)}
𝑛
1

𝑖=0
have the property of symmetry,

(27) is equivalent to (26) according to (13).

2.2.3. Form of Shape Parameter Matrix M𝑛2,𝑛1 . All shape
parameter matrixes that satisfy (9), (11), (13), (15), (20), (21),
(26), and (27) have the following form:

M𝑛2 ,𝑛1 =
(
(
(
(

(

1 0 ⋅ ⋅ ⋅ 0 0

𝑚
10

1 − 𝑚
10

⋅ ⋅ ⋅ 0 0

𝑚
20

𝑚
21

⋅ ⋅ ⋅ 𝑚
2,𝑛
1
−1

𝑚
2𝑛
1

...
...

. . .
...

...
𝑚
2𝑛
1

𝑚
2,𝑛
1
−1

⋅ ⋅ ⋅ 𝑚
21

𝑚
20

0 0 ⋅ ⋅ ⋅ 1 − 𝑚
10

𝑚
10

0 0 ⋅ ⋅ ⋅ 0 1

)
)
)
)

)(𝑛
2
+1)×(𝑛

1
+1)

.

(29)

Here,𝑚
𝑖𝑗
are variable shape parameters that satisfy

𝑛
1

∑

𝑗=0

𝑚
𝑖𝑗
= 1 (𝑖 = 2, 3, . . . , [

(𝑛
2
+ 1)

2
]) , 0 ≤ 𝑚

10
< 1,

0 ≤ 𝑚
𝑖𝑗
≤ 1(𝑖 = 2, 3, . . . , [

(𝑛
2
+ 1)

2
] , 𝑗 = 0, 1, . . . , 𝑛

1
) .

(30)

2.3. The Characteristics of the Quasi-Bézier Curve. In sum-
mary, the Quasi-Bézier curve P(𝑡) based on the Quasi-
Bernstein basis functions {𝑏𝑛1 ,𝑛2

𝑖
(𝑡)}
𝑛
1

𝑖=0
has the characteristics

listed as follows:

(a) shape adjustability: the shape of the Quasi-Bézier
curve can still be adjusted by maintaining the control
points.

(b) geometric invariability: the Quasi-Bézier curve only
relies on the control points, whereas it has nothing to
do with the position and direction of the coordinate
system; in other words, the curve shape remains
invariable after translation and revolving in the coor-
dinate system;

(c) affine invariability: barycentric combinations are
invariant under affine maps; therefore, (9) and (11)
give the algebraic verification of this property;

(d) symmetry: whether the control points are labeled
P
0
P
1
⋅ ⋅ ⋅P
𝑛
1

or P
𝑛
1

P
𝑛
1
−1

⋅ ⋅ ⋅P
0
, the curves that corre-

spond to the two different orderings look the same;
they differ only in the direction in which they are
traversed, and this is written as
𝑛
1

∑

𝑖=0

P
𝑖
𝑏
𝑛
1
,𝑛
2

𝑖
(𝑡) =

𝑛
1

∑

𝑖=0

P
𝑛
1
−𝑖
𝑏
𝑛
1
,𝑛
2

𝑛
1
−𝑖

(1 − 𝑡) , (31)

which follows the inspection of (13);
(e) convex hull property: this property exists since the

Quasi-Bernstein basis functions {𝑏𝑛1 ,𝑛2
𝑖

(𝑡)}
𝑛
1

𝑖=0
have the

properties of non-negativity and normalization; the
Quasi-Bézier curve is the convex linear combination
of control points, and as such, it is located in the
convex hull of the control points;

(f) interpolation at the endpoints and tangent edges at
the endpoint: the Quasi-Bézier curve P(𝑡) interpo-
lates the first and the last control points P(0) =

P
0
and P(1) = P

𝑛
1

; the first and last edges of the
control polygon are the tangent lines at the endpoints,
where P󸀠(0)‖P

1
P
0
and P󸀠(1)‖P

𝑛
P
𝑛−1

.

2.4. Geometric Significance of the Shape Parameters. Accord-
ing to (29), when 𝑚

𝑖,𝑗
0

(𝑖 = 0, 1, . . . , 𝑛
2
, 𝑗
0

= 0, 1, . . . , 𝑛
1
)

increases, 𝑏𝑛1 ,𝑛2
𝑗
0

(𝑡) and 𝑏
𝑛
1
,𝑛
2

𝑛
1
−𝑗
0

(𝑡) increase as well; specifically,
P(𝑡) comes close to the control points P

𝑗
0

and P
𝑛
1
−𝑗
0

. The
geometric significance of the shape parameters is shown in
Section 3.
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Figure 1: Quasi-Bernstein basis functions and Quasi-Bézier curves when 𝑛
1
= 2 and 𝑛

2
= 3.

3. Numerical Examples

Example 1. The shape parameter matrix M3,2 is constructed
from (29). The corresponding Quasi-Bernstein basis func-
tions and the Quasi-Bézier curves with different shape
parameter𝑚

10
are given as follows:

M3,2 = (

1 0 0

𝑚
10

1 − 𝑚
10

0

0 1 − 𝑚
10

𝑚
10

0 0 1

) , 0 ≤ 𝑚
10

< 1. (32)

The geometric significance of the shape parameters 𝑚
10

is shown in Figure 1. As the value of the shape parameter
𝑚
10

increases, the elements in the second column of M3,2
decrease. According to (8), the second Quasi-Bernstein basis
function 𝑏

2,3

1
(𝑡) decreases. So, the corresponding Quasi-

Bézier curve moves away from the control point P
1
(see

Figure 1(b)).

Example 2. The shape parameter matrix M4,2 is constructed
from (29). The corresponding Quasi-Bernstein basis func-
tions and the Quasi-Bézier curves with different shape
parameters𝑚

10
and𝑚

20
are given as follows:

M4,2 = (

1 0 0

𝑚
10

1 − 𝑚
10

0

𝑚
20

1 − 2𝑚
20

𝑚
20

0 1 − 𝑚
10

𝑚
10

0 0 1

),

0 ≤ 𝑚
10

< 1, 0 ≤ 𝑚
20

≤
1

2
.

(33)

The geometric significance of the shape parameters 𝑚
10

and 𝑚
20

is shown in Figure 2. When we increase the value
of 𝑚
10
and keep 𝑚

20
unchanged, the elements in the second

column ofM4,2 decrease. According to (8), the secondQuasi-
Bernstein basis function 𝑏

2,4

1
(𝑡) decreases. Compare the blue

curve with the red one, and we will find that the Quasi-Bézier
curvemoves away from the control pointP

1
(see Figure 2(b)).

If we increase the value of 𝑚
20
and keep 𝑚

10
unchanged,

similar result is also obtained. Compare the red curve with
the green one, and we will find that the Quasi-Bézier curve
moves away from the control point P

1
(see Figure 2(b)).

Example 3. The shape parameter matrix M3,3 is constructed
from (29). The corresponding Quasi-Bernstein basis func-
tions and the Quasi-Bézier curves with different shape
parameter𝑚

10
are given as follows:

M3,3 = (

1 0 0 0

𝑚
10

1 − 𝑚
10

0 0

0 0 1 − 𝑚
10

𝑚
10

0 0 0 1

) , 0 ≤ 𝑚
10

< 1.

(34)

The geometric significance of the shape parameters𝑚
10
is

shown in Figure 3. As the value of the shape parameter 𝑚
10

increases, the elements in the second and the third column of
M3,3 decrease. According to (8), the second Quasi-Bernstein
basis function 𝑏

3,3

1
(𝑡) and the third Quasi-Bernstein basis

function 𝑏
3,3

2
(𝑡) decrease. So, the corresponding Quasi-Bézier

curve moves away from the control points P
1
and P

2
(see

Figure 3(b)).

Example 4. The shape parameter matrix M4,3 is construc-
ted from (29). The corresponding Quasi-Bernstein basis
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Bézier curve

0 21 3 4 5
0

0.2

0.4

0.6

0.8

1
𝑷1

𝑷2𝑷0

(b)

Figure 2: Quasi-Bernstein basis functions and Quasi-Bézier curves when 𝑛
1
= 2 and 𝑛

2
= 4.
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Figure 3: Quasi-Bernstein basis functions and Quasi-Bézier curves when 𝑛
1
= 3 and 𝑛

2
= 3.

functions and the Quasi-Bézier curves with different shape
parameter𝑚

10
and𝑚

20
are given as follows:

M4,3 =
(
(
(

(

1 0 0 0

𝑚
10

1 − 𝑚
10

0 0

𝑚
20

1

2
− 𝑚
20

1

2
− 𝑚
20

𝑚
20

0 0 1 − 𝑚
10

𝑚
10

0 0 0 1

)
)
)

)

,

0 ≤ 𝑚
10

< 1, 0 ≤ 𝑚
20

≤
1

2
.

(35)

The geometric significance of the shape parameters 𝑚
10

and 𝑚
20

is shown in Figure 4. When we increase the value
of 𝑚
10
and keep 𝑚

20
unchanged, the elements in the second

and the third column ofM4,3 decrease. According to (8), the
second Quasi-Bernstein basis function 𝑏

3,4

1
(𝑡) and the third

Quasi-Bernstein basis function 𝑏
3,4

2
(𝑡) decrease. Compare the

blue curve with the red one, and we will find that the Quasi-
Bézier curve moves away from the control points P

1
and P

2

(see Figure 4(b)).
If we increase the value of 𝑚

20
and keep 𝑚

10
unchanged,

similar result is also obtained. Compare the red curvewith the
green one, andwewill find that theQuasi-Bézier curvemoves
away from the control points P

1
and P

2
(see Figure 4(b)).
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Figure 4: Quasi-Bernstein basis functions and Quasi-Bézier curves when 𝑛
1
= 3 and 𝑛

2
= 4.

Figure 5: Three kinds of flowers with six petals.

Note 7. Several Quasi-Bernstein basis functions for low
degree and low order are presented aforementioned. The
corresponding basis functions for higher degree and higher
order are defined recursively as follows [7, 12]:

𝑏
𝑛
1
+1,𝑛
2
+1

𝑖
(𝑡) = (1 − 𝑡) 𝑏

𝑛
1
,𝑛
2

𝑖
(𝑡) + 𝑡𝑏

𝑛
1
,𝑛
2

𝑖−1
(𝑡) ,

𝑖 = 0, 1, . . . , 𝑛
1
.

(36)

Here, we set 𝑏𝑛1,𝑛2
−1

(𝑡) = 𝑏
𝑛
1
,𝑛
2

𝑛
1
+1

(𝑡) = 0.

Example 5. Figure 5 presents three kinds of flowers with six
petals, defined by six symmetric control polygons. Similar
flowers are obtained from the same control polygons with
different shape parameters.

Example 6. Figure 6 presents three kinds of outlines of the
vase, all of which are similar to the control polygons. So, the

Figure 6: Three kinds of outlines of the vase.

designer canmakeminute adjustments with the same control
polygons by changing the value of the shape parameters.

4. Discussion

4.1. Special Cases. Several existing basis functions containing
just one shape parameter in [7, 12] are considered as the
special cases in this paper. Meanwhile, for the polynomial
basis functions with multiple shape parameters in [8–11], the
symmetry was not discussed by authors. In fact, when these
shape parameters satisfy certain relations, the corresponding
basis functions and curves become symmetrical. Then, the
curves have geometric and affine invariability, convex hull
property, symmetry, interpolation at the endpoints, and
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tangent edges at the endpoints, and the corresponding shape
parameter matrices are the special cases of (29).

We take [9] as example. When the shape parameters
satisfy certain relations in [9], the shape parameter matrix is

M𝑛+1,𝑛

=

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

1 0 ⋅ ⋅ ⋅ 0 0

1 − 𝜆
1

𝑛 + 1
1 −

1 − 𝜆
1

𝑛 + 1
⋅ ⋅ ⋅ 0 0

0
2 − 𝜆
2

𝑛 + 1
⋅ ⋅ ⋅ 0 0

...
...

. . .
...

...
0 0 ⋅ ⋅ ⋅

2 − 𝜆
2

𝑛 + 1
0

0 0 ⋅ ⋅ ⋅ 1 −
1 − 𝜆
1

𝑛 + 1

1 − 𝜆
1

𝑛 + 1

0 0 ⋅ ⋅ ⋅ 0 1

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)(𝑛+2)×(𝑛+1)

.

(37)

It is the special case of (29).

4.2. Degree and Order of the Curve. In the previous work, the
difference between the degree and order of the curve is fixed
(i.e., 𝑛

2
−𝑛
1
= 0 in [10, 11], 𝑛

2
−𝑛
1
= 1 in [7–9], and 𝑛

2
−𝑛
1
= 2

in [12]), and the scope of the curve is also fixed with the same
control points.

However, comparing Figures 1(a) and 1(b), it is found that
the greater the difference between degree and order, the larger
the scope of the Quasi-Bézier curve acquired. In order to
obtain the Quasi-Bézier curves with broader scope with the
same control points, the designer can increase the difference
between the degree and the order 𝑛

2
− 𝑛
1
.

5. Conclusion and Further Work

In this paper, a series of univariate Quasi-Bernstein basis
functions are constructed, thereby creating a series of Quasi-
Bézier curves. The shape of the series of curves can be
adjusted even with the control points fixed.The Quasi-Bézier
curves also possess geometric and affine invariability, convex
hull property, symmetry, interpolation at the endpoints, and
tangent edges at the endpoints.

Quasi-Bernstein basis functions with shape parameters
have been directly studied in the previous research. However,
in this paper, each function has been gradually inferred and
constructed using a clear method of undetermined coeffi-
cients, where each shape parameter is proposed according
to the properties of the Quasi-Bernstein basis functions and
the Quasi-Bézier curve. Under the premise of satisfying
symmetry, the former basis functions are all considered as the
special cases in this paper.

In the existing CAD/CAM systems, the triangular Bézier
surface and the spline curve are widely used. The shape
parameters also have been brought into the triangular surface
in [12–14] and the spline curve [15–17]. The method in this
paper also can be extended to construct the basis functions
of the triangular surface and the spline curve with shape

parameters directly, andmore details can be seen in our other
papers submitted.
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of Bézier curves and surfaces of the same degree,” Journal of
Information & Computational Science, vol. 7, pp. 2080–2089,
2010.

[11] J. Chen and G.-j. Wang, “A new type of the generalized Bézier
curves,” Applied Mathematics, vol. 26, no. 1, pp. 47–56, 2011.

[12] L. Yan and J. Liang, “An extension of the Bézier model,” Applied
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