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We study a system of second-order dynamic equations on time scales (p,u})*(t) — q,(E)u, (t) + Af,(t,u,(£),u, () = Ot €
(t,t,), ( pzuZ)A(t) — (O, () + Af, (8, u, (1), u,(t)) = 0, satisfying four kinds of different multipomt boundary value conditions, f; is
continuous and semipositone. We derive an interval of A such that any A lying in this interval, the semipositone coupled boundary
value problem has multiple positive solutions. The arguments are based upon fixed-point theorems in a cone.

1. Introduction

aquy () = Bupy () ) (t)) Za iy (t),
In this paper, we consider the following dynamic equations
on time scales:

nity (t,) +0,p, (t,) ”1v (t,) =0,

©)
Afi (¢ , =0,
( bt ) O Om O+ (t (00 (t)) XUy (t1) - ﬁsz )”2 (t Z“ 1) (t
te(t,t,), A>0, (1)
Vi)
(Pz“zv)A () = g, () uy () + Afy (tuy (£),uy (1) = 0, Pathy () + 0P (t2) 1z (8) =0,
o N oquy () = Bupy (1) ) (1) =0
satistying one of the boundary value conditions
u, (t,)+0 t,)u; (t,) bu, ()
auy () = Bipy (tl)“1v (t,) = it () + 0 (1) o) Z 1 (5)
4)
yithy () + 0,01 () wy (t,) Zb% au, (1) = Bop, (1) s (8) Z“”z (t),
)
oy (1)) = B (1) 13 (1) =0, Yoty () + 8,01 (£,) w5 (£,) =0,

Yathy () + 8,1 (£,) w5 (2, Zbuz o, () = Bips (0) ) (t) Za u, (),



2
Nty (t,) +6,p, (t,) ”1V (t,) =0,
ayy () = Baps (1) ”Z (t) =0,
n-2
oty (£,) + 8,0, (t,) w5 (8,) = Zbi“z (t:),
im2
(5)
where
pl’ ql . [tl’ ] (0’ +OO)
with p, € C*[t,,t,), g, €C[t,t,] fori=1,2 ©

a;, i vi» 6; € [0, +00)
with oy +o;0;+5;y,>0 fori=1,2,

and f; is continuously and nonegative functionsquad, g;,b; €
[0,+00) for i € {1,2,...,n}; the points t; € TS fori €
{1,2,...,n} witht, <t, <---<t,

In the past few years, the boundary value problems of
dynamic equations on time scales have been studied by many
authors (see [1-19] and references). Recently, multipoint
boundary value problems on time scale have been studied,
for instance, see [1-12].

In 2006, Anderson and Ma [1] studied the second-order
multiple time-scale eigenvalue problem:

(") O -q® y O+ M (®) f () =

te(t,t,), A>0,

ay (t,) - Bp (1)) " (1) zay @

yy () +8p(t,) " (t,)

Zby

where the functions f : [0,+00) — [0,+00) and h :
[t;,t,] — [0,+00) are continuous. The authors discuss con-
ditions for the existence of at least one positive solution to
the second-order Sturm-Liouville-type multiple eigenvalue
problem on time scales.

In 2009, Feng et al. [2] studied

(py") O -a®y® = f(t.7),
te(t,t,),
ay (t,) - Bp(t) y" (t,) Zay ®

Zby

where the functions f(t,y) = 27:1 cj(t)y"f, ¢ € C([t;, t,],
[0’00))) Vi € [O)OO)) ] = 1,2,. ..

yy () +8p(t,) ¥ (t,)

,n. This paper shows the
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existence of multiple positive solutions for the boundary
value problem on time scales.

In 2009, Topal and Yantir [3] studied the second-order
nonlinear m-point boundary value problems

VO +a)u @) +bOu®)

+Aq(t) f(t,u() =0, te(0,1)y, ©)
m=2
u(p(0)) =0, u(o (1)) = Zcxiu (m:)»
i=1
where o; > 0,0 < #; < 1, < Liforalli = 1,2,...,m -

2;a € C([0,1],[0,+00)), b € C([0,1],(-00,0]), f,q are
continuously and nonegative functions. The authors deal with
determining the value of A, and the existences of multiple
positive solutions of the equation are obtained. In 2010, Yuan
and Liu [4] also study the second-order m-point boundary
value problems; Yuan and Liu shows the existence of multiple
positive solutions if f is semipositone and superlinear.

Motivated by the above results mentioned, we study the
second-order nonlinear m-point boundary value problem (1)
with boundary condition (k), and nonlinear term may be
singularity and semipositone.

In this paper, the nonlinear term f; of (1) is suit to and
semipositone and the superlinear case, we shall prove our
two existence results for the problem (1) with (k) by using
a nonlinear alternative of Leray-Schauder type and Kras-
nosel’skii fixed-point theorem. This paper is organized as
follows. In Section 2, we start with some preliminary lemmas.
In Section 3, we give the main result which state the sufficient
conditions for (1) with m-point boundary value (k) to have
existence of positive solutions (k = 2,...,5).

2. Preliminaries

In this section, we state the preliminary information that we
need to prove the main results.

In this paper, for our constructions, we shall consider the
Banach space E = C[p(t,), t,] equipped with standard norm
[lx]| = max ot )<t<t, [x(t)l, x € E; for each (x, y) € E x E, we
write ||(x, y)II1 = ||x||+||y|| Clearly, (ExE, ||-]|,) is a Banach
space. Denote by ¢;; and ¢, (i = 1,2), the solutions of the
equation

(piuiv)A ) —q; () u;(t) =0, telt,t,), (10)

under the initial conditions

pi(t)) “iv (t) =
b (tn) uiv (tn) =Y

u; (t)) = Bis
U; (tn) = 81‘)

(11)
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respectively. So that ¢;; and ¢, (i = 1,2) satisfy

(pe})" ) -a, ()¢ (1) =0,
¢ (1) = B
pi(t) b (1) = o,
(p3)" () - a, ()¢ (1) =0,
iz (t,) = S
Pi () 65 (1) = s

telt,t,),

(12)

te [tl’tn) >

respectively. Fori = 1,2, set d; = a;¢,(t,) — /J’l-p,-(tl)¢ivz(t1) =
Vi (t,) + Sipi(t,)¢y, (t,), the Green’s function of the corre-

sponding homogeneous boundary value problem is defined
by

Gi (t) 5)

1 {¢i2 (1) diy ()
¢ (1) P2 (5),

plt)ssstst, fori=1,2
p(t;))<t<s o

n

3
3

IN A

(13)

From Lemmas 3.1 and 3.3 in [1], we have the following lemma.

Lemma 1. Ifd; #0, (uy,u,) is a solution of (1) with boundary
value condition (k) if only and if

tn
u (1) =2 J; Hy (t,5) f1 (s,uy (s),uy () As, "

€lp(t).t,],

w0 =4 [y 09) £ (50 9,10,9) s, (1)

wherek =2,...,5, and
H,, (t,s)
:G,-(t,s)+ — bG b (1),
TR PLSIOO
(i=12),
Hj (t,s)
1 n—1 ( )
=G;(ts)+ aG,- t,s) ¢, (1)
d 2]2 ]¢12( )12 g ?
(i=12),

3
Hy (t,s)
1
=G, (t,s) + - bG, (t;s )
1 dl—zjz‘bsbu()z )9
=Hy, (t,s),
H,, (t,s)
1
=G, (t,s) + a,G, (t;,3) ()
’ d, - 212“‘/’22( )Z 2 =
=H, (t,5),
Hy; (t,)
1
=G, (t,s) + a,G, (t;,s) ¢
1 d-Y"a m()z o)
:HIS(t’S))
H, (t,5)
1
=G (t,s)+ > bG, (t;,s) by ()
’ d, - ]zlbz¢21( )Z ’ “
= H,, (£,5).
(16)

For the rest of the paper, we need the following assump-
tion:

n—-1 n—-1
0< ij</>i1 (tj) , Zaj¢i2 (tj) <d;,, fori=1,2. (C)
=2 =

From ¢;; is nondecreasingon [p(t,), t,,], ¢;, is nonincreas-
ing on [p(t,),t,] (see [2, Proposition 2.3]), it is easy to verify
the following inequalities:

d,G; (£,5) < ¢y (£) Py (1),
a;G; (t,5) < ¢y (s) Py (),

17)
dG; (t,s) > i () iz (£) iy (5) iz (5) -
S “¢11””¢12"¢1 (/)2 ¢1 S ¢2 S
Lemma 2. The Green’s function G,(t, s) has properties
G;(t,s) < G;(t,1),
(18)

d;
G £t G > <G t,s) < G X
Tl 60 G (69 <G 69 <G (s9).



Lemma 3. For H (t,s), k =2,...,
conclusions Hy (t,s) < C*G,(s,s) and

¢y (6) G, (s,5) < Hy (8,5) <C ¢y (1), (i=1,2),
¢ (1) G (s,5) < Hp (t,5) < C ¢ (1), (i=1,2),
;i (1) Gy (5,8) < Hy (£,5) < C¢y; (1),

¢:$12 ()G (5,5) < Hys (£,5) < CTéhy, (1),

.y (t) G, (5,5) < Hys (t,5) < C" ¢y, (1),

(i=12),

where C* = C, + C, and

S R Y
b2 Z" , bj i1 (tj) il

bl
4T agn(t )J_zza’}’

Qz@g1wmwmm+ |

d; d; - Z;:zl b (tj)

n—1 1
b.G(t.t,
" J; o (t] tj) ' di= Y- ;b](plZ (tj)

n-1
x Y 4G, (tj’tj)]’ ;
j=2

C. d !
) [eall 6l d — 725 b (1)

n—-1
X ijG,- (tit;)
Jj=2

d; 1
||¢11” |l¢12" d Z] 2 ](/)12( )

-1
X nZajGi (tj,tj); i= 1,2} .
j=2

Proof. From Lemma 2 and

_ b,G; (£):5) i (8
¢—;2@%()Z (t15)

1
Sd_zﬂl
i j=2

b,G; (s, s) i
bon )Z 59) |6l

5andi = 1,2, one has the

(19)

(20)
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56, (19) 6 )

d; - z,z ay (t) 5

1
d Y abn

a,G; (s,9) ||z »
s

we have
Hy (t,s) < C,G, (s,5) <C*G, (s,5).

For k = 2 or 3, we have

||¢12( )" 1
Ha (65) € S50 (04—
2 1 d; - zj=; bigi (t;)
n-1
X Y bG; (tjt;) b (1)
=
<C'¢y (1),
Hy (69 < 0 0lg, 0+
3 ’ di - zj=; a;py, (t;)
n-1
% ZaJ'Gi (tj’ tj) ¢ip (1)
=)
< C¢y (1),
1
H,' (t, S) > -
2 di_zj ;b](/)zl (tj)
n—1
x ijGi (tj’s) ¢ (1)
=)
1
di= 355 bgu (1))
n-1 d
b.—’Gi t.t.)G, (s, Lt
* YT () G694 ©

>, ¢, ()G (s,8),
1

d; - Y0 ai (1))
n—1
xZajG,- (tj,
j=2

1
>
d; - Z;:; a;é; (tj)

Hy (t,s) >

5) ¢ip (£)
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n—-1 d
L _G.(t.,t: Gi , (¢
Xza]||¢1””¢2" I(J ]) (5,5) b (£)

j=2

> ¢, ¢, (1) G (s,5) .

(23)
So, we have
¢, i (1) G, (s,8) < Hp (t,5) <C ¢y (1), (i=1,2),
¢ 1) G; (s,8) < Hy (t,5) <C'¢y (1), (i=1,2). 24

Since Hy,(t,s) = Hy,(t,s), Hy(t,s) = Hys(t,s), Hi5(t,
s) = Hy5(t,s), Hys(t, s) = Hy,(t, s), then we also have

¢, ¢ (1) G (s,8) < Hyy (t,8) = Hp, (£,5) < C ¢y, (1),

¢y (1) Gy (5,8) < Hyy (t,5) = Hys (£,5) <CT by, (1),

(25)
P12 (1) Gy (5,8) S Hy5 (t,8) = Hy3 (t,5) < C ¢y, (8)
C,$y1 (1) Gy (5,5) < Hyg (t,8) = Hyy (£,5) < C by (2).
The proof is complete. O

The following theorems will play a major role in our next
analysis.

Theorem 4 (see [20]). Let X be a Banach space, and Q ¢ X
closed and convex. Assume U is a relatively open subset of Q
with0 € U, and let S : U — Q be a compact, continuous
map. Then either

(1) S has a fixed point in U, or
(2) there exists u € oU and v € (0, 1), with u = vSu.

Theorem 5 (see [21]). Let X be a Banach space, and let P ¢ X
be a cone in X. Let Q,, Q, be bounded open subsets of X with

0€0,cQ, cQ,andletS: P — P bea completely con-
tinuous operator such that, either

@ ISwll < lwl, w € PN oQy, [Swl = |wl, w € PNoQ,,
or
(2) ISwll > [wl, w € PN oy, [Swl| < [wl, w € PNOQ,.

Then S has a fixed pointin PN Q, \ Q.

3. Main Results
We make the following assumptions:

(Hy) fi(t,uy,uy) € C([ty,t,] x [0, +00)?, (=00, +00)), mo-
reover there exists a function g(t) € L'([t;»t,], (0,
+00)) such that f;(t,u;,u,) > —g(t), for any t €
(t;,t,), u; € [0,+00),i = 1,2.

(H}) filt,uy,uy) € C((t,t,) x [0,+00)%, (~00, +00)) may
be singular at t = ¢, t,; moreover, there exists a func-
tion g(t) € Ll((tl,tn), (0,+00)) such that f;(t,u,,
u,) > —g(t),foranyt € (t,,t,), u; € [0, +00).

(H,) £.(£,0,0) > 0, for t € [t,,,] (i = 1,2).

(H;) There exists [0,,0,] C (t;,t,) such that

hmu1+u2T+oominte[01,92](fi(t’ u,uy)/(uy + uy)) =
+00 (i =1,2).

t, Ly

(Hy) Ll G;(s,8)g(s)Vs < +oo and Ll G(s,8) fi(s, 2y,
z,)Vs < +oo forany z; € [0,m],m > 0is any constant
(i=1,2).

In fact, we only consider the system

(px)) ® = O %, O+ A (8 [, O = v B
[, () = vy (D] ")
+g(t)) =0,

A >0,

(029)" ) = O %, ) + A (£, (8 [, O = v (1],
[, () = vy (D] )

+g(t)) =0,

A >0,
(26)

with one of the boundary value conditions

ax, (t) = Bipy (1) x1V (t) =0,
yx(6) + 0,y (6,) (8,) = Y b, (1)
%, (t) = Bop, (1) xZ (t) =0,

n-2
Y%, (t,) + 6,1 (t,) xZ (t,) = Zbixz ;)
i=2

axy (ty) = Bips (tl)xY (t,) = rz_:aixl ()
yix; (t,) +01py (t,) x1V (t,) =0,
s (1) = Bopa ()41 (1) = 3 a5 (n).

Y2%; () + 8, (t,) xZ (t,) =0,

ayx; (t)=Bipr (t1) x1V (t,)=0,



n-2
nx (t,) +8,p; (t,) x1v (t,) = Zbixl (1:)
im2

Zaxz OF

2%, (t,) + 0, (£,) xz (t,) =0,

ax; (t) = Bop, (t) x2
ayxy (t) = Bupy (1) x1 (1) = ,iaixl ()

nx; (t,) +6,p; (£,) xY (t,) =0,
ayx; (t) = Bops (1) x; (t) =0,

Y2%; (t,) + 8,1 (t,) X, (tn) bez ;)

(27)
where

)" = {y(t), y(t) =0, 28)

07 y (t) < 0’

and vy (t) = A j:" Hy (t,s)g(s)As. For k = 2,...,
Lemma 1, (v;; (), v, (1)) is the solution of the equation

5, from

(p¥) O -aq O v B +Ag ) =0,

A>0, t;<t<t,
(29)

(P () = () v, () + Ag (6) = 0,
A>0,

respectively, satisfying the following boundary value condi-
tions:

ovy (t) = Bipr (t1) VY (t) =0,
val ’71
v, (ty) = Bops (t1) "2V () =0,

Zb V2 771

v (t,) +8,p, (tn) vy (t,)

Yava (t,) + 8, (2, )Vz
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(1) = By ()] () = Y (),
yvi () +81py (8,) vy () = 0,
vy (1) = Bop (1)) (1) = Y.y (),

Yava (t,) + 8,y (£,) Vzv (t,) =0,
ayvy () = Bipr (1) VY (t) =0,

yivi (t,) + 61y (2,) V1 t,) = Zb"l 1i)s

v, (t) = Bops t)"z 1) = Zavz(r],

Yava (t,) + 8,y (t,) "2V (t,) =0,
ayvy (t) = Bupy (1) x1 (1) = Z“ﬂ’l (1:)

yivi () +81py () xY (t,) =0,
v, (ty) = Bop, (t1) x; (t) =0,

n-2
Y22 (1) + 8op1 (1) %3 (8,) = Y b, ().
i=2
(30)
We will show that there exists a solution (x, X,;) to the
boundary value problem (k) of the system (26) with x; (¢) >
Vi), t € [p(t), t,]. If this is true, then u;, (f) = x;.(t) — vy ()

is a nonnegative solution (positive on (p(t,), t,,)) of the system
(1) with the boundary value problem (k), (where i = 1,2;k =

2,...,5k=k+ 11). Since for any t € (t;,¢,), from
(p)” () (1) x5 ()
= (pi(uik + Vik)v)A (t) — q; (£) (g + Vik)V (t)
= <A (6 Peik O =i O] [ O D] ) +9 ()

= -A(f; (tug (1), uy () + g (1)),
(31)

we have

()" (1) = g () g (8) = =Af, (g (1), 11y () . (BD)

As a result, we will concentrate our study on (26) with the
boundary value problem (k).



Journal of Applied Mathematics

Employing Lemma 1, we note that (x;.(¢), x5 (t)) is a
solution of the system (26) with boundary value (k) if and
only if

t,
2 =2 [ Hy 09 (f (5 Lo O = v O

[31 () = vy (9] 7)
+g(s) ) As,

telp(t).t,], (33)
o0 = 4 | THy 09 (£ (5 Lo © = vk O]

(%31 () = vy ()] )

+g(s) ) As.

We define a cone P;; (i, j = 1,2) by

B = {x €E[x(t)2 %% () lxll, t € [p(tl),tn]}.
(34)

Itis clearly that P;; x P, is a cone of E X E, (i, j,m,n = 1,2).
Define the integral operator T, : P;; xP,; — EXE,T;: P, %
P,, - ExXE,T,:P,xP,, — ExXE,T;: P, xP, —» EXE,

by

Ty (xlk’xzk) = (le (xlk’xzk)’Tzk (xlk’ xzk))» (35)

where operators T, are defined by

Taummﬂﬂn=Aﬁﬁmasxﬁﬁimu@—musr,

(%31 () = vy ()] )
+g(s) ) As,

telp(t)t],
(36)

where i = 1,2. Clearly, if (x;,x5) is a fixed point of Ty,
then (xy;, x,;) is a solution of system (26) with (k) (k =
2,...,5,k=k+11).

For k = 2,...,5, from (35) and Lemma 3, we have
Ty (x> X50)(£) = 0 on [0, 1], for (xy4, x5) € Py X P, we
have

Tix (10 X1) ()
ty
=2 L Hy (t,s) (fl (s, (X1 () = Vi )]s

[ (5) = v (9)] )
+g(s)) As

(37)

o(t,)
xj()stﬂ(ﬂ@chrw@nU+g@nAa

Pt

‘ (ot
thmuW%Mscaﬂ

g(t))As.
On the other hand, when k = 2, we have

Y Gi(s, s)(F (b [x(E) — v(£)]") +

t)

Ty (X %31) (£)
:Aﬂwhﬁﬁﬂﬁﬁimuw—wugr,
%21 (5) = vai (9] ) + 9 (5)) As
ZAE%@ﬂwG#&QUK&MM@ywu@r,
%21 (8) = var (9])
+9(s)) As

C*
2 5@1 (A

a(t,)
x J &) C*G;(5,5) (f; (s, [x (5)=v(s)]")+g (s)) As

Pt
> %ﬁbil (1) "Tzz (xlk"xzk)” .
(38)

Thus, T;,(P;; X Py;) € P;;. Hence T, (P}, x P,;) C P, x Py;.
When k = 3, we have

Tis (X1 %x) ()

= J- ' H; (t,s) (f, (s, [0 () = vie )] s

[%31 () = vy (9)] )

+g (s))As



> A L” et G (5,9) (f; (5 [ ()= (9]

1

(%2 (8) = vy (9)])
+g(s)) As

C*
2 a‘»biz (A

o(t,)
X J ) C*G; (55) (fi (s, [x (5)=v(s)]")+g (s)) As

p(ty

=

o9 () [T (o)
(39)

Thus, T;5(P,, x P,,) C P,. Hence T5(P), x P,;) C P, x P,,.

Similarly discussion, we also have T, (P, xP,;) C P, xP,;,
T5(P,; % Pp,) € Py, x Pp,. In addition, standard arguments
show that T} is a completely continuous operator.

For simplicity, we adopt the notation: P, = P,s = P,
and P,y = Py5 := P,;, then, we can write Ty (Py_;) X Pyk—1)) €
Py(1y X Pygeyys that is, Ty (Pygyy X Pyep)) € Py (0 =
1,2,k=2,...,5).

Theorem 6. Suppose that (H,)-(H,) hold. Then there exists

a constant A > 0 such that, for any 0 < A < A, (1) with
boundary value condition (k) has at least one positive solution
(k=2,...,5).

Proof. Fix§ € (0,1) and k (k = 2,...,5). From (H,) let 0 <
& < 1 be such that

fi(t,z),2,) 26f; (£,0,0), fort <t<t,, 0<z<e i=1,2.

(40)
Let 7(5) = maxtlstst,,,Oszl,zzge{maxizl,z{ﬁ(t>Z1»Zz)} +
g}, and ¢ = j:" C*G;(s, s)As. We have
im? @ - too. (41)
z|0 Z

Set A = 8/467(8), since for any 0 < A < A, fix the A €
(0, A], we always have

lim& = 400,
zl0 Z
8 (42)
fl& 1
€ < 4c)’
Then there exists a R, € (0, ] such that
fR) _ 1 (43)

R, 4cA

Let Uy = {(xy0 %21) € Py X Py = 10600 x00)1l <
Ry}, (x> x51) € 0Ug and v € (0, 1) be such that (x;;, x,;) =
VT (X1 Xop), that ds, x = YTy (o x) (0 = 1,2). We
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claim that ||(xz, x50)l; # Ry In fact for (x;, x5;) € 0U; and
(215> X20)ll; = Ry, we have

Xy = YTy (X1 X3t)
<A j Hy (t,9) (f; (5 Peae () = vie (9]
[ () = v (9] ") + g (5)) As
<A j C*Gi(5,9) (f; (s [ru () = v 9]

(% (8) — Vo (5)]*) +g (S)) As

<A J-tn C*G;(s,5) f (Ry) As

1

< Acf (Ry).
(44)
It follows that
Ry = ”(xlk’ xzk)"1 < ZAC.? (Ry)> (45)
that is,

> — =
R, 2cA  4cA R,

which implies that [|(x4, x5;)ll; # Ry- By the nonlinear alter-
native of Leray-Schauder type, T} has a fixed point (x;;, x;,) €
U,. Moreover combining (40) and the fact that R, < &, we
obtain

tYl
5= 1 | Hic 09 (£ (6l 0 - v 0]

31

[0 (1) = vy (D] ") + g (1)) As

> A Jt" Hy (6,5) (8 (5,0,0) + g (1)) As

tYl
> A J Hy (t,s) g (t) As
ty

=wv(t) forte(p(ty).t,)-

(47)

Then T, has a positive fixed point (x;;,x;,) and
l(x;1> x)ll; < Ry < 1; that is, (x;,, x;,) is a positive solution
of the boundary value problem (26) with x; > v, (t) for
te(t,t,).

Letuy (t) = x;. ()= vy () 2 0 (i = 1,2), then (1, uy) isa
nonnegative solution (positive on (p(t,), t,,)) of the boundary
value problem (1). O

Theorem 7. Suppose that (H;) and (Hs)-(H,) hold. Then there
exists a constant A* > 0 such that, for any 0 < A < A*, (1) with

boundary value condition (k) has at least one positive solution
(k=2,...,5).
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Proof. We fix k (k = 2,...,5). Let Q; = {(xyp,x5) € E X
E : |xgll < Ry,i = 1,2}, where R, = max{l,7} and r =

(C*?/c,) J: g(s)As. Choose
A* :min{l,%(R+1)_l,%}, (48)

where R = Lt" C*Gy(s, s)(maxy., . g fi(s,21,2,) + g(s))As
and R > 0. 1

Then for any (x4, X51) € (Py—1y X Pyg—1y) N 0Ly, x(s) =
Vie(s) < x4 (s) < llxyl < Ry (i=1,2)and for 0 < A < A*, we
have

[T (aps X0) B
tn
A6 69 (o b -9

[0 (8) = V2 (9] ") + g (5)) As

ty
S/\J C*G; (s,s) (0 max ﬁ(s,zl,z2)+g(s)>As
t <

L <z,,2,<R,
< AR
s
2
(49)
This implies
I Tk (1 22|y < Ry < [| (300 2020) |15

(50)

(%110 Xk) € (Pyrry X Pogrry) N 0Q.

Choose a constant N > 1 such that

0,
G; (s,5) i1 () by, (s) As =1, (51)

ANy
N Toal + 92D J,

where y = mingming ., {h1(®), o (1)}
By assumption (H;) and (H,), there exists a constant B >
R, such that

fi (t.21,2,) S

o N, thatis, f;(t.z1,2,) > N(z; +2,),

for t € [0,,60,], z, +z, >B (i=1,2).
(52)

Choose R, = max{R, + 1,2Ar,2C*(B + 1)/c,y} and let
Q, = {(xox1) € EXE : |xgll < Ry,i = 1,2}. We note
that x(t) > (c*/C*)gbij(t)lle for all x € Py, by Lemma 3, we

have H (t,s) < (C*Z/c*)(x(t)/llxll). Then for any (xyz, X5;) €

(Pl(k_l) X Pz(k—l)) N 0Q,, we have [|x,. |l = R, or [|x, ]l = R,.
Without loss of generality let [|x.| = R,, so we have

3 (0= e 0 = % 01 | Hie (69 () As

t

t, %2
> xq; (£) —AJ- C X (t)g(s) As
A
t, %2
= Xy () - AT © I ¢ g(s)As
el Je e
X1 (£
> xq (£) = "1; (") Ar (53)
1k
> xq (1) — x%(t)/\r
2
Ar
z <1 - R_2>x1k )
1
2 % (t)>0, telp(ty),t,].

Thus

min {[x (6) = vy (O] + [0 (1) = v (]}

0,<t<6,

. . 1
> min {0 = vy (0} = min {220}
(54)

C*

9 0 el

. C*
> min {2 0

~ 6,<t<6,

c, ,
= o Rzegtlgr}az {1 () sy (1)} > B+1> B.

Now since B > Ry, it follows that

T (%100 Xi) (1)
=A J;“ Hy (t,s) (fz (5’ [x1 () = Vi (5)]* >
[ (5) = v (5)]*) +9 (5)) As
0, .
ER L Hy (t,5) (f; (5> [k (8) = vie ()]
(%21 () = vy (9)]7) + g (9)) As
0, .
21 L Hy (t,9) f; (5) [ (8) = vie (9]

[ (8) — vy (s)]*) As
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0,
> L Hy (£,5) N ([ (5) = vy ()]
+ [0 () = v (s)]*) As

0,
> )»J Hy (t,8) N (3 (s) = vy (5)) As

6,
> AL c, mln {1 (©) s i (D} G; (5,8) N (x4 () -

0 <t<0. Vik (S)) As

>AJ625 min {¢y (£), ¢ (1)} G; (s, 9) gx (s)ds
> #0191 (1) P i(88) = X

61

> )»elrrgltigréz {b1 (), b O}

6, N
X L .G (s,s) - I i1 () bz () [l As

2 (6l + liall)

6
2 ANy; j (5:5) 611 (5) @ () AR,

||¢11” + ||¢12||

>R, te[6,,6,].

(55)
This implies
"Tk (x1k>x2k)"1 2 ||(x1k,x2k)||1,

€ (Py(g-1y X Pyg—yy) N 0.

(56)
(xlk’ xzk)

For the Krasnosel'skii’s fixed point theorem, one deduces that
T} has a fixed point (xy, x,;) with Ry < ||y X0l < R, ©
Ry <yl + Nl < R,

Since r < R; < [lxyll < R, (i = 1,2), then

tn
X () = vy () = x5 (£) — A Jt H; (t,s) g (s) As

2
s () - A Jf»« C** xy (t)g (s) As
f i |
— k (t) lk (t)
i " zk" (57)
> xj (1) = Axy (8)
= (1= (8
(/511 (t) ¢12 (t)
> (1-1) = x;
& ol + Il 11

>0, te(p(ty),t,).

Thus (x,;, X, ) is a positive solution of the boundary value
problem (26) with x;.(t) > v; (t) (i = 1,2) for t € (p(t)),t,).

Letuy (t) = x;. () vy () 2 0 (i = 1,2), then (uyy, uy) isa
nonnegative solution (positive on (p(t,), t,,)) of the boundary
value problem (1). O

Since condition (H,) implies conditions (H}) and (H,)
then from the proof of Theorems 6 and 7, we immediately
have the following theorem.
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Theorem 8. Suppose that (H,)-(H;) hold. Then (1) with
boundary value condition (k) has at least two positive solutions
for A > 0 sufficiently small (k = 2,...,5).

In fact with 0 < A < min{A, A*} then (1) with boundary
value condition (k) has at least two positive solutions.

Remark 9. In Theorems 6-8, we use the assumption condi-

tion 16. If we have not the condition 16, that is, a; = b, = 0,
then the system (1) and boundary condition (k) are

(pu?)" )=y (Y uy (4, (1 (£),u, (1)) =
te(t;,t,), A>0,
(pasd)" ()=, (6, O+Afy (b, (8)110, (1) = 0,
auy (6) = Bipy (0)u) () =0, (58)
vty (£,) + 810y (1) ) (,) =0,
Bapy (t1) w3 (1) = 0,

Yoty (1) + 8,y (8,) 15 (1) =

From Lemma 2, an argument similar to those in Theorems
6-8 yields the following theorems.

au, (t )

Theorem 10. Suppose that (H,) and (H,) hold. Then there

exists a constant A > 0 such that, for any 0 < A < A, the
boundary value problem (58) has at least one positive solution.

Theorem 11. Suppose that (H;) and (H;)-(H,) hold. Then
there exists a constant A* > 0 such that, forany 0 < A < A*, the
boundary value problem (58) has at least one positive solution.

Theorem 12. Suppose that (H,)-(H,) hold. Then the bound-
ary value problem (58) has at least two positive solutions for
A > 0 sufficiently small.

4. Example

To illustrate the usefulness of the results, we give some
examples.

Example 13. Consider the boundary value problem

ul —u= —A((u+v)“+Wcos(2n(u+v))>,

-1<t<1, A>0,

Sy = —/\((u— D+ + Wsin@nu)),
u(-1)=vQ1) =0, u(1) = au(0), v(-1) = bv(0),
(59)

where a > 1. Then if A > 0 is sufficiently small, (59) has a
positive solution u with u(t) > 0 for ¢ € (0, 1).
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To see this, we will apply Theorem 7 with

fitt,uv)=@w+v)" + L €os (27 (u +v)),

1
(=)

fHtuv)=@-17+v+ W sin (27mu),  (60)

(t2 —

g1t)=g,t)=g(t) = m-
Clearly for t € (0, 1),

fit,u,v)+g(t)>0, forte(0,1)i=1,2,

fi(t,u,v)

=+o0o forallt € [6,,6,] c(0,1).
u+v

(61)

lim inf
u+vT+oo

Now (H7), (H;), and (H,) hold. We note that the boundary
condition of (59) is in accord with (4), and from [1], we have

t+1 _ —t-1 —t+1 _ t-1
i1 =y = %> G = = %)
d, =d, =sinh(2).
(62)
Then
Gl (t) S) = GZ (t) S)
_ 1 <|§‘512 O (), plt)<s<t<t,
dy (¢ O ¢y (s), p(ty) <t<s<t,
(63)

Hy,(t,5) =G (t,s) + aGy (0,s) ¢y (£),

1
d, —a¢;, (0)

H,, (t,s) =G, (t,s) + bG, (0,s) ¢y, (1) .

1
d, — by, (0)

Note r = Lt"(C*Z/c*)g(s)As. Let R, = r + 1 and we have

R= an C*G; (s,s) ( max fi(s,z1,2,) + g (s)) As

t 0<z,,2,<R;

IA

tV‘
J C*G; (s,5) [ 2°R{™ +
t

1

2
—(2_ 41/4]As
s2 —s%)

2u+2 RT—Z +

N
|
Q
= Q
1N

— | As
(52 _ 54)1/4 :| (64)

a+2 pa+2
2772 R]

a+2 pa+2
2°72RS

IN
S —
a
*
I\
S

(s— )"

<2™Cte! (R + 7).

1

Also let

" R
A :min{l !

a+2
’ 2a+2(C* ot (Rl +

-1 R,

Now, if A < A*, Theorem 7 guarantees that (59) has a positive
solutions (u, v) with |lu]| > 1 and ||v|| > 1.

Example 14. Consider the boundary value problem:

(p)" - ay O, ()
=-A (e”1 + Ul +7cos (Zntul)) ,

t,<t<t, A>0, (66)

(pouy )A () =g, () u, (t)
=-1 ((u1 - 1) +12 +5sin (2ntu2))
satisfying one of the boundary value conditions (k), (k =
o Tili)n if A > 0 is sufficiently small, (66) has two solutions

(w11, Uyp), (Uyy, tpy) with uy(t) > O fort € (0,1),4, = 1,2.
To see this, we will apply Theorem 8 with

fi (b uy,uy) = € + 43 + 7 cos (2mtu,)
£ () = (uy = 1) +12 + 5sin (27tw,),  (67)
g1()=g,(t)=g(t) =8.
Clearly, for t € (0, 1),

fi(tou,uy) +g@t) =1>0,
£,(£,0,0) =8> 0,

£, (t,0,0) =3 >0, (68)
At u,u
lim infM =400, i=1,2.
u+vT+oo U, +u,

Now (H;)-(H,) hold. Let § = 1/100, ¢ = 1/8, and we have

fi (t,uy,uy) >6f; (¢,0,0), for 0<t<l1, 0<uy;<¢, i=1,2.

(69)

Furthermore let 7(8) =
MaXg<ic o<y, u,<e Moy o fi(l U, )+ g(1)}, and ¢
Lt” C*Gi(s, s)As. Note

1

£ 1 1
— > > .
4cf (e) 32 (e+8) 352

(70)

Let A = 1/352¢c. Now,if 0 < A < A then 0 < A < s/4c7(s)
and Theorem 6 guarantees that (66) has positive solutions
(uu) “12) with "u1j" < (1/8) (] =1,2).
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Next note r = 8C*2(tn —t,)/c, and let R, = r + 2 so we
have

1
R= JO C*G; (s,s) <0 malefi (s,21,2,) +g(s)>As

<z1,2,<

1
J C*G; (s,s) (eR1 +2R 47+ 8) As
0

<
(71)
1
< J C*G, (s,s) As (eR‘ +2R + 15)
0
< (eR1 + 2Rf + 15) c.
Also let
. R R
A" =minql, L ,—L b (72)
2(eR + 2RI +15)c 2r

Now, if A < A*, Theorem 7 guarantees that (59) has a positive
solutions (u,;, u,,) with ||u2j|| >2,j=1,2.

Thus, if A < min{A, 1*}, Theorem 8 guarantees that (66)
has two solutions (1, u;,) and (14, 15,) with u;; > O for t €
0,1),i,j=1,2.
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