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From the classical point of view, it is important to determine if in a Markov decision process (MDP), besides their existence, the
uniqueness of the optimal policies is guaranteed. It is well known that uniqueness does not always hold in optimization problems
(for instance, in linear programming). On the other hand, in such problems it is possible for a slight perturbation of the functional
cost to restore the uniqueness. In this paper, it is proved that the value functions of an MDP and its cost perturbed version stay
close, under adequate conditions, which in some sense is a priority. We are interested in the stability of Markov decision processes
with respect to the perturbations of the cost-as-you-go function.

1. Introduction

From the classical point of view (for instance, in Hadamard’s
concept of well-posedness [1]) in a mathematical modeling
problem, it is crucial that both the existence and the unique-
ness are secured. But, in optimization, neither of these is
guaranteed, and even if extra conditions ensure the existence
of optimizers, their uniqueness will not automatically follow.
For instance, in linear programming, we even have the
extreme case that when there are two different optimal
vectors all of their convex linear combinations become
optimal automatically. But a slight perturbation of the cost
functional will “destroy”most of the optimizers. In this sense,
nonuniqueness in linear programming is highly unstable.
This question is of interest with respect to the standard
discounted Markov decision model, as in [2], which presents
conditions that guarantee the uniqueness of the optimal
policies.

In this paper, we study a family of perturbations of the cost
of an MDP and establish that, under convexity and adequate
bounds, the value functions of both the original and the
cost-perturbed Markov decision processes (MDPs) are

uniformly close. This result will eventually help us determine
whether both the uniqueness and the nonuniqueness are
stable with respect to this kind of perturbation.

The structure of this paper is simple. Firstly, the prelimi-
naries and assumptions of the model are outlined. Secondly,
the main theorem is stated and proved, followed by the main
example. A brief section with the concluding remarks closes
the paper.

2. Preliminaries: Discounted MDPs and
Convexity Assumptions

Let (𝑋, 𝐴, {𝐴(𝑥) : 𝑥 ∈ 𝑋}, 𝑄, 𝑐) be a Markov control model
(see [3] for details and terminology) which consists of the
state space𝑋, the control (or action) set 𝐴, the transition law
𝑄, and the cost-per-stage 𝑐. It is assumed that both 𝑋 and 𝐴
are subsets of R (this is supposed for simplicity, but it is also
possible to present the theory of this paper considering that
𝑋 and 𝐴 are subsets of Euclidean spaces of the dimension
greater than one). For each 𝑥 ∈ 𝑋, there is a nonempty
measurable set 𝐴(𝑥) ⊂ 𝐴 whose elements are the feasible
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actions when the state of the system is 𝑥. DefineK := {(𝑥, 𝑎) :

𝑥 ∈ 𝑋, 𝑎 ∈ 𝐴(𝑥)}. Finally, the cost-per-stage 𝑐 is a nonnegative
and measurable function on K.

Let Π be the set of all (possibly randomized, history-
dependent) admissible policies. By standard convention, a
stationary policy is identified with a measurable function 𝑓 :

𝑋 → 𝐴 such that 𝑓(𝑥) ∈ 𝐴(𝑥) for all 𝑥 ∈ 𝑋. The set of
stationary polices is denoted by F . For every 𝜋 ∈ Π and an
initial state 𝑥 ∈ 𝑋, let

𝑉 (𝜋, 𝑥) = 𝐸
𝜋

𝑥
[

∞

∑
𝑡=0

𝛼
𝑡

𝑐 (𝑥
𝑡
, 𝑎
𝑡
)] (1)

be the total expected discounted cost when using the policy
𝜋, given the initial state 𝑥. The number 𝛼 ∈ (0, 1) is called
the discount factor (𝛼 is assumed to be fixed). Here {𝑥

𝑡
} and

{𝑎
𝑡
} denote the state and the control sequences, respectively,

and 𝐸𝜋
𝑥
is the expectation operator. A policy 𝜋∗ is said to be

optimal if 𝑉(𝜋∗, 𝑥) = 𝑉∗(𝑥) for all 𝑥 ∈ 𝑋, where 𝑉∗(𝑥) =
inf
𝜋∈Π

𝑉(𝜋, 𝑥), 𝑥 ∈ 𝑋.𝑉∗ is called the optimal value function.
The following assumption will also be taken into considera-
tion.

Assumption 1. (a) 𝑐 is lower semicontinuous and inf-compact
on K (i.e., for every 𝑥 ∈ 𝑋 and 𝑟 ∈ R the set {𝑎 ∈ 𝐴(𝑥) :

𝑐(𝑥, 𝑎) ≤ 𝑟} is compact).
(b) The transition law 𝑄 is strongly continuous, that is,

𝑤(𝑥, 𝑎) = ∫ 𝑢(𝑦)𝑄(𝑑𝑦 | 𝑥, 𝑎), (𝑥, 𝑎) ∈ K is continuous and
bounded on K, for every measurable bounded function 𝑢 on
𝑋.

(c)There exists a policy 𝜋 such that𝑉(𝜋, 𝑥) < ∞, for each
𝑥 ∈ 𝑋.

Remark 2. The following consequences of Assumption 1 are
well known (see Theorem 4.2.3 and Lemma 4.2.8 in [3]).

(a) The optimal value function 𝑉
∗ is the solution of the

optimality equation (OE), that is, for all 𝑥 ∈ 𝑋,

𝑉
∗

(𝑥) = min
𝑎∈𝐴(𝑥)

{𝑐 (𝑥, 𝑎) + 𝛼∫𝑉
∗

(𝑦)𝑄 (𝑑𝑦 | 𝑥, 𝑎)} . (2)

There is also 𝑓∗ ∈ F such that

𝑉
∗

(𝑥) = 𝑐 (𝑥, 𝑓
∗

(𝑥))

+ 𝛼∫𝑉
∗

(𝑦)𝑄 (𝑑𝑦 | 𝑥, 𝑓
∗

(𝑥)) , 𝑥 ∈ 𝑋,
(3)

and 𝑓∗ is optimal.
(b) For every 𝑥 ∈ 𝑋, V

𝑛
(𝑥) ↑ 𝑉∗(𝑥), with V

𝑛
defined as

V
𝑛
(𝑥) = min

𝑎∈𝐴(𝑥)

{𝑐 (𝑥, 𝑎) + 𝛼∫ V
𝑛−1

(𝑦)𝑄 (𝑑𝑦 | 𝑥, 𝑎)} , (4)

𝑥 ∈ 𝑋, 𝑛 = 1, 2, . . ., and V
0
(𝑥) = 0. Moreover, for each

𝑛, there is 𝑓
𝑛
∈ F such that for each 𝑥 ∈ 𝑋,

min
𝑎∈𝐴(𝑥)

{𝑐 (𝑥, 𝑎) + 𝛼∫ V
𝑛−1

(𝑦)𝑄 (𝑑𝑦 | 𝑥, 𝑎)}

= 𝑐 (𝑥, 𝑓
𝑛
(𝑥)) + 𝛼∫ V

𝑛−1
(𝑦)𝑄 (𝑑𝑦 | 𝑥, 𝑓

𝑛
(𝑥)) .

(5)

Let (𝑋, 𝐴, {𝐴(𝑥) : 𝑥 ∈ 𝑋}, 𝑄, 𝑐) be a fixed Markov control
model. Take 𝑀 as the MDP with the Markov control model
(𝑋, 𝐴, {𝐴(𝑥) : 𝑥 ∈ 𝑋}, 𝑄, 𝑐). The optimal value function, the
optimal policy which comes from (3), and the minimizers in
(5) will be denoted for 𝑀 by 𝑉∗, 𝑓∗, and 𝑓

𝑛
, 𝑛 = 1, 2, . . .,

respectively. Also let V
𝑛
, 𝑛 = 1, 2, . . ., be the value iteration

functions for𝑀. Let 𝐺(𝑥, 𝑎) := 𝑐(𝑥, 𝑎)+𝛼∫𝑉∗(𝑦)𝑄(𝑑𝑦 | 𝑥,

𝑎), (𝑥, 𝑎) ∈ K.
It will be also supposed that theMDPs taken into account

satisfy one of the following Assumptions 3 or 4.

Assumption 3. (a)𝑋 and 𝐴 are convex.
(b) (1 − 𝜆)𝑎 + 𝑎

󸀠

∈ 𝐴((1 − 𝜆)𝑥 + 𝑥
󸀠

) for all 𝑥, 𝑥󸀠 ∈ 𝑋,
𝑎 ∈ 𝐴(𝑥), 𝑎󸀠 ∈ 𝐴(𝑥󸀠), and 𝜆 ∈ [0, 1]. Besides, it is assumed
that if 𝑥 and 𝑦 ∈ 𝑋, 𝑥 < 𝑦, then 𝐴(𝑦) ⊆ 𝐴(𝑥), and 𝐴(𝑥) are
convex for each 𝑥 ∈ 𝑋.

(c) 𝑄 is induced by a difference equation 𝑥
𝑡+1

= 𝐹(𝑥
𝑡
, 𝑎
𝑡
,

𝜉
𝑡
), with 𝑡 = 0, 1, . . ., where𝐹 : 𝑋×𝐴×𝑆 → 𝑋 is ameasurable

function and {𝜉
𝑡
} is a sequence of independent and identically

distributed (i.i.d.) random variables with values in 𝑆 ⊆ R,
and with a common density Δ. In addition, we suppose that
𝐹(⋅, ⋅, 𝑠) is a convex function onK, for each 𝑠 ∈ 𝑆, and if 𝑥 and
𝑦 ∈ 𝑋, 𝑥 < 𝑦, then 𝐹(𝑥, 𝑎, 𝑠) ≤ 𝐹(𝑦, 𝑎, 𝑠) for each 𝑎 ∈ 𝐴(𝑦)

and 𝑠 ∈ 𝑆.
(d) 𝑐 is convex on K, and if 𝑥 and 𝑦 ∈ 𝑋, 𝑥 < 𝑦, then

𝑐(𝑥, 𝑎) ≤ 𝑐(𝑦, 𝑎), for each 𝑎 ∈ 𝐴(𝑦).

Assumption 4. (a) The same as Assumption 3(a).
(b) (1 − 𝜆)𝑎 + 𝑎󸀠 ∈ 𝐴((1 − 𝜆)𝑥 + 𝑥󸀠) for all 𝑥, 𝑥󸀠 ∈ 𝑋, 𝑎 ∈

𝐴(𝑥), 𝑎󸀠 ∈ 𝐴(𝑥󸀠), and 𝜆 ∈ [0, 1]. Besides, 𝐴(𝑥) is assumed to
be convex for each 𝑥 ∈ 𝑋.

(c) 𝑄 is given by the relation 𝑥
𝑡+1

= 𝛾𝑥
𝑡
+ 𝛿𝑎
𝑡
+ 𝜉
𝑡
, 𝑡 =

0, 1, . . ., where {𝜉
𝑡
} are i.i.d. random variables taking values in

𝑆 ⊆ R with the density Δ, 𝛾 and 𝛿 are real numbers.
(d) 𝑐 is convex on K.

Remark 5. Assumptions 3 and 4 are essentially the same as
assumptions C1 and C2 in pages 419–420 of reference [2],
with the difference that we are now able to assume that the
function 𝑐(⋅, ⋅) is convex and not necessarily strictly convex.
(in fact, in [2], Conditions C1 and C2 take into account the
more general situation in which both 𝑋 and 𝐴 are subsets of
Euclidean spaces of the dimension greater than one). Also
note that it is possible to obtain that each of Assumptions
3 and 4 implies that, for each 𝑥 ∈ 𝑋, 𝐺(𝑥, ⋅) is convex but
not necessarily strictly convex (hence,𝑀 does not necessarily
have a unique optimal policy).The proof of this fact is a direct
consequence of the convexity of the cost function 𝑐 and of the
proof of Lemma 6.2 in [2].

3. Main Result and an Example

For 𝜖 > 0, consider the following MDP denoted by 𝑀
𝜖
with

the Markov control model (𝑋, 𝐴, {𝐴(𝑥) | 𝑥 ∈ 𝑋}, 𝑄, 𝑐∗),
where 𝑐∗(𝑥, 𝑎) = 𝑐(𝑥, 𝑎) + 𝜖𝑎2, (𝑥, 𝑎) ∈ K, where 𝑐 is the cost
function for𝑀. Observe that bothMDPs𝑀 and𝑀

𝜖
coincide

in the components of the Markov control model except for
the cost function; moreover, F is the same set in both models.
Additionally we suppose that.
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Assumption 6. There is a policy 𝜙 such that 𝐸𝜙
𝑥
[∑
∞

𝑡=0
𝛼𝑡

𝑐∗(𝑥
𝑡
, 𝑎
𝑡
)] < ∞, for each 𝑥 ∈ 𝑋.

Remark 7. Suppose that, for𝑀, Assumption 1 holds. Then, it
is direct to verify that if𝑀

𝜖
satisfiesAssumption 6, then it also

satisfies Assumption 1.

For 𝑀
𝜖
, let 𝑊∗, 𝑔∗, and 𝑔

𝑛
, 𝑛 = 1, 2, . . ., denote the

optimal value function, the optimal policy which comes from
(3), and the minimizers in (5), respectively. Moreover, let 𝑤

𝑛
,

𝑛 = 1, 2, . . ., be the corresponding value iteration functions
for𝑀

𝜖
.

Remark 8. Suppose that, for 𝑀, one of Assumptions 3 or 4
holds. Then, notice that as 𝑐 is a convex function, it is trivial
to prove that 𝑐∗ is strictly convex.Then, under Assumption 6,
it follows that𝑀

𝜖
satisfiesC1 orC2 in [2] and that𝐺∗ is strictly

convex, where 𝐺∗(𝑥, 𝑎) = 𝑐∗(𝑥, 𝑎) + 𝛼 ∫𝑊∗(𝑦)𝑄(𝑑𝑦 | 𝑥, 𝑎),
(𝑥, 𝑎) ∈ K, so 𝑔∗ is unique.

Let Θ : 𝑋 → R, so that Θ(𝑥) ≥ 𝑊∗(𝑥) and Θ(𝑥) ≥

𝑉∗(𝑥), 𝑥 ∈ 𝑋, and take, for each 𝑥 ∈ 𝑋, 𝐵(𝑥) = {𝑎 ∈ 𝐴(𝑥) :

𝑐(𝑥, 𝑎) ≤ Θ(𝑥)} and 𝐵∗(𝑥) = {𝑎 ∈ 𝐴(𝑥) : 𝑐∗(𝑥, 𝑎) ≤ Θ(𝑥)}.

Remark 9. It is easy to verify, using Assumption 1, that for
each 𝑥 ∈ 𝑋, 𝐵(𝑥) and 𝐵∗(𝑥) are nonempty and compact.
Moreover, since 𝑐 ≥ 0 and from Remark 2, 𝑓

𝑛
(𝑥), 𝑓∗(𝑥) ∈

𝐵(𝑥); 𝑔
𝑛
(𝑥), 𝑔∗(𝑥) ∈ 𝐵∗(𝑥) for each 𝑥 ∈ 𝑋 and 𝑛 ≥ 1. It is

also trivial to prove that, for each 𝑥 ∈ 𝑋, 𝐵∗(𝑥) ⊆ 𝐵(𝑥); hence
𝑓
𝑛
(𝑥), 𝑓∗(𝑥), 𝑔

𝑛
(𝑥), 𝑔∗(𝑥) ∈ 𝐵(𝑥), for each 𝑥 ∈ 𝑋 and 𝑛 ≥ 1.

Condition 10. There exists a measurable function 𝑍 : 𝑋 →

R, whichmaydependon𝛼, such that 𝑐∗(𝑥, 𝑎)−𝑐(𝑥, 𝑎) = 𝜖𝑎2 ≤

𝜖𝑍(𝑥), and ∫𝑍(𝑦)𝑄(𝑑𝑦 | 𝑥, 𝑎) ≤ 𝑍(𝑥) for each 𝑥 ∈ 𝑋 and
𝑎 ∈ 𝐵(𝑥).

Remark 11. With respect to the existence of the function 𝑍

mentioned in Condition 10 that satisfies that ∫𝑍(𝑦)𝑄(𝑑𝑦 |

𝑥, 𝑎) ≤ 𝑍(𝑥) for each 𝑥 ∈ 𝑋 and 𝑎 ∈ 𝐵(𝑥), it is important
to note that this kind of requirement has been previously
used in the unboundedMDPs literature (see, for instance, the
Remarks presented on page 578 of [4]).

Theorem 12. Suppose that Assumptions 1 and 6 hold, and that,
for 𝑀, one of Assumptions 3 or 4 holds. Let 𝜖 be a positive
number. Then,

(a) if𝐴 is compact, |𝑊∗(𝑥)−𝑉∗(𝑥)| ≤ 𝜖𝐾2/(1−𝛼), 𝑥 ∈ 𝑋,
where 𝐾 is the diameter of a compact set 𝐷 such that
0 ∈ 𝐷 and 𝐴 ⊆ 𝐷;

(b) under Condition 10, |𝑊∗(𝑥)−𝑉∗(𝑥)| ≤ 𝜖𝑍(𝑥)/(1−𝛼),
𝑥 ∈ 𝑋.

Proof. The proof of case (a) follows from the proof of case (b)
given that 𝑍(𝑥) = 𝐾2, 𝑥 ∈ 𝑋 (observe that in this case, if
𝑎 ∈ 𝐴, then 𝑎2 = (𝑎 − 0)

2

≤ 𝐾2).
(b) Assume that 𝑀 satisfies Assumption 3 (the proof for

the case in which𝑀 satisfies Assumption 4 is similar).

Firstly, for each 𝑥 ∈ 𝑋,

𝑤
1
(𝑥) − V

1
(𝑥) = min

𝑎∈𝐴(𝑥)

𝑐
∗

(𝑥, 𝑎) − min
𝑎∈𝐴(𝑥)

𝑐 (𝑥, 𝑎)

≥ 𝑐
∗

(𝑥, 𝑔
1
(𝑥)) − 𝑐 (𝑥, 𝑔

1
(𝑥))

= 𝜖(𝑔
1
(𝑥))
2

≥ 0,

(6)

󵄨󵄨󵄨󵄨𝑤1 (𝑥) − V
1
(𝑥)

󵄨󵄨󵄨󵄨 = 𝑤
1
(𝑥) − V

1
(𝑥)

= min
𝑎∈𝐴(𝑥)

𝑐
∗

(𝑥, 𝑎) − min
𝑎∈𝐴(𝑥)

𝑐 (𝑥, 𝑎)
(7)

≤ 𝑐
∗

(𝑥, 𝑓
1
(𝑥)) − 𝑐 (𝑥, 𝑓

1
(𝑥)) (8)

= 𝜖(𝑓
1
(𝑥))
2 (9)

≤ 𝜖𝑍 (𝑥) . (10)

Secondly, assume that for some positive integer 𝑛 and for
each 𝑥 ∈ 𝑋,

0 ≤ 𝑤
𝑛
(𝑥) − V

𝑛
(𝑥) =

󵄨󵄨󵄨󵄨𝑤𝑛 (𝑥) − V
𝑛
(𝑥)

󵄨󵄨󵄨󵄨

≤ (1 + 𝛼 + 𝛼
2

+ ⋅ ⋅ ⋅ + 𝛼
𝑛

) 𝜖𝑍 (𝑥) .
(11)

Consequently, using Condition 10, for each 𝑥 ∈ 𝑋,

𝑤
𝑛+1

(𝑥) − V
𝑛+1

(𝑥) (12)

= min
𝑎∈𝐴(𝑥)

[𝑐
∗

(𝑥, 𝑎) + 𝛼∫𝑤
𝑛
(𝑦)𝑄 (𝑑𝑦 | 𝑥, 𝑎)]

− min
𝑎∈𝐴(𝑥)

[𝑐 (𝑥, 𝑎) + 𝛼∫ V
𝑛
(𝑦)𝑄 (𝑑𝑦 | 𝑥, 𝑎)]

≤ [𝑐
∗

(𝑥, 𝑓
𝑛
(𝑥)) + 𝛼∫𝑤

𝑛
(𝑦)𝑄 (𝑑𝑦 | 𝑥, 𝑓

𝑛
(𝑥))]

− [𝑐 (𝑥, 𝑓
𝑛
(𝑥)) + 𝛼∫ V

𝑛
(𝑦)𝑄 (𝑑𝑦 | 𝑥, 𝑓

𝑛
(𝑥))]

= 𝑐
∗

(𝑥, 𝑓
𝑛
(𝑥)) − 𝑐 (𝑥, 𝑓

𝑛
(𝑥))

+ 𝛼∫ [𝑤
𝑛
(𝑦) − V

𝑛
(𝑦)]𝑄 (𝑑𝑦 | 𝑥, 𝑓

𝑛
(𝑥))

≤ 𝜖𝑍 (𝑥) + 𝛼 (1 + 𝛼 + 𝛼
2

+ ⋅ ⋅ ⋅ + 𝛼
𝑛

) 𝜖𝑍 (𝑥)

= (1 + 𝛼 + 𝛼
2

+ ⋅ ⋅ ⋅ + 𝛼
𝑛+1

) 𝜖𝑍 (𝑥) .

(13)
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On the other hand, from (11) and the fact that 𝑐∗(𝑥, 𝑎) −
𝑐(𝑥, 𝑎) = 𝜖𝑎2, 𝑎 ∈ 𝐴(𝑥), for each 𝑥 ∈ 𝑋,

𝑤
𝑛+1

(𝑥) − V
𝑛+1

(𝑥)

= min
𝑎∈𝐴(𝑥)

[𝑐
∗

(𝑥, 𝑎) + 𝛼∫𝑤
𝑛
(𝑦)𝑄 (𝑑𝑦 | 𝑥, 𝑎)]

− min
𝑎∈𝐴(𝑥)

[𝑐 (𝑥, 𝑎) + 𝛼∫ V
𝑛
(𝑦)𝑄 (𝑑𝑦 | 𝑥, 𝑎)]

≥ [𝑐
∗

(𝑥, 𝑔
𝑛
(𝑥)) + 𝛼∫𝑤

𝑛
(𝑦)𝑄 (𝑑𝑦 | 𝑥, 𝑔

𝑛
(𝑥))]

− [𝑐 (𝑥, 𝑔
𝑛
(𝑥)) + 𝛼∫ V

𝑛
(𝑦)𝑄 (𝑑𝑦 | 𝑥, 𝑔

𝑛
(𝑥))]

= 𝑐
∗

(𝑥, 𝑔
𝑛
(𝑥)) − 𝑐 (𝑥, 𝑔

𝑛
(𝑥))

+ 𝛼∫ [𝑤
𝑛
(𝑦) − V

𝑛
(𝑦)]𝑄 (𝑑𝑦 | 𝑥, 𝑓

𝑛
(𝑥))

≥ 0.

(14)

In conclusion, combining (10), (13), and (14), it is obtained
that, for each 𝑥 ∈ 𝑋, (11) holds for all 𝑛 ≥ 1. Now, letting
𝑛 → +∞ in (11), we get |𝑊∗(𝑥) − 𝑉∗(𝑥)| ≤ 𝜖𝑍(𝑥)/(1 − 𝛼),
𝑥 ∈ 𝑋.

The following corollary is immediate.

Corollary 13. Suppose that Assumptions 1 and 6 hold. Suppose
that for𝑀 one of Assumptions 3 or 4 holds (hence,𝑀 does not
necessarily have a unique optimal policy). Let 𝜖 be a positive
number. If 𝐴 is compact or Condition 10 holds, then there
exists an MDP𝑀

𝜖
with a unique optimal policy 𝑔∗, such that

inequalities in Theorem 12 (a) or (b) hold, respectively.

Example 14. Let 𝑋 = (0,∞), 𝐴 = 𝐴(𝑥) = (−∞, 0], for all
𝑥 ∈ 𝑋. The dynamic of the system is given by

𝑥
𝑡+1

= 𝑥
𝑡
𝑒
𝑎
𝑡
+𝜉
𝑡 , (15)

𝑡 = 0, 1, . . . . Here, 𝜉
0
, 𝜉
1
, . . . are i.i.d. random variables with

values in 𝑆 = (−∞, 0] and with a common continuous
bounded density denoted by Δ. The cost function is given by
𝑐(𝑥, 𝑎) = 𝑥 + |𝑎|, 𝑥 ∈ 𝑋 (observe that 𝑐 is convex but not
strictly convex).

Lemma 15. Example 14 satisfies Assumptions 1, 3, and 6, and
Condition 10.

Proof. Assumption 1 (a) trivially holds. The proof of the
strong continuity of 𝑄 is as follows: if 𝑢 : 𝑋 → R is a
measurable and bounded function, then, using the change of
variable theorem, a simple computation shows that

∫
(0,∞)

𝑢 (𝑦)𝑄 (𝑑𝑦 | 𝑥, 𝑎) = ∫
(−∞,0]

𝑢 (𝑥𝑒
𝑎+𝑠

) Δ (𝑠) 𝑑𝑠

= ∫
(0,𝑥𝑒
𝑎
]

𝑢 (𝑤) Δ(ln 𝑤

𝑥
− 𝑎)

1

𝑤
𝑑𝑤,

(16)

(𝑥, 𝑎) ∈ K. As 𝑢 is a bounded function and Δ is a bounded
continuous function, it follows directly, using the conver-
gence dominated theorem, that

∫
(0,𝑥𝑒
𝑎
]

𝑢 (𝑤) Δ(ln 𝑤

𝑥
− 𝑎)

1

𝑤
𝑑𝑤, (17)

(𝑥, 𝑎) ∈ K is a continuous function on K. Hence,

∫
(0,∞)

𝑢 (𝑦)𝑄 (𝑑𝑦 | ⋅, ⋅) (18)

is a continuous function on K.
By direct computations we get, for the stationary policy

𝑔(𝑥) = 0, 𝑥 ∈ 𝑋, both 𝑉(𝑔, 𝑥) = 𝐸
𝑔

𝑥
[∑
∞

𝑡=0
𝛼𝑡𝑐(𝑥
𝑡
, 𝑎
𝑡
)] and

𝑊(𝑔, 𝑥) = 𝐸𝑔
𝑥
[∑
∞

𝑡=0
𝛼𝑡𝑐∗(𝑥

𝑡
, 𝑎
𝑡
)] are less or equal toΘ(𝑥) = 𝑥/

(1−𝛼) for all 𝑥 ∈ 𝑋 (observe that, in this case,Θ(𝑥) ≥ 𝑊∗(𝑥)

and Θ(𝑥) ≥ 𝑉∗(𝑥), 𝑥 ∈ 𝑋); consequently, Assumptions 1 and
6 hold.

On the other hand, Assumptions 3(a), (b), and (d) are
immediate. Let 𝐹(𝑥, 𝑎, 𝑠) = 𝑥𝑒

𝑎+𝑠, 𝑥 ∈ (0,∞), 𝑎, 𝑠 ∈ (−∞, 0].
Clearly, 𝐹(⋅, 𝑎, 𝑠) is nondecreasing in the first variable.

Now, take 𝜆 ∈ [0, 1] and (𝑥, 𝑎), (𝑥󸀠, 𝑎󸀠) ∈ 𝕜 and 𝑠 ∈ 𝑆.
Then, considering that 𝑒𝑠, 𝑒𝜆𝑎, and 𝑒(1−𝜆)𝑎

󸀠

are less or equal
than one,

𝐹 (𝜆𝑥 + (1 − 𝜆) 𝑥
󸀠

, 𝜆𝑎 + (1 − 𝜆) 𝑎
󸀠

, 𝑠)

= (𝜆𝑥 + (1 − 𝜆) 𝑥
󸀠

) 𝑒
(𝜆𝑎+(1−𝜆)𝑎

󸀠
+𝑠)

= 𝑒
𝑠

(𝜆𝑥 + (1 − 𝜆) 𝑥
󸀠

) 𝑒
𝜆𝑎

𝑒
(1−𝜆)𝑎

󸀠

= 𝑒
𝑠

[𝜆𝑥𝑒
𝜆𝑎

𝑒
(1−𝜆)𝑎

󸀠

+ (1 − 𝜆) 𝑥
󸀠

𝑒
𝜆𝑎

𝑒
(1−𝜆)𝑎

󸀠

]

≤ 𝑒
𝑠

[𝜆𝑥𝑒
𝜆𝑎

+ (1 − 𝜆) 𝑥
󸀠

𝑒
(1−𝜆)𝑎

󸀠

]

= 𝜆𝐹 (𝑥, 𝑎, 𝑠) + (1 − 𝜆) 𝐹 (𝑥
󸀠

, 𝑎
󸀠

, 𝑠) ,

(19)

hence, 𝐹(⋅, ⋅, 𝑠) is convex, that is, Assumption 3(c) holds.
Now, for each 𝑥 ∈ 𝑋,

𝐵 (𝑥) = {𝑎 ∈ R : 𝑥 + |𝑎| ≤
𝑥

1 − 𝛼
}

= {𝑎 ∈ R : |𝑎| ≤
𝛼𝑥

1 − 𝛼
} .

(20)

Hence, taking 𝑍(𝑥) = [𝛼𝑥/(1 − 𝛼)]
2, 𝑥 ∈ 𝑋, using (20)

and, again, that 𝑒𝑎+𝑠 ≤ 1, it is possible to obtain that for each
𝑥 ∈ 𝑋 and 𝑎 ∈ 𝐵(𝑥),

𝑐
∗

(𝑥, 𝑎) − 𝑐 (𝑥, 𝑎) = 𝜖𝑎
2

≤ 𝜖[
𝛼𝑥

1 − 𝛼
]
2

, (21)

and that ∫𝑍(𝑦)𝑄(𝑑𝑦 | 𝑥, 𝑎) = [𝛼/(1 − 𝛼)]
2

∫𝑦2𝑄(𝑑𝑦 |

𝑥, 𝑎) = [𝛼/(1 − 𝛼)]
2

𝑥2 ∫[𝑒(𝑎+𝑠)]
2

Δ(𝑠)𝑑𝑠 ≤ [𝛼/(1 − 𝛼)]
2

𝑥2 =

𝑍(𝑥).
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4. Concluding Remarks

The specific form of the perturbation used in this paper is
taken from [5, Exercise 28, page 81], where it is established
that a convex function 𝑓 perturbed by a suitable quadratic
positive function becomes strictly convex and coercive. In
fact, this kind of perturbation is very much related to the one
Tanaka et al. propose in their paper [6], and further research
in this direction is being conducted.

Both state and action spaces are considered to be subsets
of R, just for simplicity of exposition. All the results hold in
R𝑛. In this case, if 𝐴 ⊆ R𝑛 (𝑛 > 1), then it is possible to take

𝑐
∗

(𝑥, 𝑎) = 𝑐 (𝑥, 𝑎) + 𝜖‖𝑎‖
2

, (22)

(𝑥, 𝑎) ∈ K, where ‖𝑎‖2 = 𝑎2
1
+ ⋅ ⋅ ⋅ +𝑎2

𝑛
, 𝑎 = (𝑎

1
, . . . , 𝑎

𝑛
) (see [5,

Exercise 28, page 81]), and all the results on this article remain
valid.

Theorem 12, on the closeness of the value functions of the
original and the perturbed MDPs, requires conditions that
are all very common in the MDPs technical literature. The
importance of the result lies in the fact that it is a crucial
step to the study of the problem of stability under the cost
perturbation of the uniqueness or nonuniqueness of optimal
policies.

Finally, we should mention that this research was moti-
vated by our interest in understanding the relationship
between nonuniqueness and robustness in several statistical
procedures based on optimization.
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