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Soft set theory is a newly emerging tool to deal with uncertain problems. Based on soft sets, soft rough approximation operators
are introduced, and soft rough sets are defined by using soft rough approximation operators. Soft rough sets, which could provide
a better approximation than rough sets do, can be seen as a generalized rough set model. This paper is devoted to investigating soft
rough approximation operations and relationships among soft sets, soft rough sets, and topologies. We consider four pairs of soft
rough approximation operators and give their properties. Four sorts of soft rough sets are investigated, and their related properties
are given. We show that Pawlak’s rough set model can be viewed as a special case of soft rough sets, obtain the structure of soft
rough sets, give the structure of topologies induced by a soft set, and reveal that every topological space on the initial universe is a
soft approximating space.

1. Introduction

Most of traditional methods for formal modeling, reasoning,
and computing are crisp, deterministic, and precise in char-
acter. However, many practical problems within fields such
as economics, engineering, environmental science, medi-
cal science, and social sciences involve data that contain
uncertainties. We cannot use traditional methods because of
various types of uncertainties present in these problems.

There are several theories: probability theory, fuzzy set
theory, theory of interval mathematics, and rough set theory
[1], which we can consider as mathematical tools for dealing
with uncertainties. But all these theories have their own
difficulties (see [2]). For example, theory of probabilities
can deal only with stochastically stable phenomena. To
overcome these kinds of difficulties, Molodtsov [2] proposed
a completely new approach, which is called soft set theory, for
modeling uncertainty.

Presently, works on soft set theory are progressing rapidly.
Maji et al. [3–5] further studied soft set theory, used this
theory to solve some decisionmaking problems, and devoted
fuzzy soft sets combining soft sets with fuzzy sets. Roy et al.

[6] presented a fuzzy soft set theoretic approach towards
decision making problems. Jiang et al. [7] extended soft sets
with description logics. Aktaş et al. [8] defined soft groups.
Feng et al. [9, 10] investigated relationships among soft sets,
rough sets, and fuzzy sets. Shabir et al. [11] investigated
soft topological spaces. Ge et al. [12] discussed relationships
between soft sets and topological spaces.

The purpose of this paper is to investigate soft rough
approximation operators and relationships among soft sets,
soft rough sets, and topologies.

The remaining part of this paper is organized as follows.
In Section 2, we recall some basic concepts of rough sets
and soft sets. In Section 3, we consider four pairs of soft
rough approximation operators and give their properties.
Four sorts of soft rough sets are introduced or investigated,
and the fact that Pawlak’s rough set model can be viewed as
a special case of soft rough sets is proved. In Section 4, we
investigate the relationships between soft sets and topologies,
obtain the structure of topologies induced by a soft set, and
reveal that every topological space on the initial universe is
a soft approximating space. In Section 5, we give the related
properties of soft rough sets and obtain the structure of soft
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rough sets. In Section 6, we prove that there exists a one-to-
one correspondence between the set of all soft sets and the set
of all formal contexts. Conclusion is in Section 7.

2. Overview of Rough Sets and Soft Sets

In this section, we recall some basic concepts about rough sets
and soft sets.

Throughout this paper, 𝑈 denotes initial universe, 𝐸

denotes the set of all possible parameters, and 2
𝑈 denotes the

family of all subsets of 𝑈. We only consider the case where
both 𝑈 and 𝐸 are nonempty finite sets.

2.1. Rough Sets. Rough set theory was initiated by [1] for deal-
ing with vagueness and granularity in information systems.
This theory handles the approximation of an arbitrary subset
of a universe by two definable or observable subsets called
lower and upper approximations. It has been successfully
applied to machine learning, intelligent systems, inductive
reasoning, pattern recognition, mereology, image process-
ing, signal analysis, knowledge discovery, decision analysis,
expert systems, and many other fields (see [1, 13]).

Let 𝑅 be an equivalence relation on 𝑈. The pair (𝑈, 𝑅)

is called a Pawlak approximation space. The equivalence
relation 𝑅 is often called an indiscernibility relation. Using
the indiscernibility relation 𝑅, one can define the following
two rough approximations:

𝑅
∗ (𝑋) = {𝑥 ∈ 𝑈 : [𝑥]𝑅 ⊆ 𝑋} ,

𝑅
∗
(𝑋) = {𝑥 ∈ 𝑈 : [𝑥]𝑅 ∩ 𝑋 ̸= 0} .

(1)

𝑅
∗
(𝑋) and 𝑅

∗
(𝑋) are called the Pawlak lower approximation

and the Pawlak upper approximation of 𝑋, respectively. In
general, we refer to𝑅

∗
and𝑅

∗ as Pawlak rough approximation
operators and 𝑅

∗
(𝑋) and𝑅

∗
(𝑋) as Pawlak rough approxima-

tions of 𝑋.
The Pawlak boundary region of 𝑋 is defined by the

difference between these Pawlak rough approximations; that
is, Bnd

𝑅
(𝑋) = 𝑅

∗
(𝑋) − 𝑅

∗
(𝑋). It can easily be seen that

𝑅
∗
(𝑋) ⊆ 𝑋 ⊆ 𝑅

∗
(𝑋).

A set is Pawlak rough if its boundary region is not
empty; otherwise, the set is crisp. Thus, 𝑋 is Pawlak rough
if 𝑅
∗
(𝑋) ̸= 𝑅

∗
(𝑋).

We may relax equivalence relations so that rough set
theory is able to solvemore complicated problems in practice.
The classical rough set theory based on equivalence relations
has been extended to binary relations [14].

Definition 1 (see [14]). Let 𝑅 be a binary relation on 𝑈. The
pair (𝑈, 𝑅) is called an approximation space. Based on the
approximation space (𝑈, 𝑅), we define a pair of operations 𝑅,
𝑅 : 2
𝑈

→ 2
𝑈 as follows:

𝑅 (𝑋) = {𝑥 ∈ 𝑈 : 𝑅 (𝑥) ⊆ 𝑋} ,

𝑅 (𝑋) = {𝑥 ∈ 𝑈 : 𝑅 (𝑥) ∩ 𝑋 ̸= 0} ,

(2)

where 𝑋 ∈ 2
𝑈 and 𝑅(𝑥) = {𝑦 ∈ 𝑈 : 𝑥𝑅𝑦}.

𝑅(𝑋) and 𝑅(𝑋) are called the lower approximation and
the upper approximation of 𝑋, respectively. In general, we
refer to 𝑅 and 𝑅 as rough approximation operators and 𝑅(𝑋)

and 𝑅(𝑋) as rough approximations of 𝑋.
𝑋 is called a definable set if 𝑅(𝑋) = 𝑅(𝑋); 𝑋 is called a

rough set if 𝑅(𝑋) ̸= 𝑅(𝑋).

2.2. Soft Sets

Definition 2 (see [2]). Let 𝐴 be a nonempty subset of 𝐸. A
pair (𝑓, 𝐴) is called a soft set over 𝑈, if 𝑓 is a mapping given
by 𝑓 : 𝐴 → 2

𝑈. We denote (𝑓, 𝐴) by 𝑓
𝐴
.

In other words, a soft set over 𝑈 is a parametrized family
of subsets of the universe 𝑈. For 𝑒 ∈ 𝐴, 𝑓(𝑒) may be
considered as the set of 𝑒-approximate elements of the soft
set 𝑓
𝐴
.

Definition 3 (see [3]). Let 𝑓
𝐴
and 𝑔

𝐵
be two soft sets over 𝑈.

(1) 𝑓
𝐴
is called a soft subset of 𝑔

𝐵
, if 𝐴 ⊆ 𝐵 and 𝑓(𝑒) =

𝑔(𝑒) for each 𝑒 ∈ 𝐴. We denote it by 𝑓
𝐴
⊂̃𝑔
𝐵
.

(2) 𝑓
𝐴
is called a soft super set of 𝑔

𝐵
, if 𝑔
𝐵
⊂̃𝑓
𝐴
. We denote

it by 𝑓
𝐴
⊃̃𝑔
𝐵
.

Definition 4 (see [3]). Let 𝑓
𝐴
and 𝑔

𝐵
be two soft sets over 𝑈.

𝑓
𝐴
and 𝑔

𝐵
are called soft equal, if 𝐴 = 𝐵 and 𝑓(𝑒) = 𝑔(𝑒) for

each 𝑒 ∈ 𝐴. We denote it by 𝑓
𝐴

= 𝑔
𝐵
.

Obviously, 𝑓
𝐴

= 𝑔
𝐵
if and only if 𝑓

𝐴
⊂̃ 𝑔
𝐵
and 𝑓

𝐴
⊃̃ 𝑔
𝐵
.

Definition 5 (see [10, 12]). Let 𝑓
𝐴
be a soft set over 𝑈.

(1) 𝑓
𝐴
is called full, if ⋃

𝑎∈𝐴
𝑓(𝑎) = 𝑈.

(2) 𝑓
𝐴
is called partition, if {𝑓(𝑎) : 𝑎 ∈ 𝐴} forms a

partition of 𝑈.

Obviously, every partition soft set is full.

Definition 6. Let 𝑓
𝐴
be a soft set over 𝑈.

(1) 𝑓
𝐴
is called keeping intersection, if for any 𝑎, 𝑏 ∈ 𝐴,

there exists 𝑐 ∈ 𝐴 such that 𝑓(𝑎) ∩ 𝑓(𝑏) = 𝑓(𝑐).

(2) 𝑓
𝐴
is called keeping union, if for any 𝑎, 𝑏 ∈ 𝐴, there

exists 𝑐 ∈ 𝐴 such that 𝑓(𝑎) ∪ 𝑓(𝑏) = 𝑓(𝑐).

(3) 𝑓
𝐴
is called topological, if {𝑓(𝑎) : 𝑎 ∈ 𝐴} is a topology

on 𝑈.

Obviously, every topological soft set is full, keeping inter-
section and keeping union, and 𝑓

𝐴
is keeping intersection

(resp., keeping union) if and only if for any 𝐴
󸀠

⊆ 𝐴,
there exists 𝑎

󸀠
∈ 𝐴 such that ⋂

𝑎∈𝐴
󸀠 𝑓(𝑎) = 𝑓(𝑎

󸀠
) (resp.,

⋃
𝑎∈𝐴
󸀠 𝑓(𝑎) = 𝑓(𝑎

󸀠
)).
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Example 7. Let𝑈 = {ℎ
1
, ℎ
2
, ℎ
3
, ℎ
4
, ℎ
5
},𝐴 = {𝑎

1
, 𝑎
2
, 𝑎
3
, 𝑎
4
}, and

let 𝑓
𝐴
be a soft set over 𝑈, defined as follows:

𝑓 (𝑎
1
) = {ℎ

1
, ℎ
2
, ℎ
5
} ,

𝑓 (𝑎
2
) = 0,

𝑓 (𝑎
3
) = {ℎ

3
} ,

𝑓 (𝑎
4
) = {ℎ

3
, ℎ
4
} .

(3)

Obviously, 𝑓
𝐴
is not partition. We have

𝑓 (𝑎
3
) ∩ 𝑓 (𝑎

4
) = {ℎ

3
} = 𝑓 (𝑎

3
) ,

𝑓 (𝑎
1
) ∩ 𝑓 (𝑎

2
) = 𝑓 (𝑎

1
) ∩ 𝑓 (𝑎

3
) = 𝑓 (𝑎

1
) ∩ 𝑓 (𝑎

4
)

= 𝑓 (𝑎
2
) ∩ 𝑓 (𝑎

3
) = 𝑓 (𝑎

2
) ∩ 𝑓 (𝑎

4
)

= 0 = 𝑓 (𝑎
2
) .

(4)

Then, 𝑓
𝐴
is full and keeping intersection. But

𝑓 (𝑎
1
) ∪ 𝑓 (𝑎

3
) = {ℎ

1
, ℎ
2
, ℎ
3
, ℎ
5
} ̸= 𝑓 (𝑎) (∀𝑎 ∈ 𝐴) . (5)

Thus, 𝑓
𝐴
is not keeping union.

Example 8. Let 𝑈 = {ℎ
1
, ℎ
2
, ℎ
3
, ℎ
4
, ℎ
5
}, 𝐴 = {𝑎

1
, 𝑎
2
, 𝑎
3
, 𝑎
4
},

and let 𝑓
𝐴
be a soft set over 𝑈, defined as follows:

𝑓 (𝑎
1
) = {ℎ

1
} ,

𝑓 (𝑎
2
) = {ℎ

1
, ℎ
2
} ,

𝑓 (𝑎
3
) = {ℎ

1
, ℎ
2
, ℎ
3
} ,

𝑓 (𝑎
4
) = {ℎ

1
, ℎ
2
, ℎ
3
, ℎ
4
} .

(6)

Then, 𝑓
𝐴
is keeping intersection and keeping union. But

𝑓
𝐴
is not full.

Example 9. Let 𝑈 = {ℎ
1
, ℎ
2
, ℎ
3
, ℎ
4
, ℎ
5
}, 𝐴 = {𝑎

1
, 𝑎
2
, 𝑎
3
, 𝑎
4
},

and let 𝑓
𝐴
be a soft set over 𝑈, defined as follows:

𝑓 (𝑎
1
) = {ℎ

1
} ,

𝑓 (𝑎
2
) = {ℎ

2
} ,

𝑓 (𝑎
3
) = {ℎ

1
, ℎ
2
} ,

𝑓 (𝑎
4
) = 𝑈.

(7)

Then, 𝑓
𝐴
is full and keeping union. But 𝑓

𝐴
is neither

keeping intersection nor partition.

Example 10. Let 𝑈 = {ℎ
1
, ℎ
2
, ℎ
3
, ℎ
4
, ℎ
5
}, 𝐴 = {𝑎

1
, 𝑎
2
, 𝑎
3
, 𝑎
4
},

and let 𝑓
𝐴
be a soft set over 𝑈, defined as follows:

𝑓 (𝑎
1
) = {ℎ

1
, ℎ
2
} ,

𝑓 (𝑎
2
) = {ℎ

5
} ,

𝑓 (𝑎
3
) = {ℎ

3
} ,

𝑓 (𝑎
4
) = {ℎ

4
} .

(8)

Obviously, 𝑓
𝐴
is partition. But

𝑓 (𝑎
2
) ∩ 𝑓 (𝑎

3
) = 0 ̸= 𝑓 (𝑎) (∀𝑎 ∈ 𝐴) ,

𝑓 (𝑎
1
) ∪ 𝑓 (𝑎

2
) = {ℎ

1
, ℎ
2
, ℎ
5
} ̸= 𝑓 (𝑎) (∀𝑎 ∈ 𝐴) .

(9)

Thus, 𝑓
𝐴

is neither keeping intersection nor keeping
union.

Example 11. Let 𝑈 = {ℎ
1
, ℎ
2
, ℎ
3
, ℎ
4
, ℎ
5
}, 𝐴 = {𝑎

1
, 𝑎
2
, 𝑎
3
, 𝑎
4
}

and let 𝑓
𝐴
be a soft set over 𝑈, defined as follows

𝑓 (𝑎
1
) = {ℎ

1
} ,

𝑓 (𝑎
2
) = {ℎ

1
, ℎ
4
} ,

𝑓 (𝑎
3
) = {ℎ

1
, ℎ
3
, ℎ
4
} ,

𝑓 (𝑎
4
) = 𝑋.

(10)

Obviously, 𝑓
𝐴
is full, keeping intersection and keeping

union. But 𝑓
𝐴
is not topological.

From Examples 7, 8, 9, and 10 and 11, we have the
following relationships:

𝑓𝐴 is keeping intersection

𝑓𝐴 is keeping union

𝑓𝐴 is full

𝑓𝐴 is topological

𝑓𝐴 is full, keeping intersection and keeping union

𝑓𝐴 is partition

𝑓𝐴 is full and
keeping union

𝑓𝐴 is full and
keeping intersection

3. Soft Rough Approximation Operators
and Soft Rough Sets

Soft rough sets, which could provide a better approximation
than rough sets do, can be seen as a generalized rough set
model (see Example 4.6 in [10]), and defining soft rough
sets and some related concepts needs using soft rough
approximation operators based on soft sets. Thus, soft rough
approximation operators deserve further research.

In this section, we consider a pair of soft rough approxi-
mation operators which are presented by Feng et al. in [9, 10],
proposing three pairs of soft rough approximation operators
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and giving their properties. Four sorts of soft rough sets
are defined by using four pairs of soft rough approximation
operators.

3.1. Soft Rough Approximation Operators 𝑎𝑝𝑟
𝑃
and 𝑎𝑝𝑟

𝑃

Definition 12 (see [9, 10]). Let 𝑓
𝐴
be a soft set over 𝑈. Then,

the pair 𝑃 = (𝑈, 𝑓
𝐴
) is called a soft approximation space. We

define a pair of operators apr
𝑃
, apr
𝑃
: 2
𝑈

→ 2
𝑈 as follows:

apr
𝑃
(𝑋) = {𝑢 ∈ 𝑈 : ∃𝑎 ∈ 𝐴, s.t. 𝑢 ∈ 𝑓 (𝑎) ⊆ 𝑋} ,

apr
𝑃
(𝑋) = {𝑢 ∈ 𝑈 : ∃𝑎 ∈ 𝐴,

s.t. 𝑢 ∈ 𝑓 (𝑎) , 𝑓 (𝑎) ∩ 𝑋 ̸= 0} .

(11)

apr
𝑃
and apr

𝑃
are called the soft 𝑃-lower approximation

operator on 𝑈 and the soft 𝑃-upper approximation operator
on𝑈, respectively. In general, we refer to apr

𝑃
and apr

𝑃
as soft

𝑃-rough approximations operator on 𝑈.
apr
𝑃
(𝑋) and apr

𝑃
(𝑋) are called the soft 𝑃-lower approx-

imation and the soft 𝑃-upper approximation of 𝑋, respec-
tively. In general, we refer to apr

𝑃
(𝑋) and apr

𝑃
(𝑋) as soft

rough approximations of 𝑋 with respect to 𝑃.
𝑋 is called a soft 𝑃-definable set if apr

𝑃
(𝑋) = apr

𝑃
(𝑋); 𝑋

is called a soft 𝑃-rough set if apr
𝑃
(𝑋) ̸= apr

𝑃
(𝑋).

Moreover, the sets

Pos
𝑃 (𝑋) = apr

𝑃
(𝑋) ,

Neg
𝑃
(𝑋) = 𝑈 − apr

𝑃
(𝑋) ,

Bnd
𝑃 (𝑋) = apr

𝑃
(𝑋) − apr

𝑃
(𝑋)

(12)

are called the soft 𝑃-positive region, the soft 𝑃-negative
region, and the soft 𝑃-boundary region of 𝐴, respectively.

Proposition 13 (see [9, 10]). Let𝑓
𝐴
be a soft set over𝑈, and let

𝑃 = (𝑈, 𝑓
𝐴
) be a soft approximation space. Then, the following

properties hold for any 𝑋,𝑌 ∈ 2
𝑈.

(1) apr
𝑃
(𝑋) = ⋃{𝑓(𝑎) : 𝑎 ∈ 𝐴 and 𝑓(𝑎) ⊆ 𝑋} ⊆

𝑋; apr
𝑃
(𝑋) = ⋃{𝑓(𝑎) : 𝑎 ∈ 𝐴 and 𝑓(𝑎) ∩ 𝑋 ̸= 0}.

(2) apr
𝑃
(0) = apr

𝑃
(0) = 0; apr

𝑃
(𝑈) = apr

𝑃
(𝑈) =

⋃
𝑎∈𝐴

𝑓(𝑎).

(3) 𝑋 ⊆ 𝑌 ⇒ apr
𝑃
(𝑋) ⊆ apr

𝑃
(𝑌); 𝑋 ⊆ 𝑌 ⇒ apr

𝑃
(𝑋) ⊆

apr
𝑃
(𝑌).

(4) apr
𝑃
(𝑋 ∪ 𝑌) = apr

𝑃
(𝑋) ∪ apr

𝑃
(𝑌).

(5) apr
𝑃
(apr
𝑃
(𝑋)) = apr

𝑃
(𝑋); apr

𝑃
(apr
𝑃
(𝑋)) =

apr
𝑃
(𝑋).

Proposition 14. Let𝑓
𝐴
be a soft set over𝑈, and let𝑃 = (𝑈, 𝑓

𝐴
)

be a soft approximation space. Then, the following properties
hold.

(1) If 𝑓
𝐴
is full, then

(a) apr
𝑃
(𝑋) ⊆ 𝑋 ⊆ apr

𝑃
(𝑋) for any 𝑋 ∈ 2

𝑈;
(b) apr

𝑃
(𝑈) = apr

𝑃
(𝑈) = 𝑈.

(2) If 𝑓
𝐴
is keeping union, then

(a) for any 𝑋 ∈ 2
𝑈, there exists 𝑎 ∈ 𝐴

such that apr
𝑃
(𝑋) = 𝑓(𝑎);

(b) for any 𝑋 ∈ 2
𝑈, there exists 𝑎 ∈ 𝐴 such that

apr
𝑃
(𝑋) = 𝑓(𝑎).

(3) If 𝑓
𝐴
is keeping intersection, then

apr
𝑃
(𝑋 ∩ 𝑌) = apr

𝑃
(𝑋) ∩ apr

𝑃
(𝑌) for any 𝑋,𝑌 ∈ 2

𝑈
.

(13)

(4) If 𝑓
𝐴
is partition, then

apr
𝑃
(𝑋 ∩ 𝑌) = apr

𝑃
(𝑋) ∩ apr

𝑃
(𝑌) for any 𝑋,𝑌 ∈ 2

𝑈
.

(14)

(5) If 𝑓
𝐴
is full and keeping union, then

apr
𝑃
(𝑋) = 𝑈 for any 𝑋 ∈ 2

𝑈
\ {0} . (15)

Proof. (1)(a) By Proposition 13, apr
𝑃
(𝑋) ⊆ 𝑋. Suppose that

𝑋 − apr
𝑃
(𝑋) ̸= 0. Pick

𝑥 ∈ 𝑋 − apr
𝑃
(𝑋) ̸= 0. (16)

Since 𝑓
𝐴
is full, 𝑈 = ⋃

𝑎∈𝐴
𝑓(𝑎). So, 𝑥 ∈ 𝑓(𝑎) for some

𝑎 ∈ 𝐴. 𝑥 ∈ 𝑋 implies 𝑓(𝑎) ∩ 𝑋 ̸= 0. Thus, 𝑥 ∈ apr
𝑃
(𝑋) ̸= 0,

contradiction. Hence,

𝑋 ⊆ apr
𝑃
(𝑋) . (17)

(1)(b) This holds by (1) and Proposition 13.
(2) This holds by Proposition 13.
(3) By Proposition 13,

apr
𝑃
(𝑋 ∩ 𝑌) ⊆ apr

𝑃
(𝑋) ∩ apr

𝑃
(𝑌) . (18)

Suppose that apr
𝑃
(𝑋) ∩ apr

𝑃
(𝑌) − apr

𝑃
(𝑋 ∩ 𝑌) ̸= 0. Pick

𝑥 ∈ apr
𝑃
(𝑋) ∩ apr

𝑃
(𝑌) − apr

𝑃
(𝑋 ∩ 𝑌) . (19)

Then, there exist 𝑎, 𝑏 ∈ 𝐴 such that 𝑥 ∈ 𝑓(𝑎) ⊆ 𝑋 and
𝑥 ∈ 𝑓(𝑏) ⊆ 𝑌. Since 𝑓

𝐴
is keeping intersection, then 𝑓(𝑎) ∩

𝑓(𝑏) = 𝑓(𝑐) for some 𝑐 ∈ 𝐴. This implies 𝑥 ∈ 𝑓(𝑐) ⊆ 𝑋 ∩ 𝑌.
Thus, 𝑥 ∈ apr

𝑃
(𝑋 ∩ 𝑌), contradiction. Hence,

apr
𝑃
(𝑋 ∩ 𝑌) ⊇ apr

𝑃
(𝑋) ∩ apr

𝑃
(𝑌) . (20)

Therefore,

apr
𝑃
(𝑋 ∩ 𝑌) = apr

𝑃
(𝑋) ∩ apr

𝑃
(𝑌) . (21)
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(4) Suppose that apr
𝑃
(𝑋)∩apr

𝑃
(𝑌)−apr

𝑃
(𝑋∩𝑌) ̸= 0. Pick

𝑥 ∈ apr
𝑃
(𝑋) ∩ apr

𝑃
(𝑌) − apr

𝑃
(𝑋 ∩ 𝑌) . (22)

Then, there exist 𝑎, 𝑏 ∈ 𝐴 such that 𝑥 ∈ 𝑓(𝑎) ⊆ 𝑋 and
𝑥 ∈ 𝑓(𝑏) ⊆ 𝑌. Since 𝑓

𝐴
is partition, then 𝑓(𝑎) = 𝑓(𝑏). This

implies 𝑥 ∈ 𝑓(𝑎) ⊆ 𝑋∩𝑌. So, 𝑥 ∈ apr
𝑃
(𝑋∩𝑌), contradiction.

Thus,

apr
𝑃
(𝑋 ∩ 𝑌) ⊇ apr

𝑃
(𝑋) ∩ apr

𝑃
(𝑌) . (23)

Therefore,

apr
𝑃
(𝑋 ∩ 𝑌) = apr

𝑃
(𝑋) ∩ apr

𝑃
(𝑌) . (24)

(5) Since 𝑓
𝐴

is full and keeping union, then 𝑈 =

⋃
𝑎∈𝐴

𝑓(𝑎) = 𝑓(𝑎
∗
) for some 𝑎

∗
∈ 𝐴. For each 𝑋 ∈ 2

𝑈
\ {0}

and each 𝑢 ∈ 𝑈, 𝑢 ∈ 𝑓(𝑎
∗
) and 𝑓(𝑎

∗
) ∩ 𝑋 = 𝑋 ̸= 0, and then

apr
𝑃
(𝑋) = 𝑈.

3.2. Soft Rough Approximation Operators 𝑎𝑝𝑟
󸀠

𝑃
and 𝑎𝑝𝑟

󸀠

𝑃
,

𝑎𝑝𝑟
󸀠󸀠

𝑃
and 𝑎𝑝𝑟

󸀠󸀠

𝑃
, and 𝑎𝑝𝑟

󸀠󸀠󸀠

𝑃
and 𝑎𝑝𝑟

󸀠󸀠󸀠

𝑃

Definition 15. Let 𝑓
𝐴
be a soft set over 𝑈.

(1) Define a binary relation 𝑅
𝑓
on 𝑈 by

𝑥𝑅
𝑓
𝑦 ⇐⇒ ∃𝑎 ∈ 𝐴, {𝑥, 𝑦} ⊆ 𝑓 (𝑎) (25)

for each 𝑥, 𝑦 ∈ 𝑈. Then, 𝑅
𝑓
is called the binary

relation induced by 𝑓
𝐴
on 𝑈.

(2) For each 𝑥 ∈ 𝑈, define a successor neighborhood
𝑅
𝑓
𝑠

(𝑥) of 𝑥 in 𝑈 by

(𝑅
𝑓
)
𝑠
(𝑥) = {𝑦 ∈ 𝑈 : 𝑥𝑅

𝑓
𝑦} . (26)

Since the following Proposition 16 is clear, we omit its
proof.

Proposition 16. Let 𝑓
𝐴
be a soft set over 𝑈, and let 𝑅

𝑓
be

the binary relation induced by 𝑓
𝐴
on 𝑈. Then, the following

properties hold.

(1) 𝑅
𝑓
is a symmetric relation.

(2) If 𝑓
𝐴
is full, then 𝑅

𝑓
is a reflexive relation.

(3) If 𝑓
𝐴
is partition, then 𝑅

𝑓
is an equivalence relation.

Proposition 17. Let 𝑓
𝐴
be a soft set over 𝑈, and let 𝑅

𝑓
be

the binary relation induced by 𝑓
𝐴
on 𝑈. Then, the following

properties hold.

(1) If 𝑥 ∈ 𝑓(𝑎) with 𝑎 ∈ 𝐴, then 𝑓(𝑎) ⊆ (𝑅
𝑓
)
𝑠
(𝑥).

(2) If𝑓
𝐴
is partition and 𝑥 ∈ 𝑓(𝑎)with 𝑎 ∈ 𝐴, then𝑓(𝑎) =

(𝑅
𝑓
)
𝑠
(𝑥).

(3) If 𝑓
𝐴
is keeping union, then for each 𝑥 ∈ 𝑈, there exists

𝑎 ∈ 𝐴 such that (𝑅
𝑓
)
𝑠
(𝑥) = 𝑓(𝑎).

Proof. (1) This is obvious.
(2) Suppose that 𝑦 ∈ (𝑅

𝑓
)
𝑠
(𝑥). Then, 𝑥𝑅

𝑓
𝑦, and so

{𝑥, 𝑦} ⊆ 𝑓(𝑏) for some 𝑏 ∈ 𝐴. Since 𝑓
𝐴
is partition and

𝑓(𝑎) ∩ 𝑓(𝑏) ̸= 0, then 𝑓(𝑎) = 𝑓(𝑏). Thus, 𝑦 ∈ 𝑓(𝑎). This
implies 𝑓(𝑎) ⊇ (𝑅

𝑓
)
𝑠
(𝑥). By (1),

𝑓 (𝑎) = (𝑅
𝑓
)
𝑠
(𝑥) . (27)

(3) Suppose that 𝑦 ∈ (𝑅
𝑓
)
𝑠
(𝑥). Then, 𝑥𝑅

𝑓
𝑦, and so

{𝑥, 𝑦} ⊆ 𝑓(𝑎
𝑦
) for some 𝑎

𝑦
∈ 𝐴. By (1), 𝑓(𝑎

𝑦
) ⊆ (𝑅

𝑓
)
𝑠
(𝑥).

Thus, {𝑦} ⊆ 𝑓(𝑎
𝑦
) ⊆ (𝑅

𝑓
)
𝑠
(𝑥). This implies

(𝑅
𝑓
)
𝑠
(𝑥) = ⋃{𝑓 (𝑎

𝑦
) : 𝑦 ∈ (𝑅

𝑓
)
𝑠
(𝑥)} . (28)

Since 𝑓
𝐴

is keeping union, then ⋃{𝑓(𝑎
𝑦
) : 𝑦 ∈

(𝑅
𝑓
)
𝑠
(𝑥)} = 𝑓(𝑎) for some 𝑎 ∈ 𝐴. Thus,

(𝑅
𝑓
)
𝑠
(𝑥) = 𝑓 (𝑎) . (29)

Definition 18. Let 𝑓
𝐴
be a soft set over 𝑈, and let 𝑃 = (𝑈, 𝑓

𝐴
)

be a soft approximation space. We define three pairs of soft
rough approximation operations: 2𝑈 → 2

𝑈 as follows:
(1)

apr󸀠
𝑃
(𝑋) = {𝑥 ∈ 𝑈 : (𝑅

𝑓
)
𝑠
(𝑥) ⊆ 𝑋} ,

apr󸀠
𝑃
(𝑋) = {𝑥 ∈ 𝑈 : (𝑅

𝑓
)
𝑠
(𝑥) ∩ 𝑋 ̸= 0} .

(30)

𝑋 is called a soft 𝑃
󸀠-definable set if apr

𝑃
(𝑋) = apr󸀠

𝑃
(𝑋).𝑋

is called a soft 𝑃
󸀠-rough set if apr󸀠

𝑃
(𝑋) ̸= apr󸀠

𝑃
(𝑋). The sets

Pos󸀠
𝑃
(𝑋) = apr󸀠

𝑃
(𝑋) ,

Neg󸀠
𝑃
(𝑋) = 𝑈 − apr󸀠

𝑃
(𝑋) ,

Bnd󸀠
𝑃
(𝑋) = apr󸀠

𝑃
(𝑋) − apr󸀠

𝑃
(𝑋)

(31)

are called the soft 𝑃
󸀠-positive region, the soft 𝑃

󸀠-negative
region, and the soft 𝑃

󸀠-boundary region of 𝑋, respectively.
Consider,

(2)

apr󸀠󸀠
𝑃
(𝑋) = ⋃{(𝑅

𝑓
)
𝑠
(𝑥) : 𝑥 ∈ 𝑈, (𝑅

𝑓
)
𝑠
(𝑥) ⊆ 𝑋} ,

apr󸀠󸀠
𝑃
(𝑋) = 𝑈 − apr󸀠󸀠

𝑃
(𝑈 − 𝑋) .

(32)

𝑋 is called a soft 𝑃
󸀠󸀠-definable set if apr󸀠󸀠

𝑃
(𝑋) = apr󸀠󸀠

𝑃
(𝑋).

𝑋 is called a soft 𝑃
󸀠󸀠-rough set if apr󸀠󸀠

𝑃
(𝑋) ̸= apr󸀠󸀠

𝑃
(𝑋). The sets

Pos󸀠󸀠
𝑃
(𝑋) = apr󸀠󸀠

𝑃
(𝑋) ,

Neg󸀠󸀠
𝑃
(𝑋) = 𝑈 − apr󸀠󸀠

𝑃
(𝑋) ,

Bnd󸀠󸀠
𝑃
(𝑋) = apr󸀠󸀠

𝑃
(𝑋) − apr󸀠󸀠

𝑃
(𝑋)

(33)

are called the soft 𝑃
󸀠󸀠-positive region, the soft 𝑃

󸀠󸀠-negative
region, and the soft 𝑃

󸀠󸀠-boundary region of 𝑋, respectively.
Consider,
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(3)

apr󸀠󸀠󸀠
𝑃

(𝑋) = ∪ {(𝑅
𝑓
)
𝑠
(𝑥) : 𝑥 ∈ 𝑈, (𝑅

𝑓
)
𝑠
(𝑥) ∩ 𝑋 ̸= 0} ,

apr󸀠󸀠󸀠
𝑃

(𝑋) = 𝑈 − apr󸀠󸀠󸀠
𝑃

(𝑈 − 𝑋) .

(34)

𝑋 is called a soft𝑃
󸀠󸀠󸀠-definable set if apr󸀠󸀠󸀠

𝑃
(𝑋) = apr󸀠󸀠󸀠

𝑃
(𝑋).

𝑋 is called a soft 𝑃
󸀠󸀠󸀠-rough set if apr󸀠󸀠󸀠

𝑃
(𝑋) ̸= apr󸀠󸀠󸀠

𝑃
(𝑋). The

sets

Pos󸀠󸀠󸀠
𝑃

(𝑋) = apr󸀠󸀠󸀠
𝑃

(𝑋) ,

Neg󸀠󸀠󸀠
𝑃

(𝑋) = 𝑈 − apr󸀠󸀠󸀠
𝑃

(𝑋) ,

Bnd󸀠󸀠󸀠
𝑃

(𝑋) = apr󸀠󸀠󸀠
𝑃

(𝑋) − apr󸀠󸀠󸀠
𝑃

(𝑋)

(35)

are called the soft 𝑃
󸀠󸀠󸀠-positive region, the soft 𝑃

󸀠󸀠󸀠-negative
region, and the soft 𝑃

󸀠󸀠󸀠-boundary region of 𝑋, respectively.

In general, we also refer to apr󸀠
𝑃
(𝑋) and apr󸀠

𝑃
(𝑋), apr󸀠󸀠

𝑃
(𝑋)

and apr󸀠󸀠
𝑃
(𝑋), and apr󸀠󸀠󸀠

𝑃
(𝑋) and apr󸀠󸀠󸀠

𝑃
(𝑋) as soft rough

approximations of𝑋 with respect to 𝑃
󸀠, 𝑃󸀠󸀠, 𝑃󸀠󸀠󸀠, respectively.

It is not very difficult to prove Propositions 19, 20, and 21
(see [15]).

Proposition 19. Let𝑓
𝐴
be a soft set over𝑈, and let𝑃 = (𝑈, 𝑓

𝐴
)

be a soft approximation space. Then, the following properties
hold for any 𝑋,𝑌 ∈ 2

𝑈.

(1) apr󸀠
𝑃
(𝑋) ⊆ 𝑋. If 𝑓

𝐴
is full, then

apr󸀠
𝑃
(𝑋) ⊆ 𝑋 ⊆ apr󸀠

𝑃
(𝑋) . (36)

(2) apr󸀠
𝑃
(0) = 0; apr󸀠

𝑃
(𝑈) = 𝑈. If 𝑓

𝐴
is full, then

apr󸀠
𝑃
(0) = apr󸀠

𝑃
(0) = 0;

apr󸀠
𝑃
(𝑈) = apr󸀠

𝑃
(𝑈) = 𝑈.

(37)

(3) 𝑋 ⊆ 𝑌 ⇒ apr󸀠
𝑃
(𝑋) ⊆ apr󸀠

𝑃
(𝑌); 𝑋 ⊆ 𝑌 ⇒ apr󸀠

𝑃
(𝑋) ⊆

apr󸀠
𝑃
(𝑌).

(4) apr󸀠
𝑃
(𝑋 ∩ 𝑌) = apr󸀠

𝑃
(𝑋) ∩ apr󸀠

𝑃
(𝑌).

(5) apr󸀠
𝑃
(𝑋 ∪ 𝑌) = apr󸀠

𝑃
(𝑋) ∪ apr󸀠

𝑃
(𝑌).

(6) apr󸀠
𝑃
(𝑈 − 𝑋) = 𝑈 − apr󸀠

𝑃
(𝑋); apr󸀠

𝑃
(𝑈 − 𝑋) = 𝑈 −

apr󸀠
𝑃
(𝑋).

(7) apr󸀠
𝑃
(apr󸀠
𝑃
(𝑋)) ⊆ 𝑋 ⊆ apr󸀠

𝑃
(apr󸀠
𝑃
(𝑋)).

Proposition 20. Let 𝑓
𝐴
be a soft set over 𝑈, and let 𝑃 =

(𝑈, 𝑓
𝐴
) be a soft approximation space. Then, the following

properties hold for any 𝑋 ∈ 2
𝑈.

(1)

apr󸀠󸀠
𝑃
(𝑋) ⊆ 𝑋 ⊆ apr󸀠󸀠

𝑃
(𝑋) . (38)

(2) apr󸀠󸀠
𝑃
(0) = 0; apr󸀠󸀠

𝑃
(𝑈) = 𝑈. If 𝑓

𝐴
is full, then

apr󸀠
𝑃
(0) = apr󸀠

𝑃
(0) = 0;

apr󸀠
𝑃
(𝑈) = apr󸀠

𝑃
(𝑈) = 𝑈.

(39)

(3) apr󸀠󸀠
𝑃
(𝑈 − 𝑋) = 𝑈 − apr󸀠󸀠

𝑃
(𝑋); apr󸀠󸀠

𝑃
(𝑈 − 𝑋) = 𝑈 −

apr󸀠󸀠
𝑃
(𝑋).

(4) apr󸀠󸀠
𝑃
(apr󸀠󸀠
𝑃
(𝑋)) = apr󸀠󸀠

𝑃
(𝑋); apr󸀠󸀠

𝑃
(apr󸀠󸀠
𝑃
(𝑋)) =

apr󸀠󸀠
𝑃
(𝑋).

Proposition 21. Let𝑓
𝐴
be a soft set over𝑈, and let𝑃 = (𝑈, 𝑓

𝐴
)

be a soft approximation space. Then, the following properties
hold for any 𝑋,𝑌 ∈ 2

𝑈.

(1) If 𝑓
𝐴
is full, then

apr󸀠󸀠󸀠
𝑃

(𝑋) ⊆ 𝑋 ⊆ apr󸀠󸀠󸀠
𝑃

(𝑋) . (40)

(2) apr󸀠󸀠󸀠
𝑃

(0) = 0; apr󸀠󸀠󸀠
𝑃
(𝑈) = 𝑈. If 𝑓

𝐴
is full, then

apr󸀠󸀠󸀠
𝑃

(0) = apr󸀠󸀠󸀠
𝑃

(0) = 0;

apr󸀠󸀠󸀠
𝑃

(𝑈) = apr󸀠
𝑃
(𝑈) = 𝑈.

(41)

(3) 𝑋 ⊆ 𝑌 ⇒ apr󸀠󸀠󸀠
𝑃

(𝑋) ⊆ apr󸀠󸀠󸀠
𝑃
(𝑌); 𝑋 ⊆ 𝑌 ⇒

apr󸀠󸀠󸀠
𝑃

(𝑋) ⊆ apr󸀠󸀠󸀠
𝑃

(𝑌).

(4) apr󸀠󸀠󸀠
𝑃

(𝑋 ∩ 𝑌) = apr󸀠󸀠󸀠
𝑃
(𝑋) ∩ apr󸀠󸀠󸀠

𝑃
(𝑌).

(5) apr󸀠󸀠󸀠
𝑃

(𝑋 ∪ 𝑌) = apr󸀠󸀠󸀠
𝑃
(𝑋) ∪ apr󸀠󸀠󸀠

𝑃
(𝑌).

(6) apr󸀠󸀠󸀠
𝑃

(𝑈 − 𝑋) = 𝑈 − apr󸀠󸀠󸀠
𝑃
(𝑋); apr󸀠󸀠󸀠

𝑃
(𝑈 − 𝑋) = 𝑈 −

apr󸀠󸀠󸀠
𝑃

(𝑋).

(7) apr󸀠󸀠󸀠
𝑃

(apr󸀠󸀠󸀠
𝑃

(𝑋)) ⊆ apr󸀠󸀠󸀠
𝑃
(𝑋); apr󸀠󸀠󸀠

𝑃
(apr󸀠󸀠󸀠
𝑃

(𝑋)) ⊇

apr󸀠󸀠󸀠
𝑃

(𝑋).

(8) apr󸀠󸀠󸀠
𝑃

(apr󸀠󸀠󸀠
𝑃

(𝑋)) ⊆ 𝑋 ⊆ apr󸀠󸀠󸀠
𝑃

(apr󸀠󸀠󸀠
𝑃

(𝑋)).

Example 22. Let 𝑈 = {ℎ
1
, ℎ
2
, ℎ
3
, ℎ
4
, ℎ
5
}, 𝐴 = {𝑎

1
, 𝑎
2
, 𝑎
3
, 𝑎
4
},

and let 𝑓
𝐴
be a soft set over 𝑈, defined as follows:

𝑓 (𝑎
1
) = {ℎ

2
} ,

𝑓 (𝑎
2
) = {ℎ

1
, ℎ
4
} ,

𝑓 (𝑎
3
) = {ℎ

3
} ,

𝑓 (𝑎
4
) = {ℎ

1
, ℎ
3
} .

(42)
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Obviously, 𝑓
𝐴
is not full. We have

(𝑅
𝑓
)
𝑠
(ℎ
1
) = {ℎ

1
, ℎ
3
, ℎ
4
} ,

(𝑅
𝑓
)
𝑠
(ℎ
2
) = {ℎ

2
} ,

(𝑅
𝑓
)
𝑠
(ℎ
3
) = {ℎ

1
, ℎ
3
} ,

(𝑅
𝑓
)
𝑠
(ℎ
4
) = {ℎ

1
, ℎ
4
} ,

(𝑅
𝑓
)
𝑠
(ℎ
5
) = 0.

(43)

Let 𝑋 = {ℎ
3
, ℎ
5
}, 𝑌 = {ℎ

1
, ℎ
2
, ℎ
3
}, and 𝑍 = {ℎ

2
, ℎ
4
, ℎ
5
}.

(1) We have

apr󸀠
𝑃
(𝑋) = {ℎ

1
, ℎ
3
} . (44)

Thus,

𝑋 ̸⊆ apr󸀠
𝑃
(𝑋) . (45)

(2) We have

apr󸀠
𝑃
(𝑋) = {ℎ

5
} ,

apr󸀠
𝑃
(𝑌) = {ℎ

2
, ℎ
3
, ℎ
5
} .

(46)

Thus,

apr󸀠
𝑃
(𝑋) ⊆ apr󸀠

𝑃
(𝑌) 󴁁󴁙󴀡 𝑋 ⊆ 𝑌. (47)

(3) We have

apr󸀠
𝑃
(𝑋) = {ℎ

1
, ℎ
3
} ,

apr󸀠
𝑃
(𝑌) = {ℎ

1
, ℎ
2
, ℎ
3
, ℎ
4
} .

(48)

Thus,

apr󸀠
𝑃
(𝑋) ⊆ apr󸀠

𝑃
(𝑌) 󴁁󴁙󴀡 𝑋 ⊆ 𝑌. (49)

(4) We have

apr󸀠
𝑃
(𝑌) = {ℎ

2
, ℎ
3
, ℎ
5
} ,

apr󸀠
𝑃
(𝑍) = {ℎ

2
, ℎ
5
} ,

apr󸀠
𝑃
(𝑌 ∪ 𝑍) = 𝑈.

(50)

Thus,

apr󸀠
𝑃
(𝑌 ∪ 𝑍) ̸= apr󸀠

𝑃
(𝑦) ∪ apr󸀠

𝑃
(𝑍) . (51)

(5) We have

apr󸀠
𝑃
(𝑌) = {ℎ

1
, ℎ
2
, ℎ
3
, ℎ
4
} ,

apr󸀠
𝑃
(𝑍) = {ℎ

1
, ℎ
2
, ℎ
4
} ,

apr󸀠
𝑃
(𝑌 ∩ 𝑍) = {ℎ

2
} .

(52)

Thus,

apr󸀠
𝑃
(𝑌 ∩ 𝑍) ̸= apr󸀠

𝑃
(𝑌) ∩ apr󸀠

𝑃
(𝑍) . (53)

3.3. The Relationships among Four Pairs of Soft Rough Approx-
imation Operators

Lemma 23. Let 𝑓
𝐴
be a soft set over 𝑈, and let 𝑃 = (𝑈, 𝑓

𝐴
) be

a soft approximation space. Then, the following properties hold
for any 𝑋 ∈ 2

𝑈.

(1) If 𝑓
𝐴
is full, then

apr
𝑃
(𝑋) ⊇ apr󸀠

𝑃
(𝑋) . (54)

(2) If 𝑓
𝐴
is full and keeping union, then

apr
𝑃
(𝑋) ⊇ apr󸀠

𝑃
(𝑋) . (55)

(3) If 𝑓
𝐴
is partition, then

(a) apr
𝑃
(𝑋) = apr󸀠

𝑃
(𝑋);

(b) apr
𝑃
(𝑋) = apr󸀠

𝑃
(𝑋).

Proof. (1) Suppose that 𝑥 ∈ apr󸀠
𝑃
(𝑋). Then, (𝑅

𝑓
)
𝑠
(𝑥) ⊆

𝑋. Since 𝑓
𝐴
is full, then 𝑥 ∈ 𝑓(𝑎) for some 𝑎 ∈ 𝐴. By

Proposition 17, 𝑓(𝑎) ⊆ (𝑅
𝑓
)
𝑠
(𝑥). Thus, 𝑥 ∈ 𝑓(𝑎) ⊆ 𝑋. This

implies 𝑥 ∈ apr
𝑃
(𝑋). Thus,

apr
𝑃
(𝑋) ⊇ apr󸀠

𝑃
(𝑋) . (56)

(2) If 𝑋 = 0, then apr
𝑃
(𝑋) = 0 = apr󸀠

𝑃
(𝑋). If 𝑋 ̸= 0, by

Proposition 14, apr
𝑃
(𝑋) = 𝑈.

Hence,

apr
𝑃
(𝑋) ⊇ apr󸀠

𝑃
(𝑋) . (57)

(3)(a) Suppose that 𝑥 ∈ apr
𝑃
(𝑋). Then, 𝑥 ∈ 𝑓(𝑎) ⊆ 𝑋

for some 𝑎 ∈ 𝐴. Since 𝑓
𝐴
is partition and 𝑥 ∈ 𝑓(𝑎), then

𝑓(𝑎) = (𝑅
𝑓
)
𝑠
(𝑥) by Proposition 17. This implies 𝑥 ∈ apr󸀠

𝑃
(𝑋).

Thus,

apr
𝑃
(𝑋) ⊆ apr󸀠

𝑃
(𝑋) . (58)

By (1),

apr
𝑃
(𝑋) = apr󸀠

𝑃
(𝑋) . (59)

(3)(b) This is similar to the proof of (3) (a).
Suppose that 𝑥 ∈ apr󸀠

𝑃
(𝑋). Then, (𝑅

𝑓
)
𝑠
(𝑥) ∩ 𝑋 ̸= 0. Since

𝑓
𝐴
is full, then 𝑥 ∈ 𝑓(𝑎) for some 𝑎 ∈ 𝐴. Since 𝑓

𝐴
is partition

and 𝑥 ∈ 𝑓(𝑎), then 𝑓(𝑎) = (𝑅
𝑓
)
𝑠
(𝑥) by Proposition 17. This

implies 𝑥 ∈ apr
𝑃
(𝑋). Thus,

apr
𝑃
(𝑋) ⊇ apr󸀠

𝑃
(𝑋) . (60)

Hence, apr
𝑃
(𝑋) = apr󸀠

𝑃
(𝑋).

By Propositions 13 and 17, we have Lemma 24.

Lemma 24. Let 𝑓
𝐴
be a soft set over 𝑈, and let 𝑃 = (𝑈, 𝑓

𝐴
) be

a soft approximation space. If 𝑓
𝐴
is keeping union, then for any

𝑋 ∈ 2
𝑈,

apr
𝑃
(𝑋) ⊇ apr󸀠󸀠

𝑃
(𝑋) , apr

𝑃
(𝑋) ⊇ apr󸀠󸀠󸀠

𝑃
(𝑋) . (61)
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Lemma 25. Let 𝑓
𝐴
be a soft set over 𝑈, and let 𝑃 = (𝑈, 𝑓

𝐴
) be

a soft approximation space. Then, the following properties hold
for any 𝑋 ∈ 2

𝑈.

(1) If 𝑓
𝐴
is full, then

apr󸀠󸀠󸀠
𝑃

(𝑋) ⊆ apr󸀠
𝑃
(𝑋) ⊆ apr󸀠󸀠

𝑃
(𝑋) ⊆ 𝑋

⊆ apr󸀠󸀠
𝑃
(𝑋) ⊆ apr󸀠

𝑃
(𝑋) ⊆ apr󸀠󸀠󸀠

𝑃
(𝑋) .

(62)

(2) If 𝑓
𝐴
is partition, then

(a) apr󸀠
𝑃
(𝑋) = apr󸀠󸀠

𝑃
(𝑋) = apr󸀠󸀠󸀠

𝑃
(𝑋);

(b) apr󸀠
𝑃
= apr󸀠󸀠
𝑃
(𝑋) = apr󸀠󸀠󸀠

𝑃
(𝑋).

Proof. (1) Suppose that 𝑥 ∈ apr󸀠
𝑃
(𝑋). Then, (𝑅

𝑓
)
𝑠
(𝑥) ⊆ 𝑋.

Since 𝑓
𝐴
is full, then 𝑥 ∈ (𝑅

𝑓
)
𝑠
(𝑥) ⊆ 𝑋 by Proposition 17.

This implies 𝑥 ∈ apr󸀠󸀠
𝑃
(𝑋). Thus,

apr󸀠
𝑃
(𝑋) ⊆ apr󸀠󸀠

𝑃
(𝑋) . (63)

Suppose that apr󸀠󸀠󸀠
𝑃
(𝑋) − apr󸀠

𝑃
(𝑋) ̸= 0. Pick

𝑥 ∈ apr󸀠󸀠󸀠
𝑃

(𝑋) − apr󸀠
𝑃
(𝑋) . (64)

𝑥 ∉ apr󸀠
𝑃
(𝑋) implies (𝑅

𝑓
)
𝑠
(𝑥) ̸⊆ 𝑋. So, (𝑅

𝑓
)
𝑠
(𝑥) ∩ (𝑈 −

𝑋) ̸= 0. Since 𝑓
𝐴
is full, then 𝑥 ∈ (𝑅

𝑓
)
𝑠
(𝑥) by Proposition 17.

This implies 𝑥 ∈ apr󸀠󸀠
𝑃
(𝑈 − 𝑋). Thus, 𝑥 ∉ 𝑈 − apr󸀠󸀠

𝑃
(𝑈 − 𝑋) =

apr󸀠󸀠󸀠
𝑃

(𝑋), contradiction.
Hence, apr󸀠󸀠󸀠

𝑃
(𝑋) ⊆ apr󸀠

𝑃
(𝑋).

By Proposition 20,

apr󸀠󸀠
𝑃
(𝑋) ⊆ 𝑋 ⊆ apr󸀠󸀠

𝑃
(𝑋) . (65)

Since

apr󸀠󸀠󸀠
𝑃

(𝑈 − 𝑋) ⊆ apr󸀠
𝑃
(𝑈 − 𝑋) ⊆ apr󸀠󸀠

𝑃
(𝑈 − 𝑋) , (66)

then

𝑈 − apr󸀠󸀠󸀠
𝑃

(𝑈 − 𝑋) ⊇ 𝑈 − apr󸀠
𝑃
(𝑈 − 𝑋) ⊇ 𝑈 − apr󸀠󸀠

𝑃
(𝑈 − 𝑋) .

(67)

By Propositions 19, 20, and 21,

apr󸀠󸀠
𝑃
(𝑋) ⊆ apr󸀠

𝑃
(𝑋) ⊆ apr󸀠󸀠󸀠

𝑃
(𝑋) . (68)

(2)(a) Suppose that 𝑥 ∈ apr󸀠󸀠
𝑃
(𝑋).Then, there exists 𝑦 ∈ 𝑈

such that 𝑥 ∈ (𝑅
𝑓
)
𝑠
(𝑦) ⊆ 𝑋. Since 𝑓

𝐴
is partition, then 𝑅

𝑓
is

an equivalence relation by Proposition 16.Thus, 𝑥 ∈ (𝑅
𝑓
)
𝑠
(𝑦)

follows (𝑅
𝑓
)
𝑠
(𝑥) = (𝑅

𝑓
)
𝑠
(𝑦). So, (𝑅

𝑓
)
𝑠
(𝑥) ⊆ 𝑋. This implies

𝑥 ∈ apr󸀠
𝑃
(𝑋). Hence,

apr󸀠
𝑃
(𝑋) ⊇ apr󸀠󸀠

𝑃
(𝑋) . (69)

By (1),

apr󸀠
𝑃
(𝑋) = apr󸀠󸀠

𝑃
(𝑋) . (70)

Suppose that apr󸀠
𝑃
(𝑋) ∩ apr󸀠󸀠󸀠

𝑃
(𝑈 − 𝑋) ̸= 0. Pick

𝑥 ∈ apr󸀠
𝑃
(𝑋) ∩ apr󸀠󸀠󸀠

𝑃
(𝑈 − 𝑋) . (71)

𝑥 ∈ apr󸀠
𝑃
(𝑋) implies (𝑅

𝑓
)
𝑠
(𝑥) ⊆ 𝑋. 𝑥 ∈ apr󸀠󸀠󸀠

𝑃
(𝑈 − 𝑋)

implies that there exists 𝑦 ∈ 𝑈 such that 𝑥 ∈ (𝑅
𝑓
)
𝑠
(𝑦) and

(𝑅
𝑓
)
𝑠
(𝑦) ∩ (𝑈 − 𝑋) ̸= 0. So, (𝑅

𝑓
)
𝑠
(𝑦) ̸⊆ 𝑋. Note that 𝑅

𝑓
is

an equivalence relation. Then, (𝑅
𝑓
)
𝑠
(𝑥) = (𝑅

𝑓
)
𝑠
(𝑦). Thus,

(𝑅
𝑓
)
𝑠
(𝑥) ̸⊆ 𝑋, contradiction.

Hence, apr󸀠
𝑃
(𝑋) ∩ apr󸀠󸀠󸀠

𝑃
(𝑈 − 𝑋) = 0.

This proves that

apr󸀠
𝑃
(𝑋) ⊆ 𝑈 − apr󸀠󸀠󸀠

𝑃
(𝑈 − 𝑋) = apr󸀠󸀠󸀠

𝑃
(𝑋) . (72)

By (1),

apr󸀠
𝑃
(𝑋) = apr󸀠󸀠󸀠

𝑃
(𝑋) . (73)

(2)(b) By (2)(a),

apr󸀠
𝑃
(𝑈 − 𝑋) = apr󸀠󸀠

𝑃
(𝑈 − 𝑋) = apr󸀠󸀠󸀠

𝑃
(𝑈 − 𝑋) . (74)

Then,

𝑈 − apr󸀠
𝑃
(𝑈 − 𝑋) = 𝑈 − apr󸀠󸀠

𝑃
(𝑈 − 𝑋) = 𝑈 − apr󸀠󸀠󸀠

𝑃
(𝑈 − 𝑋) .

(75)

By Propositions 19, 20, and 21,

apr󸀠
𝑃
(𝑋) = apr󸀠󸀠

𝑃
(𝑋) = apr󸀠󸀠󸀠

𝑃
(𝑋) . (76)

Example 26. Let 𝑈 = {ℎ
1
, ℎ
2
, ℎ
3
, ℎ
4
, ℎ
5
, ℎ
6
}, 𝐴 = {𝑎

1
, 𝑎
2
, 𝑎
3
,

𝑎
4
, 𝑎
5
}, and let 𝑓

𝐴
be a soft set over 𝑈, defined as follows:

𝑓 (𝑎
1
) = {ℎ

1
} ,

𝑓 (𝑎
2
) = {ℎ

6
} ,

𝑓 (𝑎
3
) = {ℎ

2
, ℎ
5
} ,

𝑓 (𝑎
4
) = {ℎ

2
, ℎ
4
} ,

𝑓 (𝑎
5
) = {ℎ

1
, ℎ
3
, ℎ
5
} .

(77)

Obviously, 𝑓
𝐴
is full. We have

(𝑅
𝑓
)
𝑠
(ℎ
1
) = {ℎ

1
, ℎ
3
, ℎ
5
} ,

(𝑅
𝑓
)
𝑠
(ℎ
2
) = {ℎ

2
, ℎ
4
, ℎ
5
} ,

(𝑅
𝑓
)
𝑠
(ℎ
3
) = {ℎ

1
, ℎ
3
, ℎ
5
} ,

(𝑅
𝑓
)
𝑠
(ℎ
4
) = {ℎ

2
, ℎ
4
} ,

(𝑅
𝑓
)
𝑠
(ℎ
5
) = {ℎ

1
, ℎ
2
, ℎ
3
, ℎ
5
} .

(78)
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Let 𝑋 = {ℎ
2
, ℎ
4
, ℎ
6
}. We have

apr
𝑃
(𝑋) = {ℎ

2
, ℎ
4
, ℎ
6
} ,

apr󸀠
𝑃
(𝑋) = {ℎ

4
} ,

apr󸀠󸀠
𝑃
(𝑋) = {ℎ

2
, ℎ
4
} ,

apr
𝑃
(𝑋) = {ℎ

2
, ℎ
4
, ℎ
5
, ℎ
6
} ,

apr󸀠
𝑃
(𝑋) = {ℎ

2
, ℎ
4
, ℎ
5
} ,

apr󸀠󸀠
𝑃
(𝑋) = {ℎ

1
, ℎ
2
, ℎ
3
, ℎ
4
, ℎ
5
} .

(79)

Thus,

apr
𝑃
(𝑋) ̸= apr󸀠

𝑃
(𝑋) ,

apr󸀠
𝑃
(𝑋) ̸= apr󸀠󸀠

𝑃
(𝑋) ,

apr
𝑃
(𝑋) ̸= apr󸀠

𝑃
(𝑋) ,

apr󸀠
𝑃
(𝑋) ̸= apr󸀠󸀠

𝑃
(𝑋) .

(80)

By Proposition 16 and Lemmas 23, 24, and 25, we have
Theorem 27.

Theorem 27. Let 𝑓
𝐴
be a soft set over 𝑈, and let 𝑃 = (𝑈, 𝑓

𝐴
)

be a soft approximation space. Then, the following properties
hold for any 𝑋 ∈ 2

𝑈.

(1) If 𝑓
𝐴
is full, then

apr󸀠󸀠󸀠
𝑃

(𝑋) ⊆ apr󸀠
𝑃
(𝑋) ⊆ apr󸀠󸀠

𝑃
(𝑋) ⊆ 𝑋

⊆ apr󸀠󸀠
𝑃
(𝑋) ⊆ apr󸀠

𝑃
(𝑋) ⊆ apr󸀠󸀠󸀠

𝑃
(𝑋) .

(81)

(2) If 𝑓
𝐴
is full and keeping union, then

apr󸀠󸀠󸀠
𝑃

(𝑋) ⊆ apr󸀠
𝑃
(𝑋) ⊆ apr󸀠󸀠

𝑃
(𝑋) ⊆ apr

𝑃
(𝑋)

⊆ 𝑋 ⊆ apr󸀠󸀠
𝑃
(𝑋) ⊆ apr󸀠

𝑃
(𝑋)

⊆ apr󸀠󸀠󸀠
𝑃

(𝑋) ⊆ apr
𝑃
(𝑋) .

(82)

3.4. The Relationship between Soft Rough Approximation
Operators and Pawlak Rough Approximation Operators. In
this section, we shall explore the relationship between soft
rough approximation operators and Pawlak rough approxi-
mation operators.

Definition 28. Let 𝑅 be an equivalence relation on 𝑈. Define
a mapping 𝑓

𝑅
: 𝐴 → 2

𝑈 by

𝑓
𝑅 (𝑎) = [𝑎]𝑅 (83)

for each 𝑎 ∈ 𝐴, where 𝐴 = 𝑈. Then, (𝑓
𝑅
)
𝐴
is called the soft

set induced by 𝑅 on 𝑈.

Theorem 29 (see [10]). Let 𝑅 be an equivalence relation on
𝑈, let (𝑓

𝑅
)
𝐴
be the soft set induced by 𝑅 on 𝑈, and let 𝑃 =

(𝑈, (𝑓
𝑅
)
𝐴
) be a soft approximation space. Then, for each 𝑋 ∈

2
𝑈,

𝑅 (𝑋) = apr
𝑃
(𝑋) , 𝑅 (𝑋) = apr

𝑃
(𝑋) . (84)

Thus, in this case,𝑋 ∈ 2
𝑈 is a Pawlak rough set if and only

if X is a soft 𝑃-rough set.

By Proposition 16 and Lemmas 23 and 25, we have
Theorem 30.

Theorem 30. Let 𝑓
𝐴
be a partition soft set over 𝑈, and let

𝑃 = (𝑈, 𝑓
𝐴
) be a soft approximation space. Then, the following

properties hold for any 𝑋 ∈ 2
𝑈.

(1) 𝑅
𝑓
(𝑋) = apr

𝑃
(𝑋) = apr󸀠

𝑃
(𝑋) = apr󸀠󸀠

𝑃
(𝑋) = apr󸀠󸀠󸀠

𝑃
(𝑋);

(2) 𝑅
𝑓
(𝑋) = apr

𝑃
(𝑋) = apr󸀠

𝑃
(𝑋) = apr󸀠󸀠

𝑃
(𝑋) = apr󸀠󸀠󸀠

𝑃
(𝑋),

where𝑅
𝑓
(𝑋) and𝑅

𝑓
(𝑋) are the Pawlak rough approximations

of 𝑋.

Corollary 31. Let 𝑓
𝐴
be a full soft set over 𝑈, and let 𝑃 =

(𝑈, 𝑓
𝐴
) be a soft approximation space. Then,

(1) every soft 𝑃
󸀠󸀠󸀠-definable set is a soft 𝑃

󸀠-definable set.
(2) every soft 𝑃

󸀠-definable set is a soft 𝑃
󸀠󸀠-definable set.

Remark 32. Theorems 29 and 30 illustrate that Pawlak’s rough
set models can be viewed as a special case of soft rough sets.

Remark 33. Example 4.6 in [10] illustrates that a soft rough
approximation is a worth considering alternative to the
rough approximation. Soft rough sets could provide a better
approximation than rough sets do.

4. The Relationships between Soft
Sets and Topologies

Let 𝑓
𝐴
be a soft set over 𝑈, and let 𝑃 = (𝑈, 𝑓

𝐴
) be a soft

approximation space. Denote

𝜏
𝑓

= {𝑋 ∈ 2
𝑈

: 𝑋 = apr
𝑃
(𝑋)} ,

𝜎
𝑓

= {𝑋 ∈ 2
𝑈

: 𝑋 = apr
𝑃
(𝑋)} ;

𝜏
󸀠

𝑓
= {𝑋 ∈ 2

𝑈
: 𝑋 = apr󸀠

𝑃
(𝑋)} ,

𝜎
󸀠

𝑓
= {𝑋 ∈ 2

𝑈
: 𝑋 = apr󸀠

𝑃
(𝑋)} ;

𝜏
󸀠󸀠

𝑓
= {𝑋 ∈ 2

𝑈
: 𝑋 = apr󸀠󸀠

𝑃
(𝑋)} ,

𝜎
󸀠󸀠

𝑓
= {𝑋 ∈ 2

𝑈
: 𝑋 = apr󸀠󸀠

𝑃
(𝑋)} ;

𝜏
󸀠󸀠󸀠

𝑓
= {𝑋 ∈ 2

𝑈
: 𝑋 = apr󸀠󸀠󸀠

𝑃
(𝑋)} ,

𝜎
󸀠󸀠󸀠

𝑓
= {𝑋 ∈ 2

𝑈
: 𝑋 = apr󸀠󸀠󸀠

𝑃
(𝑋)} .

(85)
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4.1. The First Sort of Topologies Induced by a Soft Set
and Related Results. By Propositions 13 and 14, we have
Theorem 34.

Theorem 34. Let 𝑓
𝐴
be a full and keeping intersection or

a partition soft set over 𝑈 and let 𝑃 = (𝑈, 𝑓
𝐴
) be a soft

approximation space. Then 𝜏
𝑓
is a topology on 𝑈.

Remark 35. Let 𝑓
𝐴
be a full and keeping union soft set over

𝑈, and let 𝑃 = (𝑈, 𝑓
𝐴
) be an soft approximation space. Then,

by Proposition 14(5), 𝜎
𝑓

= {0, 𝑈} is a indiscrete topology on
𝑈.

The following theorem gives the structure of the first sort
of topologies induced by a soft set.

Theorem 36. Let 𝑓
𝐴
be a full and keeping intersection soft set

over 𝑈, let 𝑃 = (𝑈, 𝑓
𝐴
) be a soft approximation space, and let

𝜏
𝑓
be the topology induced by 𝑓

𝐴
on 𝑈. Then,

(1)

{apr
𝑃
(𝑋) : 𝑋 ∈ 2

𝑈
} ⊆ 𝜏
𝑓

= {apr
𝑃
(𝑋) : 𝑋 ∈ 2

𝑈
} ; (86)

(2)

𝜏
𝑓

⊇ {𝑓 (𝑎) : 𝑎 ∈ 𝐴} ; (87)

(3) if 𝑓
𝐴
is topological, then

𝜏
𝑓

= {𝑓 (𝑎) : 𝑎 ∈ 𝐴} ; (88)

(4) apr
𝑃
is an interior operator of 𝜏

𝑓
.

Proof. (1) By Proposition 13, we have

{apr
𝑃
(𝑋) : 𝑋 ∈ 2

𝑈
} ⊆ 𝜏
𝑓
. (89)

Obviously,

𝜏
𝑓

⊆ {apr
𝑃
(𝑋) : 𝑋 ∈ 2

𝑈
} . (90)

Let 𝑌 ∈ {apr
𝑃
(𝑋) : 𝑋 ∈ 2

𝑈
}. Then, 𝑌 = apr

𝑃
(𝑋) for some

𝑋 ∈ 2
𝑈. By Proposition 13, apr

𝑃
(apr
𝑃
(𝑋)) = apr

𝑃
(𝑋). This

implies 𝑌 ∈ 𝜏
𝑓
. Thus,

𝜏
𝑓

⊇ {apr
𝑃
(𝑋) : 𝑋 ∈ 2

𝑈
} . (91)

Hence,

{apr
𝑃
(𝑋) : 𝑋 ∈ 2

𝑈
} ⊆ 𝜏
𝑓

= {apr
𝑃
(𝑋) : 𝑋 ∈ 2

𝑈
} . (92)

(2) For each 𝑎 ∈ 𝐴, by Proposition 13,

apr
𝑃
(𝑓 (𝑎))

= ⋃{𝑓 (𝑎
󸀠
) : 𝑎
󸀠
∈ 𝐴, 𝑓 (𝑎

󸀠
) ⊆ 𝑓 (𝑎)} ⊆ 𝑓 (𝑎) .

(93)

Then, 𝑓(𝑎) = apr
𝑃
(𝑓(𝑎)). So 𝑓(𝑎) ∈ 𝜏

𝑓
. Thus,

{𝑓 (𝑎) : 𝑎 ∈ 𝐴} ⊆ 𝜏
𝑓
. (94)

(3) Suppose that 𝑋 ∈ 𝜏
𝑓
. If 𝑋 = 0, by 𝑓

𝐴
is topological,

there exists 𝑎 ∈ 𝐴 such that𝑋 = 𝑓(𝑎). If𝑋 ̸= 0, for each𝑥 ∈ 𝑋,
𝑋 = apr

𝑃
(𝑋), there exists 𝑎

𝑥
∈ 𝐴 such that 𝑥 ∈ 𝑓(𝑎

𝑥
) ⊆ 𝑋.

Then,

𝑋 = ⋃

𝑥∈𝑋

{𝑥} ⊆ ⋃

𝑥∈𝑋

𝑓 (𝑎
𝑥
) ⊆ 𝑋. (95)

So, 𝑋 = ⋃
𝑥∈𝑋

𝑓(𝑎
𝑥
). Since 𝑓

𝐴
is keeping union, then

⋃

𝑥∈𝑋

𝑓 (𝑎
𝑥
) = 𝑓 (𝑎) for some 𝑎 ∈ 𝐴. (96)

This implies 𝑋 ∈ {𝑓(𝑎) : 𝑎 ∈ 𝐴}. Thus, 𝜏
𝑓

⊆ {𝑓(𝑎) : 𝑎 ∈

𝐴}.
By (1), 𝜏

𝑓
⊇ {𝑓(𝑎) : 𝑎 ∈ 𝐴}.

Hence,

𝜏
𝑓

= {𝑓 (𝑎) : 𝑎 ∈ 𝐴} . (97)

(4) It suffices to show that

apr
𝑃
(𝑋) = int (𝑋) for each 𝑋 ∈ 2

𝑈
. (98)

By (1), apr
𝑃
(𝑋) ∈ 𝜏

𝑓
. By Proposition 13, apr

𝑃
(𝑋) ⊆ 𝑋.

Thus

apr
𝑃
(𝑋) ⊆ int (𝑋) . (99)

Conversely, for each 𝑌 ∈ 𝜏
𝑓
with 𝑌 ⊆ 𝑋, we have 𝑌 =

apr
𝑃
(𝑌) ⊆ apr

𝑃
(𝑋) by Proposition 13. Thus,

int (𝑋) = ∪ {𝑌 : 𝑌 ∈ 𝜏
𝑓
, 𝑌 ⊆ 𝑋} ⊆ apr

𝑃
(𝑋) . (100)

Hence,

apr
𝑃
(𝑋) = int (𝑋) . (101)

Definition 37. Let 𝜏 be a topology on𝑈. Put 𝜏 = {𝑈
𝑎
: 𝑎 ∈ 𝐴},

where𝐴 is the set of indexes. Define a mapping 𝑓
𝜏
: 𝐴 → 2

𝑈

by 𝑓
𝜏
(𝑎) = 𝑈

𝑎
for each 𝑎 ∈ 𝐴. Then, the soft set (𝑓

𝜏
)
𝐴
over 𝑈

is called the soft set induced by 𝜏 on 𝑈.

Definition 38. Let (𝑈, 𝜇) be a topological space. If there exists
a full and keeping intersection or a partition soft set 𝑓

𝐴
over

𝑈 such that 𝜏
𝑓

= 𝜇, then (𝑈, 𝜇) is called a soft approximating
space.

The following proposition can easily be proved.

Proposition 39. (1) Let 𝜏 be a topology on 𝑈, and let (𝑓
𝜏
)
𝐴

be the soft set induced by 𝜏 on 𝑈. Then, (𝑓
𝜏
)
𝐴
is a full, keeping

intersection, and keeping union soft set over 𝑈.
(2) Let 𝜏

1
and 𝜏
2
be two topologies on𝑈, and let (𝑓

𝜏
1

)
𝐴
1

and
(𝑓
𝜏
2

)
𝐴
2

be two soft sets induced, respectively, by 𝜏
1
and 𝜏
2
on𝑈.

If 𝜏
1
⊆ 𝜏
2
, then

(𝑓
𝜏
1

)
𝐴
1

⊂̃ (𝑓
𝜏
2

)
𝐴
2

. (102)
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Theorem 40. Let 𝜏 be a topology on𝑈, let (𝑓
𝜏
)
𝐴
be the soft set

induced by 𝜏 on𝑈, and let 𝜏
𝑓
𝜏

be the topology induced by (𝑓
𝜏
)
𝐴

on 𝑈. Then, 𝜏 = 𝜏
𝑓
𝜏

.

Proof. Put 𝜏 = {𝑈
𝑎
: 𝑎 ∈ 𝐴}; then,𝑓

𝜏
: 𝐴 → 2

𝑈 is a mapping,
where 𝑓

𝜏
(𝑎) = 𝑈

𝑎
for each 𝑎 ∈ 𝐴. By Proposition 39, (𝑓

𝜏
)
𝐴
is

full, keeping intersection, and keeping union.
ByTheorem 36, 𝜏

𝑓
𝜏

= {𝑓
𝜏
(𝑎) : 𝑎 ∈ 𝐴}.

Hence, 𝜏
𝑓
𝜏

= 𝜏.

Corollary 41. Every topological space on the initial universe is
a soft approximating space.

Theorem 42. Let (𝑈, 𝜏) be a topological space. Then, there
exists a full, keeping intersection, and keeping union soft set 𝑓

𝐴

over 𝑈 such that
apr
𝑃
(𝑋) = int (𝑋) for each 𝑋 ∈ 2

𝑈
, (103)

where 𝑃 = (𝑈, 𝑓
𝐴
) is a soft approximation space.

Proof. Put 𝜏 = {𝑈
𝑎

: 𝑎 ∈ 𝐴}, where 𝐴 is the set of indexes.
Define a mapping 𝑓 : 𝐴 → 2

𝑈 by

𝑓 (𝑎) = 𝑈
𝑎

for each 𝑎 ∈ 𝐴. (104)

By Proposition 39, 𝑓
𝐴
is full, keeping intersection, and keep-

ing union.
Let 𝑋 ∈ 2

𝑈. For each 𝑥 ∈ apr
𝑃
(𝑋), 𝑥 ∈ 𝑓(𝑎) ⊆ 𝑋 for

some 𝑎 ∈ 𝐴. Then, 𝑥 ∈ 𝑈
𝑎

⊆ 𝑋 with 𝑈
𝑎

∈ 𝜏. This implies
𝑥 ∈ int(𝑋).

Conversely, for each 𝑥 ∈ int(𝑋), there exists an open
neighborhood𝑊 of 𝑥 in 𝑈 such that 𝑊 ⊆ 𝑋. So, 𝑊 = 𝑈

𝑎
for

some 𝑎 ∈ 𝐴. This implies 𝑥 ∈ 𝑓(𝑎) ⊆ 𝑋. Thus, 𝑥 ∈ apr
𝑃
(𝑋).

Hence, apr
𝑃
(𝑋) = int(𝑋).

Theorem 43. Let 𝑓
𝐴
be a full and keeping intersection soft set

over𝑈, let 𝜏
𝑓
be the topology induced by𝑓

𝐴
on𝑈, and let (𝑓

𝜏
𝑓

)
𝐵

be the soft set induced by 𝜏
𝑓
on 𝑈. Then,

(1)

𝑓
𝐴
⊂̃ (𝑓
𝜏
𝑓

)
𝐵

. (105)

(2) If 𝑓
𝐴
is topological, then

𝑓
𝐴

= (𝑓
𝜏
𝑓

)
𝐵

. (106)

Proof. (1) ByTheorem 36, 𝜏
𝑓

⊇ {𝑓(𝑎) : 𝑎 ∈ 𝐴}. Denote

𝜏
𝑓

= {𝑈
𝑎
: 𝑎 ∈ 𝐵} , where 𝐴 ⊆ 𝐵,

𝑈
𝑎
= 𝑓 (𝑎) for each 𝑎 ∈ 𝐴.

(107)

Thus𝑓
𝜏
𝑓

is a mapping given by𝑓
𝜏
𝑓

: 𝐵 → 2
𝑈, where𝑓

𝜏
𝑓

(𝑎) =

𝑈
𝑎
for each 𝑎 ∈ 𝐵.
Hence, 𝑓

𝐴
⊂̃ (𝑓
𝜏
𝑓

)
𝐵
.

(2) Since 𝑓
𝐴
is topological, then byTheorem 36, 𝐴 = 𝐵.

Hence,

𝑓
𝐴

= (𝑓
𝜏
𝑓

)
𝐵

. (108)

4.2. The Second Sort of Topologies Induced by a Soft Set. By
Proposition 19, we haveTheorem 44.

Theorem 44. Let 𝑓
𝐴
be a full soft set over 𝑈, and let 𝑃 =

(𝑋, 𝑓
𝐴
) be a soft approximation space. Then, 𝜏󸀠

𝑓
is a topology

on 𝑈.

Definition 45. Let 𝜏 be a topology on 𝑈.

(1) 𝜏 is called an Alexandrov topology on𝑈, if 𝜏 is closed
for arbitrary intersections.

(2) (𝑈, 𝜏) is called an Alexandrov space, if 𝜏 is an
Alexandrov topology on 𝑈.

(3) 𝜏 is called a pseudodiscrete topology on 𝑈, if 𝐴 ∈ 𝜏 if
and only if 𝑈 − 𝐴 ∈ 𝜏.

Obviously, every pseudodiscrete topology is an Alexan-
drov topology.

The following theorem gives the structure of the second
sort of topologies induced by a soft set.

Theorem 46. Let 𝑓
𝐴
be a full soft set over 𝑈, and let 𝜏󸀠

𝑓
be the

topology induced by 𝑓
𝐴
on 𝑈. Then, (𝑈, 𝜏

󸀠

𝑓
) is an Alexandrov

space.

Proof. By Proposition 16, 𝑅
𝑓

is reflexive and symmetric.
Then, by Proposition 5 in [16], 𝜏󸀠

𝑓
is a pseudodiscrete topology

on 𝑈.
Thus,

(𝑈, 𝜏
󸀠

𝑓
) is an Alexandrov space. (109)

4.3. TheThird Sort of Topologies Induced by a Soft Set

Example 47. Let𝑓
𝐴
be a full soft set over𝑈 and let𝑃 = (𝑈, 𝑓

𝐴
)

be a soft approximation space in Example 26.
Let 𝑌 = {ℎ

2
, ℎ
4
}, and 𝑍 = {ℎ

1
, ℎ
2
, ℎ
3
, ℎ
5
}. We have

apr󸀠󸀠
𝑃
(𝑌) = 𝑌,

apr󸀠󸀠
𝑃
(𝑍) = 𝑍,

apr󸀠󸀠
𝑃
(𝑌 ∩ 𝑍) = 0 ̸= 𝑌 ∩ 𝑍.

(110)

Thus, 𝜏󸀠󸀠
𝑓
is not a topology on 𝑈.

By Proposition 21, we haveTheorem 48.

Theorem 48. Let 𝑓
𝐴
be a full soft set over 𝑈, and let 𝑃 =

(𝑈, 𝑓
𝐴
) be a soft approximation space. Then, 𝜏󸀠󸀠󸀠

𝑓
is a topology

on 𝑈.

4.4.The Relationships amongThree Sorts of Topologies Induced
by a Soft Set and Related Results. By Theorem 27, we have
Theorem 49,which illustrates relationships among three sorts
of topologies induced by a soft set.
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Theorem 49. (1) If 𝑓
𝐴
is a full soft set over 𝑈, then

𝜏
󸀠󸀠󸀠

𝑓
⊆ 𝜏
󸀠

𝑓
. (111)

(2) If 𝑓
𝐴
is a full and keeping intersection soft set over 𝑈,

then

𝜏
󸀠󸀠󸀠

𝑓
⊆ 𝜏
󸀠

𝑓
⊆ 𝜏
𝑓
. (112)

(3) If 𝑓
𝐴
is a partition soft set over 𝑈, then

𝜏
𝑓

= 𝜏
󸀠

𝑓
= 𝜏
󸀠󸀠󸀠

𝑓
. (113)

ByTheorem 36, Proposition 39 andTheorem 49, we have
Theorem 50.

Theorem 50. Let 𝜏 be a topology on 𝑈, let (𝑓
𝜏
)
𝐴
be the soft

set induced by 𝜏 on 𝑈, and let 𝜏
𝑓
𝜏

, 𝜏󸀠
𝑓
𝜏

and 𝜏
󸀠󸀠󸀠

𝑓
𝜏

be the topology
induced, respectively, by (𝑓

𝜏
)
𝐴
on 𝑈. Then

𝜏 = 𝜏
𝑓
𝜏

⊇ 𝜏
󸀠

𝑓
𝜏

⊇ 𝜏
󸀠󸀠󸀠

𝑓
𝜏

. (114)

By Proposition 39 and Theorems 43 and 49, we have
Theorem 51.

Theorem 51. (1) If 𝑓
𝐴
is a full soft set over 𝑈, let 𝜏󸀠

𝑓
and 𝜏

󸀠󸀠󸀠

𝑓

be the topologies induced, respectively, by 𝑓
𝐴
on 𝑈, and let

(𝑓
𝜏
󸀠

𝑓

)
𝐶

(resp., (𝑓
𝜏
󸀠󸀠󸀠

𝑓

)D) be the soft set induced by 𝜏
󸀠

𝑓
(resp., 𝜏󸀠󸀠󸀠

𝑓
)

on 𝑈. Then,

(𝑓
𝜏
󸀠

𝑓

)
𝐶

⊃̃ (𝑓
𝜏
󸀠󸀠󸀠

𝑓

)
𝐷

. (115)

(2) Let 𝑓
𝐴
be a full and keeping intersection soft set over

𝑈, let 𝜏
𝑓
, 𝜏󸀠
𝑓
, and 𝜏

󸀠󸀠󸀠

𝑓
be the topologies induced respectively by

𝑓
𝐴
on 𝑈 and let (𝑓

𝜏
𝑓

)
𝐵

(resp., (𝑓
𝜏
󸀠

𝑓

)
𝐶
, (𝑓
𝜏
󸀠󸀠󸀠

𝑓

)D) be the soft set
induced by 𝜏

𝑓
(resp., 𝜏󸀠

𝑓
, 𝜏󸀠󸀠󸀠
𝑓

) on 𝑈. Then,
(a)

(𝑓
𝜏
𝑓

)
𝐵

⊃̃ 𝑓
𝐴
, (𝑓

𝜏
𝑓

)
𝐵

⊃̃(𝑓
𝜏
󸀠

𝑓

)
𝐶

⊃̃(𝑓
𝜏
󸀠󸀠󸀠

𝑓

)
𝐷

. (116)

(b) If 𝑓
𝐴
is keeping union, then

𝑓
𝐴

= (𝑓
𝜏
𝑓

)
𝐵

⊃̃(𝑓
𝜏
󸀠

𝑓

)
𝐶

⊃̃(𝑓
𝜏
󸀠󸀠󸀠

𝑓

)
𝐷

. (117)

(3) Let 𝑓
𝐴
be a partition soft set over 𝑈, let 𝜏

𝑓
𝜏

, 𝜏󸀠
𝑓
𝜏

and
𝜏
󸀠󸀠󸀠

𝑓
𝜏

be the topologies induced, respectively, by 𝑓
𝐴
on 𝑈 and

let (𝑓
𝜏
𝑓

)
𝐵

(resp., (𝑓
𝜏
󸀠

𝑓

)
𝐶
, (𝑓
𝜏
󸀠󸀠󸀠

𝑓

)
𝐷
) be the soft set induced by

𝜏
𝑓

(resp., 𝜏󸀠
𝑓
, 𝜏󸀠󸀠󸀠
𝑓

) on 𝑈. Then,

(𝑓
𝜏
𝑓

)
𝐵

⊃̃ 𝑓
𝐴
, (𝑓

𝜏
𝑓

)
𝐵

= (𝑓
𝜏
󸀠

𝑓

)
𝐶

= (𝑓
𝜏
󸀠󸀠󸀠

𝑓

)
𝐷

. (118)

Example 52. Let 𝑓
𝐴

be a partition soft set over 𝑈 in
Example 11, let 𝜏

𝑓
be the topology induced by 𝑓

𝐴
on 𝑈, and

let (𝑓
𝜏
𝑓

)
𝐵
be the soft set induced by 𝜏

𝑓
on 𝑈. We have

𝜏
𝑓

= {𝑈
𝑎
: 𝑎 ∈ 𝐵} ,

where 𝐵 = {𝑎
1
, 𝑎
2
, . . . , 𝑎

16
} ,

𝑈
𝑎
1

= 𝑓 (𝑎
1
) = {ℎ

1
, ℎ
2
} ,

𝑈
𝑎
2

= 𝑓 (𝑎
2
) = {ℎ

5
} ,

𝑈
𝑎
3

= 𝑓 (𝑎
3
) = {ℎ

3
} ,

𝑈
𝑎
4

= 𝑓 (𝑎
4
) = {ℎ

4
} ,

𝑈
𝑎
5

= {ℎ
3
, ℎ
4
} ,

𝑈
𝑎
6

= {ℎ
3
, ℎ
5
} ,

𝑈
𝑎
7

= {ℎ
4
, ℎ
5
} ,

𝑈
𝑎
8

= {ℎ
1
, ℎ
2
, ℎ
3
} ,

𝑈
𝑎
9

= {ℎ
1
, ℎ
2
, ℎ
4
} ,

𝑈
𝑎
10

= {ℎ
1
, ℎ
2
, ℎ
5
} ,

𝑈
𝑎
11

= {ℎ
3
, ℎ
4
, ℎ
5
} ,

𝑈
𝑎
12

= {ℎ
1
, ℎ
2
, ℎ
3
, ℎ
4
} ,

𝑈
𝑎
13

= {ℎ
1
, ℎ
2
, ℎ
3
, ℎ
5
} ,

𝑈
𝑎
14

= {ℎ
1
, ℎ
2
, ℎ
4
, ℎ
5
} ,

𝑈
𝑎
15

= 0,

𝑈
𝑎
16

= 𝑈.

(119)

Obviously,

𝑓
𝐴
⊂̃ (𝑓
𝜏
𝑓

)
𝐵

, 𝑓
𝐴

̸̃⊇ (𝑓
𝜏
𝑓

)
𝐵

. (120)

Thus,

𝑓
𝐴

̸= (𝑓
𝜏
𝑓

)
𝐵

. (121)

5. The Related Properties of Soft Rough Sets

In this section, four sorts of soft rough sets based on four pairs
of soft rough approximations are investigated.

ForA,B ⊆ 2
𝑈, we denote

A \ B = {𝑋 ∈ 2
𝑈

: 𝑋 ∈ A, 𝑋 ∉ B} . (122)

Lemma 53 (see [10]). Let 𝑓
𝐴
be a soft set over 𝑈 and let 𝑃 =

(𝑈, 𝑓
𝐴
) be a soft approximation space. Then for each 𝑋 ∈ 2

𝑈,

𝑋 is a soft 𝑃-rough set ⇐⇒ apr
𝑃
(𝑋) ⊆ 𝑋. (123)

By Corollary 31, we have the following Lemma 54.
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Lemma 54. Let𝑓
𝐴
be a full soft set over𝑈, and let𝑃 = (𝑈, 𝑓

𝐴
)

be a soft approximation space. Then,

(1) every soft 𝑃
󸀠-rough set is a soft 𝑃

󸀠󸀠󸀠-rough set.
(2) every soft 𝑃

󸀠󸀠-rough set is a soft 𝑃
󸀠-rough set.

ByTheorem 27, we have Lemma 55.

Lemma 55. Let 𝑓
𝐴
be a full and keeping union soft set over𝑈,

and let 𝑃 = (𝑈, 𝑓
𝐴
) be a soft approximation space. If𝑋 ∈ 2

𝑈 is
a soft 𝑃-definable set, then,

𝑋 ∈ 𝜎
󸀠󸀠󸀠

𝑓
⊆ 𝜎
󸀠

𝑓
⊆ 𝜎
󸀠󸀠

𝑓
. (124)

The following theorem gives the structure of soft rough
sets.

Theorem 56. Let 𝑓
𝐴
be a soft set over 𝑈, and let 𝑃 = (𝑈, 𝑓

𝐴
)

be a soft approximation space. Denote

Ω = {𝑋 ∈ 2
𝑈

: 𝑋 is a soft 𝑃-rough set} ,

Ω
󸀠
= {𝑋 ∈ 2

𝑈
: 𝑋 is a soft 𝑃

󸀠-rough set} ,

Ω
󸀠󸀠

= {𝑋 ∈ 2
𝑈

: 𝑋 is a soft 𝑃
󸀠󸀠-rough set} ,

Ω
󸀠󸀠󸀠

= {𝑋 ∈ 2
𝑈

: 𝑋 is a soft 𝑃
󸀠󸀠󸀠-rough set} .

(125)

(1) If 𝑓
𝐴
is full, then

(a)

𝜎
𝑓

= 2
𝑈

\ Ω; (126)

(b)

Ω
󸀠󸀠

⊆ Ω
󸀠
⊆ Ω
󸀠󸀠󸀠

; (127)

(c)

2
𝑈

\ 𝜏
󸀠

𝑓
⊆ Ω
󸀠
, 2

𝑈
\ 𝜏
󸀠󸀠

𝑓
⊆ Ω
󸀠󸀠
, 2

𝑈
\ 𝜏
󸀠󸀠󸀠

𝑓
⊆ Ω
󸀠󸀠󸀠

;

(128)

(d)

𝜏
󸀠

𝑓
∩ 𝜎
󸀠

𝑓
= 2
𝑈

\ Ω
󸀠
,

𝜏
󸀠󸀠

𝑓
∩ 𝜎
󸀠󸀠

𝑓
= 2
𝑈

\ Ω
󸀠󸀠
,

𝜏
󸀠󸀠󸀠

𝑓
∩ 𝜎
󸀠󸀠󸀠

𝑓
= 2
𝑈

\ Ω
󸀠󸀠󸀠

.

(129)

(2) If 𝑓
𝐴
is full and keeping union, then

(a) 2
𝑈

\ 𝜎
󸀠󸀠

𝑓
⊆ 2
𝑈

\ 𝜎
󸀠

𝑓
⊆ 2
𝑈

\ 𝜎
󸀠󸀠󸀠

𝑓
⊆ 2
𝑈

\ 𝜎
𝑓

⊆ Ω;
(b) 𝜎
𝑓

= {0, 𝑈} = 2
𝑈

\ Ω.

(3) If 𝑓
𝐴
is full and keeping intersection, then

(a) 𝜎
𝑓

= 2
𝑈

\ Ω ⊆ 𝜏
𝑓
.

Proof. These hold by Proposition 14 and Lemmas 53, 54, and
55.

Theorem 57. Let 𝑓
𝐴
be a soft set over U and let 𝑃 = (𝑈, 𝑓

𝐴
)

be a soft approximation space. Then, for 𝑋 ∈ 2
𝑈, one has

Pos󸀠
𝑃
(𝑈 − 𝑋) = Neg󸀠

𝑃
(𝑋) ,

Pos󸀠󸀠
𝑃
(𝑈 − 𝑋) = Neg󸀠󸀠

𝑃
(𝑋) ,

Pos󸀠󸀠󸀠
𝑃

(𝑈 − 𝑋) = Neg󸀠󸀠󸀠
𝑃

(𝑋) .

(130)

Proof. This is obtained from Propositions 19, 20, and 21.

By Proposition 14 andTheorem 27, we haveTheorem 58.

Theorem 58. Let 𝑓
𝐴
be a soft set over 𝑈, and let 𝑃 = (𝑈, 𝑓

𝐴
)

be a soft approximation space. Then, for 𝑋 ∈ 2
𝑈, one has the

following.

(1) If 𝑓
𝐴
be a full, then

Bnd󸀠󸀠
𝑃
(𝑋) ⊆ Bnd󸀠

𝑃
(𝑋) ⊆ Bnd󸀠󸀠󸀠

𝑃
(𝑋) . (131)

(2) If 𝑓
𝐴
is full and keeping union, then

(a) apr󸀠󸀠
𝑃
(𝑋) − 𝑋 ⊆ apr󸀠

𝑃
(𝑋) − 𝑋 ⊆ apr󸀠󸀠󸀠

𝑃
(𝑋) − 𝑋 ⊆

Bnd
𝑃
(𝑋);

(b) Neg
𝑃
(𝑋) = 0 and Bnd

𝑃
(𝑋) = 𝑈−Pos

𝑃
(𝑋)where

𝑋 ̸= 0.

Remark 59. Theorem 58 illustrates that soft 𝑃
󸀠󸀠-rough sets

could provide a better approximation than soft 𝑃
󸀠-rough sets

do and soft 𝑃
󸀠-rough sets could provide a better approxima-

tion than soft 𝑃
󸀠󸀠󸀠-rough sets do.

6. A Correspondence Relationship

In this section, we give a one-to-one correspondence relation-
ship in order to reveal the broad application prospect of soft
sets.

Definition 60 (see [17]). Let 𝑈 be a finite set of objects, let 𝐴
be a finite set of attributes, and let 𝐼 be a binary relation on
from 𝑈 to 𝐴. The triple (𝑈, 𝐴, 𝐼) is called a formal context.

Let (𝑈, 𝐴, 𝐼) be a formal context. For 𝑢 ∈ 𝑈 and 𝑎 ∈ 𝐴,
𝑢𝑅𝑎, which is also written as (𝑢, 𝑎) ∈ 𝑅, means that the object
𝑢 possesses the attribute 𝑎.

Denote

{𝑎}
∗
= {𝑢 ∈ 𝑈 : 𝑢𝐼𝑎} , {𝑢}

∗
= {𝑎 ∈ 𝐴 : 𝑢𝐼𝑎} . (132)

Definition 61. Let FC = (𝑈, 𝐴, 𝐼) be a formal context. Define
a mapping 𝑓FC : 𝐴 → 2

𝑈 by

𝑓FC (𝑎) = {𝑎}
∗ (133)

for each 𝑎 ∈ 𝐴. Then, (𝑓FC)𝐴 = (𝑓FC, 𝐴) is called the soft set
over 𝑈 induced by FC. We denote (𝑓FC)𝐴 by 𝑆FC.
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Definition 62. Let 𝑆 = 𝑓
𝐴
be a soft set over𝑈. Define a binary

relation 𝐼
𝑆
∈ 2
𝑈

× 𝐴 by

(𝑢, 𝑎) ∈ 𝐼
𝑆
⇐⇒ 𝑢 ∈ 𝑓 (𝑎) (134)

for each 𝑢 ∈ 𝑈 and each 𝑎 ∈ 𝐴. Then, (𝑈, 𝐴, 𝐼
𝑆
) is called the

formal context induced by 𝑆. We denote (𝑈, 𝐴, 𝐼
𝑆
) by FC

𝑆
.

Lemma 63. Let 𝐹𝐶 = (𝑈,𝐴, 𝐼) be a formal context, let 𝑆FC be
the soft set induced by FC, and let FC

𝑆FC
be the formal context

induced by 𝑆FC. Then,

FC = FC
𝑆FC

. (135)

Proof. Obviously, FC
𝑆FC

= (𝑈, 𝐴, 𝐼
𝑆FC

).
For each (𝑢, 𝑎) ∈ 𝑈 × 𝐴,

(𝑢, 𝑎) ∈ 𝐼
𝑆FC

⇐⇒ 𝑢 ∈ 𝑓FC (𝑎) . (136)

For each 𝑎 ∈ 𝐴,

𝑓FC (𝑎) = {𝑎}
∗
= {𝑢 ∈ 𝑈 : 𝑢𝐼𝑎} = {𝑢 ∈ 𝑈 : (𝑢, 𝑎) ∈ 𝐼} .

(137)

Then,

𝑢 ∈ 𝑓FC (𝑎) ⇐⇒ (𝑢, 𝑎) ∈ 𝐼. (138)

Thus, for each (𝑢, 𝑎) ∈ 𝑈 × 𝐴, (𝑢, 𝑎) ∈ 𝐼
𝑆FC

⇔ (𝑢, 𝑎) ∈ 𝐼.
This implies 𝐼

𝑆FC
= 𝐼.

Hence,

FC = FC
𝑆FC

. (139)

Lemma 64. Let 𝑆 = 𝑓
𝐴
be a soft set over 𝑈, let 𝐹𝐶

𝑆
be the

formal context induced by 𝑆, and let

𝑆FC
𝑆

(140)

be the soft set induced by FC
𝑆
. Then,

𝑆 = 𝑆FC
𝑆

. (141)

Proof. Obviously, 𝑆FC
𝑆

= (𝑓FC
𝑆

, 𝐴).
Since FC

𝑆
= (𝑈,𝐴, 𝐼

𝑆
), then

𝑓FC
𝑆

(𝑎) = {𝑢 ∈ 𝑈 : (𝑢, 𝑎) ∈ 𝐼
𝑆
} for each 𝑎 ∈ 𝐴. (142)

So, (𝑢, 𝑎) ∈ 𝐼
𝑆
⇔ 𝑢 ∈ 𝑓(𝑎).

Obviously, 𝑓(𝑎) = {𝑢 ∈ 𝑈 : 𝑢 ∈ 𝑓(𝑎)} for each 𝑎 ∈ 𝐴.
Thus, for each 𝑎 ∈ 𝐴, 𝑓FC(𝑎) = 𝑓(𝑎).
Hence,

𝑆 = 𝑆FC
𝑆

. (143)

Theorem 65. Let

Γ = {𝑆 = 𝑓
𝐴

: 𝑆 is a soft set over𝑈} ,

Σ = {FC = (𝑈,𝐴, 𝐼) : FC is a formal context} .
(144)

Then, there exists a one-to-one correspondence between Γ

and Σ.

Proof. Two mappings 𝑘 : Σ → Γ and 𝑙 : Γ → Σ are defined
as follows:

𝑘 (FC) = 𝑆FC, for any FC = (𝑈,𝐴, 𝐼) ∈ Σ,

𝑙 (𝑆) = FC
𝑆
, for any 𝑆 = 𝑓

𝐴
∈ Γ.

(145)

By Lemma 63,

𝑙 ∘ 𝑘 = 𝑖
Σ
, (146)

where 𝑙 ∘𝑘 is the composition of 𝑘 and𝐺, and 𝑖
Σ
is the identity

mapping on Σ.
By Lemma 64,

𝑘 ∘ 𝑙 = 𝑖
Γ
, (147)

where 𝑙 ∘ 𝐹 is the composition of 𝑙 and 𝑘, and 𝑖
Γ
is the identity

mapping on Γ.
Hence, 𝐹 and 𝐺 are both a one-to-one correspondence.

This prove that there exists a one-to-one correspondence
between Σ and Γ.

Remark 66. Theorem 65 illustrates that we can do formal
concept analysis for soft sets or do soft analysis for formal
contexts.

7. Conclusions

In this paper, we investigated soft rough approximation oper-
ators and the problems of combing soft sets with soft rough
sets and topologies. Four pairs of soft rough approximation
operators were considered, and their properties were given.
Four sorts of soft rough sets are defined by using four pairs
of soft rough approximation operators, and Pawlak’s rough
set models can be viewed as a special case of soft rough sets.
We researched relationships among soft sets, soft rough sets
and topologies, obtained the structure of soft rough sets, and
revealed that every topological space on the initial universe is
a soft approximating space. We may mention that soft rough
sets can be used in object evaluation and group decision
making. It should be noted that the use of soft rough sets
could, to some extent, automatically reduce the noise factor
caused by the subjective nature of the expert’s evaluation. We
will investigate these problems in future papers.
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