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The traditional Ši’lnikov theorems provide analytic criteria for proving the existence of chaos in high-dimensional autonomous
systems.We have established one extended version of the Ši’lnikov homoclinic theorem and have given a set of sufficient conditions
under which the system generates chaos in the sense of Smale horseshoes. In this paper, the extension questions of the Ši’lnikov
homoclinic theorem and its applications are still discussed. We establish another extended version of the Ši’lnikov homoclinic
theorem. In addition, we construct a new three-dimensional chaotic systemwhichmeets all the conditions in this extended Ši’lnikov
homoclinic theorem. Finally, we list all well-known three-dimensional autonomous quadratic chaotic systems and classify them in
the light of the Ši’lnikov theorems.

1. Introduction

Over the past decades, chaos has received extensive atten-
tion from scientific communities such as physics, biology,
chemistry, social sciences, and engineering. Today’s science
thinks that chaos can be found everywhere; for example,
chaos can be obtained in both three-variable model for
Ca2+ signal and ten-variable model for circadian oscillations
in Drosophila [1, 2]. People study chaos from theoretical
viewpoints on the one hand, including revealing the essence
and basic characteristics of chaos and understanding its
dynamical behaviors, and try to control and anticontrol
chaos from viewpoints of engineering applications on the
other hand. Based on the consideration of two aspects of
theory and applications,many new chaotic systems have been
constructed, such as the generalized Lorenz system, Rössler
system, and Chen system. Note that all these constructed
chaotic systems belong to the class of three-dimensional(3D)
autonomous quadratic dynamical systems. Since a planar
autonomous polynomial system cannot generate chaos, three
dimensions are needed for an autonomous system to generate
chaos, and moreover, the simplest possible form of chaotic
systems is 3D autonomous quadratic dynamical systems.
Thus, 3D autonomous polynomial systems, in particular 3D
autonomous quadratic dynamical systems, occupy a particu-
lar position in the study of chaos.

By far, continuous efforts have been devoted to seeking
a unified theory and some kinds of canonical forms for all
possible continuous-time 3D autonomous quadratic chaotic
systems. In particular, there are many important theoretical
results about criteria of chaos; for example, for discrete
dynamical systems, there is the famous Marotto theorem.
For high-dimensional continuous dynamical systems, there
is the famous Ši’lnikov theorem [3–6]. Despite these endeav-
ors, there have not yet been systematic results on how to
reasonably classify chaos in autonomous systems, and the
related studies are few. Therefore, even for a simple class of
3D autonomous quadratic dynamical systems, finding out
all simplest possible forms of chaotic systems is especially
importantwith significant impacts on both basic research and
engineering applications.

So far there are only two different algebraic criteria in [7–
11] about the classification of 3D autonomous chaotic systems.
However, we know that the linear parts of a nonlinear system
can only influence the local dynamical behavior and chaos
usually is determined by the nonlinear parts. Therefore,
although these two algebraic criteria can classify a large set of
chaotic systems, they could not reveal the geometric structure
and the formation mechanism of chaos well [12].

This paper discusses the extension of Ši’lnikov homo-
clinic theorem and its applications. We have extended the
classical Ši’lnikov homoclinic theorem to one critical case
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[13]. Next we will extend it to another critical case in
this paper. Moreover, in applications of Ši’lnikov theorems
(including the extended versions), the key is to checkwhether
or not a homoclinic orbit exists, but usually, this condition
is not easily verified mainly because there are no available
efficient methods. Based on the type of eigenvalues of the
Jacobian matrix evaluated at the system equilibrium, we have
proposed a framework of finding homoclinic orbits for two
different cases; that is, first expand homoclinic orbits to be
found as a reasonable series form, and then determine all
the coefficients in the expansion by using the undetermined
coefficient method combined with numerical simulation,
thus determining homoclinic orbits [14, 15]. The numerical
examples are displayed to examine the effectiveness of this
method. Finally, based on the Ši’lnikov criteria, the 3D
autonomous quadratic dynamical systems are classified into
four types [14]:

(1) chaos of the Ši’lnikov homoclinic orbit type;

(2) chaos of the Ši’lnikov heteroclinic orbit type;

(3) chaos of the hybrid type, that is, those chaotic sys-
tems with both Ši’lnikov homoclinic and heteroclinic
orbits;

(4) chaos of other types except for the previous three
types.

2. Revisiting Ši’lnikov Homoclinic Theorems

One of the rare theories for proving the existence of chaos
in the high-dimensional continuous dynamical systems is
Ši’lnikov homoclinic (heteroclinic) theorem. Its core idea
is that supposing there exists a homoclinic orbit based at
the equilibrium point, then constructing a Poincaré map,
defined in the neighborhood of the homoclinic orbit, and
then proving that themap has Smale horseshoes. One version
of the classical Ši’lnikov homoclinic theorem can refer to [6].

Theoretical value notwithstanding, many concrete
chaotic systems do not meet some conditions stated in the
classical Ši’lnikov theorem, such as the Sprott(c) system [16].
In fact, one can intentionally construct this kind of chaotic
systems that do not meet the required conditions. Thus,
further relaxing the restrictive conditions of the classical
Ši’lnikov theorems is in order. We have extended the classical
Ši’lnikov homoclinic theorem to one critical case where three
eigenvalues of the corresponding Jacobian evaluated at the
equilibrium point are zero and 𝜌 ± 𝑖𝜔. This extended version
of Ši’lnikov homoclinic theorem is given in [13]. The proof
of the extended theorem is basically similar to that of the
original Ši’lnikov homoclinic theorem. The detailed proof
and the numerical example can refer to [13].

Here, we extend the classical Ši’lnikov homoclinic theo-
rem to another critical case where a 3D autonomous polyno-
mial system with one equilibrium at which the eigenvalues of

the Jacobian are given by 𝜆 and ±𝑖𝜔. Consider the following
3D autonomous system:

𝑑𝑥

𝑑𝑡
= −𝜔𝑦 + 𝑃 (𝑥, 𝑦, 𝑧) ,

𝑑𝑦

𝑑𝑡
= 𝜔𝑥 + 𝑄 (𝑥, 𝑦, 𝑧) ,

𝑑𝑧

𝑑𝑡
= 𝜆𝑧 + 𝑅 (𝑥, 𝑦, 𝑧) ,

(1)

where 𝑃, 𝑄, and 𝑅 are 𝐶
2 vector fields, vanishing at the

origin (𝑥, 𝑦, 𝑧) = (0, 0, 0), and are nonlinear in 𝑥, 𝑦, and 𝑧.
According to the normal form theory [17], the normal form
of system (1) is

𝑑𝑥

𝑑𝑡
= −𝜔𝑦 + (𝑎𝑥 − 𝑏𝑦) (𝑥

2
+ 𝑦
2
) + 𝑜 (4) ,

𝑑𝑦

𝑑𝑡
= 𝜔𝑥 + (𝑎𝑦 + 𝑏𝑥) (𝑥

2
+ 𝑦
2
) + 𝑜 (4) ,

𝑑𝑧

𝑑𝑡
= 𝜆𝑧 + 𝑐𝑧 (𝑥

2
+ 𝑦
2
) + 𝑜 (4) ,

(2)

where 𝑎, 𝑏, and 𝑐 are constants. In this case, the conclusion of
the extended version of the Ši’lnikov homoclinic theorem is
stated as follows.

Theorem 1. Suppose that

(1) 𝑎 < 0, 𝜆 > 0;
(2) there exists a homoclinic orbit connected at (0, 0, 0).

Then

(1) the Ši’lnikov map, defined in a neighborhood of the
homoclinic orbit of the system, possesses a countable
number of Smale horseshoes in its corresponding dis-
crete system;

(2) system (2) possesses horseshoe chaos.

The proof of the theorem is similar to that of other two
Ši’lnikov homoclinic theorems. The detailed proof which
is omitted here can refer to [13]. The according numerical
example is

𝑑𝑥

𝑑𝑡
= −𝑦 + 𝑧

2
+ 𝑎𝑥 (𝑥

2
+ 𝑦
2
) ,

𝑑𝑦

𝑑𝑡
= 𝑥 + 𝑎𝑦 (𝑥

2
+ 𝑦
2
) ,

𝑑𝑧

𝑑𝑡
= 4𝑧 − 𝑧 (𝑥

2
+ 𝑦
2
) ,

(3)

where 𝑎 is a constant. The system (3) is chaotic when the
parameter 𝑎 = −0.02. Similarly, we can show that system (3)
has Ši’lnikov homoclinic chaos.

3. A Framework of Finding Homoclinic Orbits

We know that the difficult part in applying the Ši’lnikov the-
orems (including the extended versions) is how to determine
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Table 1: The systems with one equilibrium point.

System Typical parameter values The equivalent point The eigenvalues
Sprott(d) 𝑎 = 4 (1/4, 1/16, 0) −1.937, 0.4685 ± 1.3585𝑖

Sprott(e) 𝑎 = 0.5 (−2, −4, 4) −1.872, 0.686 ± 0.7732𝑖

Sprott(f) 𝑎 = 0.4 (5/2, 5/2, −1) −2.1347, 0.3674 ± 0.5775𝑖

Sprott(i) 𝑎 = 2 (0, 0, 0) −1.3532, 0.1766 ± 1.2028𝑖

Sprott(k) 𝑎 = 3.9, 𝑏 = 0.9 (1, 0.9, −39/9) −1.4333, 0.2166 ± 1.6353𝑖

Sprott(m) 𝑎 = 2, 𝑏 = 2 (−1/4, 0, 1/2) −2.3146, 0.1573 ± 1.3052𝑖

Sprott(q) 𝑎 = 0.9, 𝑏 = 0.4 (4/9, 0.9, −0.4) −1.6183, 0.3091 ± 0.6787𝑖

Sprott(s) 𝑎 = 2.017 (0, 0, 0) −2.2199, 0.1015 ± 0.6635𝑖

Zhou(a) 𝑎
1
= −1.221, 𝑎

2
= 1.5, 𝑎

3
= 2

𝑏 = −1.3, 𝑐
1
= −1.5, 𝑐

2
= −1

(−0.281, −1.0201, 1.3521) −1.8716, 0.8354 ± 1.3325𝑖

Hc 𝑎 = 0.25, 𝑏 = 4, 𝐹 = 8, 𝐺 = 1 (7.9679, −0.0065, 0.0297) −0.2498, 6.9678 ± 31.8716𝑖

Table 2: The systems with two equilibrium points.

System Typical parameter values The equivalent point The eigenvalues

Sprott(r) 𝑎 = 4 (−1, 1/4, ±1)
−1.6075, 0.3038 ± 2.2101𝑖

1.203, −1.1015 ± 2.3317𝑖

Sprott(g) 𝑎 = 0.5
(0, 0, 0)

(−2, 4, −2)

−1, 0.25 ± 0.9682𝑖

0.2149, −0.3574 ± 2.1274𝑖

Sprott(j) 𝑎 = 0.3
(0, 0, 0)

(−1/0.3, −1/0.3, 1/0.09)

−1, 0.15 ± 0.9887𝑖

−0.7868, −0.1066 ± 1.0153𝑖

Sprott(l) 𝑎 = 1.7, 𝑏 = 1.7
(2.4064, 5.7908, 0)

(−0.7064, 0.499, 0)

0.4087, −0.7543 ± 2.6547𝑖

−0.4693, 0.3179 ± 2.5698𝑖

Sprott(n) 𝑎 = 2.7
(0, 0, 0)

(−1, 0, −1)

−0.5101, 0.2551 ± 1.3767𝑖

0.4315, −0.7157 ± 1.3436𝑖

Sprott(o) 𝑎 = 2.7
(0, 0, 0)

(1, −1, 2.7)

−0.5101, 0.2551 ± 1.3763𝑖

0.3828, −1.1914 ± 1.0121𝑖

Sprott(p) 𝑎 = 3.1, 𝑏 = 0.5
(0, 0, 0)

(−3.1, −3.1, 0)

−1, 0.25 ± 1.7428𝑖

0.8347, −0.6673 ± 1.8079𝑖

Rössler 𝑎 = 𝑏 = 0.2, 𝑐 = 5.7
(0.007, −0.0351, 0.0351)

(5.693, −28.4649, 28.4649)

−5.687, 0.097 ± 0.9952𝑖

0.1935, 0.068 ± 5.428𝑖

𝜁
3

𝑎 = 3.5, 𝑏 = 2
(0, 0, 0)

(3.5, 0, 0)

0.9255, −0.9627 ± 1.6897𝑖

−1.3833, 0.1916 ± 1.5791𝑖

Rössler Toroidal 𝑎 = 0.386, 𝑏 = 0.2
(0, 0, 0)

(0, 1.5181, −1.5181)

−0.5071, 0.1535 ± 1.064𝑖

0.4524, −0.3262 ± 1.0903𝑖

BS 𝑎 = 10, 𝑏 = 13 (±√1.3, ∓√1.3, 0.1) −14.4526, 1.7263 ± 13.3011𝑖

the existence of one homoclinic orbit. We have presented a
framework of finding the possible homoclinic orbits in two
classes of 3D autonomous systems (saddle-focus type or one-
dimensional degenerate type) [15]. First, if the eigenvalues of
the Jacobian 𝐴 = 𝐷𝑓, evaluated at equilibrium point, are
𝛾 > 0, 𝜌 < 0. According to the form of the flow linearized at
the neighborhood of the origin, we specifically suppose that,
for 𝑡 < 0, the homoclinic orbit of the system has the following
form:

𝑥 (𝑡) =

+∞

∑

𝑘=1

𝑎
𝑘
𝑒
𝑘𝛾𝑡

, 𝑦 (𝑡) =

+∞

∑

𝑘=1

𝑏
𝑘
𝑒
𝑘𝛾𝑡

,

𝑧 (𝑡) =

+∞

∑

𝑘=1

𝑐
𝑘
𝑒
𝑘𝛾𝑡

,

(4)

where 𝑎
𝑘
, 𝑏
𝑘
, and 𝑐

𝑘
are constants to be determined, whereas

for 𝑡 > 0, it has the form

𝑥 (𝑡) =

+∞

∑

𝑘=1

𝑎


𝑘
𝑒
𝑘(𝜌+𝜔𝑖)𝑡 , 𝑦 (𝑡) =

+∞

∑

𝑘=1

𝑏


𝑘
𝑒
𝑘(𝜌+𝜔𝑖)𝑡 ,

𝑧 (𝑡) =

+∞

∑

𝑘=1

𝑐


𝑘
𝑒
𝑘(𝜌+𝜔𝑖)𝑡 ,

(5)

where 𝑎
𝑘
, 𝑏
𝑘
, and 𝑐



𝑘
are also constants to be determined.

In addition, note that 𝑎
𝑘
, 𝑏
𝑘
, and 𝑐



𝑘
are complex values.

Denote the real and imaginary parts of 𝑎
𝑘
, 𝑏
𝑘
, and 𝑐



𝑘

by 𝑎


𝑘1
, 𝑏
𝑘1
, and 𝑐



𝑘1
and 𝑎



𝑘2
, 𝑏
𝑘2
, and 𝑐



𝑘2
, respectively.
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Table 3: The systems with three and more equilibrium points.

System Typical parameter values The equivalent points The eigenvalues

Lorenz 𝑎 = 10, 𝑏 = 8/3, 𝑐 = 28
(0, 0, 0)

(±6√2, ±6√2, 27)

−22.8277, −2.6667, 11.8277

−13.8546, 0.094 ± 1.3585𝑖

Rucklidge 𝑎 = −2, 𝑏 = −6.7
(0, 0, 0)

(0, ±2.5884, 6.7)

−3.7749, −1, 1.7749
−3.5154, 0.2577 ± 1.9353𝑖

Chen 𝑎 = 0.3
(0, 0, 0)

(±3√7, ±3√7, 21)
−30.8359, −1, 1.7749

−18.4288, 4.214 ± 14.8846𝑖

SM 𝑎 = 0.85, 𝑏 = 0.5
(0, 0, 0)

(±√2/2, 0, 1)

−1.5116, −0.5, 0.6616

1.5079, 0.079 ± 0.8105𝑖

Lü 𝑎 = 36, 𝑏 = 3, 𝑐 = 20
(0, 0, 0)

(±2√15, ±2√15, 20)
−36, 20, −3

−22.6516, 1.8258 ± 13.6867𝑖

Modified Lorenz 𝑎 = 10, 𝑏 = 8/3, 𝑐 = 28
(0, 0, 0)

(±3√2/5, ±3√2/5, 1.35)
−22.8277, 11.8277, −2.6667

−13.8546, 0.094 ± 10.1943𝑖

The united system 𝛼 = 0.5
(0, 0, 0)

(±2√17, ±2√17, 24)
−28.1696, 19.1696, −2.8333
−16.9593, 2.563 ± 13.1857𝑖

Zhou(b)
𝑎
1
= −4.1, 𝑎

2
= 1.2, 𝑎

3
= 13.45

𝑐
1
= 2.76, 𝑐

2
= 0.6, 𝑐

3
= 13.13

𝑑 = 1.6

(0.9211, −1.9226, 0.1092)

(−0.7106, 0.8407, −0.1416)

(−0.112, −9.6873, −0.8984)

(−0.0985, −11.1136, −1.0216)

−0.9776, 4.427 ± 3.8675𝑖

15.0739, −5.7162, 0.1768

0.0041, 1.6068 ± 18.1354𝑖

−0.004, 1.1829 ± 19.6666𝑖

Zhou(d)
𝑎
1
= 0.5, 𝑎

2
= 0.1,

𝑏
1
= −12, 𝑏

2
= −0.062,

𝑏
3
= −6.79

(0, 0, 0)

(±8.9676, ∓1.8808, −2.484)

(∓9.0944, ±1.8056, 3.327)

−12, −6.79, 0.5

−18.6583, 0.2611 ± 2.9646𝑖

−18.8001, 0.1519 ± 3.4702𝑖

liu
𝑎 = 5, 𝑏 = −10

𝑐 = −3.4, 𝑑
1
= −1

𝑑
2
= 𝑑
3
= 1

(0, 0, 0)

(√34, ±√17, ±5√2)

(−√34, ±√17, ∓5√2)

−10, −3.4, 5
−12.6496, 2.1248 ± 7.0172𝑖

CL 𝑎 = 5, 𝑏 = 10, 𝑐 = 3.8

(0, 0, 0)

(±√114, ±√57,√50)

(±√114, ∓√57, −√50)

−10, −3.8, 5
−13.177, 2.1885 ± 7.2723𝑖

NL 𝑎 = 0.4, 𝑏 = 0.175

(0, 0, 0)

(∓0.0705, ±0.2737, −0.1103)

(±0.5352, ±0.0689, 0.2107)

0.175, −0.4 ± 𝑖

−0.7997, 0.0874 ± 0.8754𝑖

−0.803, 0.089 ± 1.2118𝑖

Then, through a rigorously mathematical calculation, a set of
equations with respect to the free parameters is

∞

∑

𝑘=1

𝑎
𝑘
=

∞

∑

𝑘=1

𝑎


𝑘1
= 𝑥 (0) ,

∞

∑

𝑘=1

𝑏
𝑘
=

∞

∑

𝑘=1

𝑏


𝑘1
= 𝑦 (0) ,

∞

∑

𝑘=1

𝑐
𝑘
=

∞

∑

𝑘=1

𝑐


𝑘1
= 𝑧 (0) ,

(6)

where 𝑥(0), 𝑦(0), and 𝑧(0) are initial values for the homo-
clinic orbit. In general, it is difficult to find an analytic
solution of the infinite series form (6). Here, we first truncate
infinite terms of (6). Then, we numerically solve algebraic
equations of the truncated form by applying a numerical
method, for example, Newton’smethod. Once these estimates
of the unknown parameters are obtained, the approximate
expression of the homoclinic orbit with the form of (4) and
(5) is found. Moreover, the more the truncated terms are,
the better the approximation is. On the other hand, we can
show the uniform convergence of the series expansions (4)

and (5) of the homoclinic orbit.The detailed discussions refer
to [15]. Next we consider system where the eigenvalues of
the Jacobian 𝐴 = 𝐷𝑓, evaluated at equilibrium point, satisfy
c > 0, 𝜌 < 0. For 𝑡 > 0, the homoclinic orbit still has the
expansion form (4), whereas for 𝑡 < 0, it has the following
form:

𝑥 (𝑡) =

+∞

∑

𝑘=1

𝑎
𝑘
(𝑡 + 1)

−𝑘
, 𝑦 (𝑡) =

+∞

∑

𝑘=1

𝑏
𝑘
(𝑡 + 1)

−𝑘
,

𝑧 (𝑡) =

+∞

∑

𝑘=1

𝑐
𝑘
(𝑡 + 1)

−𝑘
.

(7)

The treatment of the left questions for this case is completely
similar to that for the first kind of system and thus is
omitted here. For the saddle-focus form, we consider the
Sprott(h) system. The one-dimensional degenerate example
is the system constructed by us in [13]. The corresponding
numerical results refer to [15].
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4. Listing All Found Chaotic Systems of
Ši’lnikov Type

In this section, we list all well-known 3D autonomous
quadratic chaotic systems and classify them according to the
Ši’lnikov theorems (including the extended versions). First,
since the Nose-Hoover system has no equilibrium point, it
belongs to the fourth type. Secondly, the systems with one
equilibrium point refer to Table 1.

The equilibrium point of all the systems in Table 1
belongs to saddle-focus form.The eigenvalues of the Jacobian
evaluated at the equilibrium point of these systems all satisfy
the algebraic condition, and their chaotic attractors are one-
scroll except the Hadley circulation (Hc) system. So they
belong to the first type. The Hc system belongs to the fourth
type.Thirdly, for the systems with two equilibriumpoints, see
Table 2.

In Table 2, the Sprott(r) system, the Sprott(p) system, and
the Rössler Toroidal who have one-scroll attractors belong
to the first type. The Burke-Shaw system has a two-scroll
attractor, so it belongs to the second type. The left systems
who do not satisfy the algebraic condition belong to the
fourth type. Finally, for the systems with three and more
equilibrium points, see Table 3.

In Table 3, the systems with three equilibrium points who
have two-scroll attractors all belong to the second type. The
Zhou (b) system who do not satisfy the algebraic condition
belongs to the fourth type. The Zhou (d) system, the Chen-
Lee system, the Newton-Leipnik system, and the Liu system
all belong to the second type.

5. Conclusion and Comments

We have established two extended versions of the Ši’lnikov
homoclinic theorem. According to the Ši’lnikov criteria, all
well-known 3D autonomous quadratic chaotic systems have
been classified. Here, we should point out that there exist
3D autonomous nonlinear systems with eigenvalues of the
corresponding Jacobian matrices calculated at the equilibria
of interest not belonging to two types considered in this
paper, for example, for those whose Jacobians have one
zero eigenvalue and two conjugated purely-imaginary roots
(three-dimensional degenerate case). How to expand the
Ši’lnikov homoclinic theorem to this degenerate case will be
our next tasks. Moreover, how to determine the homoclinic
orbits for the two-or three-dimensional degenerate cases will
also be further investigated in the future. Finally, it should
be pointed out that the essential significance of the extension
of the Ši’lnikov theorems is in helping to classify chaos in
3D autonomous polynomial systems, an interesting and yet
challenging and long-standing problem in the mathematical
chaos theory.
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