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Cellular manufacturing (CM) is a production approach directed towards reducing costs, as well as increasing system’s flexibility in
today’s small-to-medium lot production environment.Many structural and operational issues should be considered for a successful
CM design and implementation such as cell formation (CF), production planning, and facility layout. Most researchers have
addressed these issues sequentially or independently, instead of jointly optimizing a combination of these issues. In order to attain
better results to ensure that the system will be capable of remaining efficient in unknown future situations, these issues should be
addressed simultaneously. In this paper, a mathematical model is developed using an integrated approach for production planning
and cell formation problems in a CM. A set of numerical examples are provided from existing the literature in order to test and
illustrate the proposed model. In order to evaluate and verify the performance of the proposed model, it is compared with a well-
known cell formation methods (rank order clustering and direct clustering analysis), using group capability index (GCI) measure.
The results and comparisons indicate that the proposed model has a significantly higher and satisfactory performance and it is
reliable for the design and the analysis of CM systems.

1. Introduction

Cellular manufacturing (CM) is a production system that
involves processing a collection of similar parts (part fam-
ilies) on dedicated cluster of machines or manufacturing
processes (cells) [1]. CM is an application of group technology
(GT)which offers the advantages of both job shops (flexibility
in producing a wide variety of products) and flow lines
(efficient flow and high production rate) [2]. The advantages
of CM include simplifiedmaterial flows and reducedmaterial
handling cost, reduced production time, reduction in setup
time, reduced production cost, reduction in inventory and
work-in-process (WIP) inventories, reduction in scrap and
waste, decentralization of responsibilities, and saving manu-
facturing space [3–6]. The design and implementation of an
effective CM system involves many issues such as machine-
part cell formation (CF), production planning, layout design,
and scheduling.

In the design of a CM system, similar parts are grouped
into families and associated machines into groups so that
one or more part families can be processed within a single
machine group [7]. The process of determining part families
and machine groups in order to form the manufacturing
cells is referred to as the CF problem. This problem may be
solved by using different methods and considering different
manufacturing features. The CF problems can be classified
into binary and comprehensive problems depending on
whether or not processing times and the machine capacities
are considered.

The binary problem arises if the part demands are
unknown when the CM system is being developed [8–10].
If the part demand can be accurately predicted, processing
time and machine capacities have to be included in the
analysis. This gives rise to comprehensive problems [11]. In
addition, the comprehensive models can be classified con-
sidering the production requirements. They are static versus
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dynamic production requirements and deterministic versus
stochastic production requirements [12]. A static production
requirement implies a single period when designing a CM
system. It assumes that product mix and part demand are
constant for the entire planning horizon. The product mix
refers to a set of part-types to be produced at each period,
and the part demand is the quantity of each part-type to be
produced [13]. Product mix and demand in such cases can
be deterministic or stochastic. For static and deterministic
production requirements, there is only one possible set of
product mix and demand which are known [14, 15]. In con-
trast, static and stochastic production requirements have a set
of possible product mixes and demands to occur; each has its
probability of occurrence [16]. However, dynamic production
requirements imply multiple periods when designing a CM
system. In the dynamic environment, the entire planning
horizon is divided into multiple smaller periods, and each
period has different product mix and part demand. Mean-
while, as mentioned earlier, production requirements can
be deterministic or stochastic in each period. For dynamic
and deterministic production requirements, productmix and
demand in each period are known [17, 18]. For dynamic
and stochastic production requirements, the possible product
mixes and demands in each period are known with certain
probabilities [19, 20].

In today’s world of rapidly changing product demand,
small internet orders, tight delivery schedules, high compe-
tition, and high service level requirements, it will be increas-
ingly difficult to maintain good operational performance
over the time. In such a case, managing the production
resources and balancing them between successive time peri-
ods with the aim of minimizing the production costs is
known as “production planning” [21]. Based on the literature,
numerous mathematical models and solution methods have
been developed to solve the existing problems in general
manufacturing or service industries [22, 23]. However, in
the recent researches, critical manufacturing features such
as production flexibility and manufacturing cell formations
have received considerable attention in developing produc-
tion planning models. Furthermore, in order to achieve
more practical results, the production planning features such
as machine capacity, machine cost, operations sequence,
inventories holding, backorders, and subcontracting can be
considered in order to form the manufacturing cells. In
this regard, integrated approaches should be pursued in
manufacturing system analysis, since different aspects of the
system are interrelated in many ways [24]. Integrated system
approaches can minimize the possibility of certain important
aspects of the system being neglected, while other issues
are being studied [25]. In general, integrating the concepts
of the CM system design and production planning is a
fundamental requirement formodeling and simulating of the
realmanufacturing systems.This integrated concept has been
discussed, for example, in Chen [25], Safaei and Tavakkoli-
Moghaddam [21], Ah kioon et al. [26], and Mahdavi et al.
[27].

Although each of these researches has covered someof the
features problem, or utilize special method to solve problems
and their efficiencies are different too. For instance, Chen

[25] solved problems with a decomposition-based heuristic
algorithm or he considered unit cost to move for every
part-type in batches between cells; however, it seems not
practical enough. Other example is a Safaei and Tavakkoli-
Moghaddam [21], although this is a very comprehensive
dynamic integrated model and utilizes mathematical linear
programming to solve problems, but for material handling
cost feature, this research does not take into account different
travel distance between cells. Ah kioon et al., [26] research
is also a very well-integrated model too, but it does not take
into consideration some issues that are addressed within this
research paper such as machine set-up cost (with respect to
the machine set-up cost for each operation) or they consider
intercell material handling cost feature, but they do not
take into account different travel distance between cells too.
Mahdavi et al., [27] or other called researches proposed
their integrated model and solved numerical examples by
their models, but they do not try to evaluate and verify
performance of their models, although we try to evaluate and
verify the CF section performance of the proposed model
within this research.

This study aims at introducing a comprehensive dynamic
deterministic integrated model to offer an optimal solution
for grouping the part families and machine cells, as well
as an optimal production plan for minimizing inventory
and machine set-up costs. The aim of proposed model is to
minimizemachine operating cost, intercell material handling
cost (with respect to the different travel distances between
cells), machine operating cost, finished-goods inventory cost,
and machine set-up cost (with respect to the machine set
up cost for each operation). Our model considers cell size
limitation, machine duplication in one period time, and
operation sequence features too.

The rest of this paper is organized as follows. Detailed
description of the problem and the proposed model are
presented in Section 2. Some numerical examples are pre-
sented in Section 3, in order to illustrate the proposedmodel.
Discussions to verify the model are presented in Section 4.
Summary and conclusions of the research are discussed in
Section 5.

2. Mathematical Model Development

2.1. ProblemDescription. In this section, amixed integer non-
linear programming model is developed to simultaneously
solve the cell formation and production planning problems
in CM systems. The objective function of this model is to
minimize intercell material handling cost, machine operating
cost, production set-up cost for every operation in every
part, and part inventory cost. A manufacturing system which
includes a number ofmachines to process different part-types
is considered. Each part-type has a number of operations,
and that must be processed as numbered respectively, in
order to take the sequence of operations into account. The
manufacturing system is considered in a number of time
periods 𝑡, where 𝑡 = 1, 2, . . . , 𝑇, with 𝑇 > 1. One time period
could be a day, a week, or a month. Demands for different
part-types are assumed to be known and deterministic.
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Demands may be satisfied from production in the same time
period or from inventory. Back orders and shortage cost
are not considered in this study. This model assumes that
there is a single process plan for each part-type. Since both
the quantity of different part-types to be processed by the
machines and the formation of the machine cells are decision
variables, nonlinear terms are presented in the objective
function of the mixed integer programming model.

2.2. Notations

Indices:

𝑡: time period index: 𝑡 = 1, . . . , 𝑇.
𝑖: part-type index: 𝑖 = 1, . . . , 𝐼(𝑡).
𝑗: index of operations of part-type 𝑖 : 𝑗 = 1, . . . , 𝐽

𝑖
.

𝑙: cell index: 𝑙 = 1, . . . , 𝐿.
𝑘: machine index: 𝑘 = 1, . . . , 𝐾.

Coefficients and Parameters:

𝐻
𝑖
(𝑡): unit inventory holding cost of part-type 𝑖 for

time period 𝑡.
𝐷
𝑖
(𝑡): known demand of part-type 𝑖 for time period 𝑡.

𝑀
𝑘
(𝑡): unit machine operating cost for machine-type

𝑘 in time period 𝑡.
𝑆
𝑖[𝑗𝑘]

: set-up cost to performing operation 𝑗 on
machine 𝑘 from part-type 𝑖.
𝑅
𝑙𝑙
 : cost of moving a unit of part-type from cell 𝑙 to

cell 𝑙.
𝐿𝐵
𝑙
: minimum number of machines in cell 𝑙.

𝑈𝐵
𝑙
: maximum number of machines in cell 𝑙.

Binary Decision Variables:

𝛽
𝑖 (𝑡) = {

1, if part type 𝑖 is processed in period 𝑡,

0, otherwise,

𝑛
𝑘𝑙 (𝑡) =

{{

{{

{

1, if one unit of type 𝑘 machine is placed
in cell 𝑙 at time 𝑡,

0, otherwise,

𝛿
𝑖[𝑗𝑘]𝑙 (𝑡) =

{{{{

{{{{

{

1, if operation 𝑗 of part-type 𝑖 to be
processed by machine type 𝑘, is done in
cell 𝑙 during time 𝑡,

0, otherwise.
(1)

Subscripts 𝑖[𝑗𝑘] of variable 𝛿
𝑖[𝑗𝑘]𝑙

(𝑡) indicates that machine
𝑘 is required to process operation 𝑗 of part-type 𝑖. This
information is known from the given part process plan.
Continuous Decision Variables:

𝑋
𝑖
(𝑡): amount of part-type 𝑖 to be processed in time

period 𝑡,

𝑉
𝑖
(𝑡): amount of part-type 𝑖 in inventory at the end of

time period 𝑡.

2.3.MathematicalModels Development. With the given nota-
tions, the proposed model is formulated as follows:

Minimize 𝑍

=

𝑇

∑

𝑡=1

𝐾

∑

𝑘=1

𝑀
𝑘 (𝑡) ⋅

𝐿

∑

𝑙=1

𝑛
𝑘𝑙 (𝑡)

+

𝑇

∑

𝑡=1

𝐼(𝑡)

∑

𝑖=1

𝑋
𝑖 (𝑡)

⋅

𝑗
𝑖
−1

∑

𝑗=1

𝐾
𝑗𝑖

∑

𝑘=1

𝐾

∑

𝑘

=1

𝐿

∑

𝑙=1

𝐿

∑

𝑙

=1

𝑅
𝑙𝑙
𝛿
𝑖[𝑗𝑘]𝑙 (𝑡) 𝛿𝑖[(𝑗+1)𝑘]𝑙 (𝑡)

+

𝑇−1

∑

𝑡=1

𝐼(𝑡)

∑

𝑖=1

𝐻
𝑖 (𝑡) 𝑉𝑖 (𝑡) +

𝑇

∑

𝑡=1

𝐿

∑

𝑙=1

𝐼(𝑡)

∑

𝑖=1

𝐽
𝑖

∑

𝑗=1

𝐾

∑

𝑘=1

𝑆
𝑖[𝑗𝑘]

𝛿
𝑖[𝑗𝑘]𝑙 (𝑡) .

(2)

Subject to:

𝐿

∑

𝑙=1

𝛿
𝑖[𝑗𝑘]𝑙 (𝑡) = 𝛽

𝑖 (𝑡) , 𝑖 = 1, . . . , 𝐼, 𝑗 = 1, . . . , 𝐽
𝑖
,

𝑘 = 1, . . . , 𝐾
𝑗𝑖
∀ (𝑡) ,

(3)

𝐼

∑

𝑖=1

𝐽
𝑖

∑

𝑗=1

𝛿
𝑖[𝑗𝑘]𝑙 (𝑡) ≥ 𝑛

𝑘𝑙 (𝑡) , 𝑖 = 1, . . . , 𝐼, 𝑗 = 1, . . . 𝐽
𝑖
,

𝑘 = 1, . . . , 𝐾, 𝑙 = 1, . . . , 𝐿 ∀ (𝑡) ,

(4)

𝛿
𝑖[𝑗𝑘]𝑙 (𝑡) ≤ 𝑛

𝑘𝑙 (𝑡) , 𝑘 = 1, . . . , 𝐾, 𝑙 = 1, . . . , 𝐿 ∀ (𝑡) , (5)

𝐿𝐵
𝑙
≤

𝐾

∑

𝑘=1

𝑛
𝑘𝑙 (𝑡) ≤ 𝑈𝐵

𝑙
, 𝑘 = 1, . . . , 𝐾 ∀ (𝑡) , (6)

𝑣
𝑖 (𝑡 + 1) = 𝑣

𝑖 (𝑡) + 𝑋𝑖 (𝑡) − 𝐷𝑖 (𝑡) , 𝑖 = 1, . . . , 𝐼,

𝑡 = 1, . . . , 𝑇 − 1,

(7)

𝑇

∑

𝑡=1

𝑋
𝑖 (𝑡) =

𝑇

∑

𝑡=1

𝐷
𝑖 (𝑡) , 𝑖 = 1, 2, . . . , 𝐼, (8)

𝛽
𝑖 (𝑡) = {

1, if 𝑋
𝑖 (𝑡) > 0

0, if 𝑋
𝑖 (𝑡) = 0,

𝑖 = 1, 2, . . . , 𝐼, ∀ (𝑡) , (9)

𝑋
𝑖 (𝑡) ≥ 0, 𝑣

𝑖 (𝑡) ≥ 0, 𝛿
𝑖[𝑗𝑘]𝑙 (𝑡) , 𝛽

𝑖 (𝑡) ,

𝑛
𝑘𝑙 (𝑡) = 0, 1, ∀𝑖, 𝑗, 𝑙, 𝑙


, 𝑘, 𝑘

, 𝑡.

(10)

Theobjective function of the proposedmodel has been shown
in (2), and it consists of four terms. The first term of the
objective function is themachine operating cost. It is assumed
that the machines can be included when they are needed and
can be removed from the system when they are not required.
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Table 1: Part processing demand and unit inventory cost for Example 1.

Part-type
1 2 3 4 5 6 7 8 9 10

Unit inventory cost
1.0 1.5 0.5 1.0 1.2 0.5 2.5 1.2 1.5 0.8

Time period, 𝑡 Part processing demand
1 22 20 18 12 23 24 22 30 19 25
2 28 16 20 24 30 22 18 28 18 14
3 36 22 30 39 32 26 16 26 33 22

Table 2: Partial input data for Example 1.

Machine
number

Machine
cost

Part-type
1 2 3 4 5 6 7 8 9 10

Part operation requirement (upper number) and refixturing cost (lower number)

1 15 2 2 1
15 11 8

2 10 1 1 2 2
10 12 8 9

3 20 2 2 1 1 2
18 5 12 16 7

4 15 3 2 2 2
9 12 7 4

5 12 1
14

6 15 1 3
6 10

7 16 1 1 1
15 11 21

Table 3: Intercell material handling cost for Example 1.

Cell number 1 2 3
1 0.0 1.0 1.4
2 1.0 0.0 1.2
3 1.4 1.2 0.0

The second term of the objective function is the intercell
material handling cost. This cost function is similar to those
in Atmani et al. [28] andChen [25]. In a typical cell formation
problem, the number of part-type 𝑖 to be produced in time 𝑡,
𝑋
𝑖
(𝑡), is usually considered constant. In that case, thematerial

handling cost function will be linear. However, in this model,
the term of the material handling cost is non-linear, because
it has been assumed that the distances between each pair of
cells are different (part-type 𝑖 after completion of its operation
𝑗 by machine 𝑘 in cell 𝑙 moves to machine 𝑘 for its next
operation, 𝑗 + 1, in cell 𝑙). It is further assumed that the
specifications of different part-types (e.g., size or volume of
different part-types) do not influence the material handling
cost. The third term is the finished goods inventory cost, and
the last termof the objective function is the system set-up cost

with consideration of set-up cost for each operation in each
part-type.Thefirst two cost items in the objective function are
related to forming manufacturing cells, while the latter two
cost items are related to production and inventory control.

Constraints of the model consist of equations and
inequalities (3) to (10). Equation (3) is to ensure that if
operation 𝑗 of part-type 𝑖 will be processed by machine 𝑘
in one of the cells in time period 𝑡, then the corresponding
binary variable for system set-up must be 1. Inequality (4)
ensures that once machine 𝑘 is assigned to cell 𝑙 in time
period 𝑡, then the operations of part-typesmay be assigned to
that machine. Inequality (5) ensures that sufficient machine
capacity is assigned to each cell in time period t. Inequality
(6) consists of two constraints for the upper and lower limits
to the number of machines in each cell. The upper limit
for the number of machines is due to the limitations of
the physical space. Furthermore, there should be at least
one machine in each cell, otherwise the cell will disappear.
Equation (7) provides the relationship of storage levels at
different time periods. In fact, in planning the production,
demand of part-type 𝑖 at time 𝑡 should be deducted from the
finished parts in storage at time 𝑡. Equation (8) implicates
that the production in the entire planning horizon definitely
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Table 4: A solution matrix in 𝑡 = 1 for Example 1.

Cell number Machine number Part-type
1 2 3 5 8 10 6 7 4 9

1

1 2 1
2 1 1 2 2
3 2 2 1 1 2
4 3
6 1 3

2 1 2
5 1

3 4 2 2 2
7 1 1 1

Table 5: Cell formation of Example 1.

Time period, 𝑡 Cell 1 Cell 2 Cell 3
1 1, 2, 3, 4, 6 1, 5 4, 7
2 2, 3 7 4
3 1, 2 4, 7 2, 3

meets the total demand. Equation (9) shows the relationship
between the set-up variable 𝛽

𝑖
(𝑡) and the part processing

quantity 𝑋
𝑖
(𝑡). Equation (10) imposes nonnegativity and

integrality, respectively.

2.4. Model Linearization. The proposed model is a nonlinear
mixed-integer programming model because of the existing
two nonlinear parts including the second term of objective
function (see (2)) and the seventh constraint (see (9)). In
order to find a global solution, the nonlinear model should
be transformed into the linear form. Hence, the linearization
phase is implemented for these two parts. Consider the
second term of the objective function:

𝑇

∑

𝑡=1

𝐼(𝑡)

∑

𝑖=1

𝑋
𝑖 (𝑡) ⋅

𝑗
𝑖
−1

∑

𝑗=1

𝐾
𝑗𝑖

∑

𝑘=1

𝐾
𝑗𝑖

∑

𝑘

=1

𝐿

∑

𝑙=1

𝐿

∑

𝑙

=𝐿

𝑅
𝑙𝑙
𝛿
𝑖[𝑗𝑘]𝑙 (𝑡) 𝛿𝑖[(𝑗+1)𝑘]𝑙 (𝑡) .

(11)

It can be modified as follows:

𝑇

∑

𝑡=1

𝐼(𝑡)

∑

𝑖=1

𝐽
𝑖

∑

𝑗=1

𝐾

∑

𝑘=1

𝐾

∑

𝑘

=1

𝐿

∑

𝑙=1

𝐿

∑

𝐿

=1

𝑅
𝑙𝑙
𝑋
𝑖
(𝑡) 𝛿
𝑖[𝑗𝑘]𝑙

(𝑡) 𝛿𝑖[(𝑗+1)𝑘]𝑙 (𝑡) ,

𝑇

∑

𝑡=1

𝐼(𝑡)

∑

𝑖=1

𝑗
𝑖
−1

∑

𝑗=1

𝐾

∑

𝑘=1

𝐾

∑

𝑘

=1

𝐿

∑

𝑙=1

𝐿

∑

𝐿

=1

𝑅
𝑙𝑙
 [𝑋
𝑖 (𝑡) (𝛿𝑖[𝑗𝑘]𝑙 (𝑡) 𝛿𝑖[(𝑗+1)𝑘]𝑙 (𝑡))] .

(12)

In order to linearize the previous expression, let us assume
that

𝑌
𝑖[𝑗𝑘]𝑙𝑘


𝑙
 (𝑡) = 𝛿

𝑖[𝑗𝑘]𝑙 (𝑡) 𝛿𝑖[(𝑗+1)𝑘]𝑙
(𝑡) , (13)

𝑊
𝑖[𝑗𝑘]𝑙𝑘


𝑙
 (𝑡) = 𝑋

𝑖 (𝑡) 𝑌𝑖[𝑗𝑘]𝑙𝑘𝑙 (𝑡) . (14)

These variables imply that

𝑌
𝑖[𝑗𝑘]𝑙𝑘


𝑙
 (𝑡) =

{{{{{{{

{{{{{{{

{

1, if part-type 𝑖 moves to machine 𝑘 in
cell 𝑙

 to perform operation (𝑗 + 1)

after performing operation 𝑗 on
machine 𝑘 in cell 𝑙,

0, otherwise,

𝑊
𝑖[𝑗𝑘]𝑙𝑘


𝑙
 (𝑡) = {

𝑋
𝑖 (𝑡) , if 𝑌

𝑖[𝑗𝑘]𝑙𝑘

𝑙
 (𝑡) = 1,

0, if 𝑌
𝑖[𝑗𝑘]𝑙𝑘


𝑙
 (𝑡) = 0.

(15)

Finally, the second term of objective function can be replaced
by the following linear expression:

𝑇

∑

𝑡=1

𝐼(𝑡)

∑

𝑖=1

𝐽
𝑖
−1

∑

𝑗=1

𝐾

∑

𝑘=1

𝐾

∑

𝑘

=1

𝐿

∑

𝑙=1

𝐿

∑

𝐿

=1

𝑅
𝑙𝑙
𝑊
𝑖[𝑗𝑘]𝑙𝑘


𝑙
 (𝑡) . (16)

Furthermore, the following constraints should be added to
this model:

𝛿
𝑖[𝑗𝑘]𝑙 (𝑡) + 𝛿𝑖[(𝑗+1)𝑘]𝑙 (𝑡) − 2𝑌𝑖[𝑗𝑘]𝑙𝑘𝑙 (𝑡) ≥ 0, (17)

𝛿
𝑖[𝑗𝑘]𝑙 (𝑡) + 𝛿𝑖[(𝑗+1)𝑘]𝑙 (𝑡) − 𝑌𝑖[𝑗𝑘]𝑙𝑘𝑙 (𝑡) ≤ 1, (18)

𝑊
𝑖[𝑗𝑘]𝑙𝑘


𝑙
 (𝑡) ≥ 𝑋

𝑖 (𝑡) + 𝑀𝑌
𝑖[𝑗𝑘]𝑙𝑘


𝑙
 (𝑡) − 𝑀, (19)

𝑊
𝑖[𝑗𝑘]𝑙𝑘


𝑙
 (𝑡) ≤ 𝑋

𝑖 (𝑡) , (20)

𝑊
𝑖[𝑗𝑘]𝑙𝑘


𝑙
 (𝑡) ≤ 𝑀𝑌

𝑖[𝑗𝑘]𝑙𝑘

𝑙
 (𝑡) . (21)

Inequalities (17) and (18) imply that 𝑌
𝑖[𝑗𝑘]𝑙𝑘


𝑙
(𝑡) is equal to 1,

if one unit of part-type 𝑖 is moved to machine 𝑘 in cell 𝑙 for
operation (𝑗 + 1) after performing operation 𝑗 on machine 𝑘
in cell 𝑙. Inequalities (19) and (20) enforce 𝑊

𝑖[𝑗𝑘]𝑙𝑘

𝑙
(𝑡) to be

𝑋
𝑖
(𝑡) when 𝑌

[𝑗𝑘]𝑙𝑘

𝑙

𝑖
(𝑡) is equal to 1. The last constraint (21)

enforces𝑊
𝑖[𝑗𝑘]𝑙𝑘


𝑙
(𝑡) to be 0, when 𝑌

[𝑗𝑘]𝑙𝑘

𝑙

𝑖
(𝑡) is equal to 0.

For (9) which should be linearized, the conditional 0-1
requirement for variable 𝛽

𝑖
(𝑡) can be simply converted to the

following set of constraints:

𝛽
𝑖 (𝑡) ≤ 𝑋

𝑖 (𝑡) , (22)

𝑀𝛽
𝑖 (𝑡) ≥ 𝑋

𝑖 (𝑡) , (23)



6 Journal of Applied Mathematics

Table 6: Part processing sequence and batch size in Example 1.

Time period, 𝑡 Part-type
1 2 3 5 8 10 6 7 4 9

1 50 36 68 23 30 61 72 22 36 37
2 0 0 0 30 28 0 0 18 0 0
3 36 22 0 32 26 0 0 16 39 33

Table 7: Part processing demand and unit inventory cost for Example 2.

Part-type
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Unit inventory cost
70 140 120 135 190 56 40 104 145 80 85 90 150 60 45 67 130 65 95

𝑡 Part processing demand
1 500 800 1000 600 600 900 700 700 400 700 400 800 1000 900 900 500 0 700 600
2 900 500 500 700 500 600 600 0 600 700 500 700 800 900 800 600 800 800 600
3 500 800 600 100 1000 700 500 600 700 0 500 1000 800 600 1000 800 700 1000 500

where 𝛽
𝑖
(𝑡) are 0-1 variables and𝑀 is a large positive number.

One can easily verify that (22) serve the same purpose as (9)
in the model.

2.5. A SingleModel for Cell Formation Problem. Theproposed
model (see (2) to (10)) can be simplified through some
modifications in the formulation, in order to solve the
cell formation problem, without considering the production
planning issues. In this model, the variable 𝑋

𝑖
(𝑡) is equal

to 𝐷
𝑖
(𝑡). After linearization, the model can be expressed as

follows:

Minimize 𝑍 =

𝑇

∑

𝑡=1

𝐾

∑

𝑘=1

𝑀
𝑘 (𝑡) ⋅

𝐿

∑

𝑙=1

𝑛
𝑘𝑙 (𝑡)

+

𝑇

∑

𝑡=1

𝐼(𝑡)

∑

𝑖=1

𝐷
𝑖 (𝑡) ⋅

𝑗
𝑖
−1

∑

𝑗=1

𝐾

∑

𝑘=1

𝐾

∑

𝑘

=1

𝐿

∑

𝑙=1

𝐿

∑

𝑙

=𝐿

𝑅
𝑙𝑙


⋅ 𝑌
𝑖[𝑗𝑘]𝑙𝑘


𝑙
 (𝑡) .

(24)

Subject to

𝐿

∑

𝑙=1

𝛿
𝑖[𝑗𝑘]𝑙 (𝑡) = 1, 𝑖 = 1, . . . , 𝐼, 𝑗 = 1, . . . , 𝐽

𝑖
,

𝑘 = 1, . . . , 𝐾, ∀ (𝑡) ,

(25)

𝐼

∑

𝑖=1

𝐽
𝑖

∑

𝑗=1

𝛿
𝑖[𝑗𝑘]𝑙 (𝑡) − 𝑛𝑘𝑙 (𝑡) ≥ 0, 𝑖 = 1, . . . , 𝐼, 𝑗 = 1, . . . , 𝐽

𝑖
,

𝑘 = 1, . . . , 𝐾, 𝑙 = 1, . . . , 𝐿 ∀ (𝑡) ,

(26)

−𝛿
𝑖[𝑗𝑘]𝑙 (𝑡) + 𝑛𝑘𝑙 (𝑡) ≥ 0, 𝑖 = 1, . . . , 𝐼, 𝑗 = 1, . . . 𝐽

𝑖
,

𝑘 = 1, . . . , 𝐾, 𝑙 = 1, . . . , 𝐿, ∀ (𝑡) ,

(27)

𝐾

∑

𝑘=1

𝑛
𝑘𝑙 (𝑡) ≥ 𝐿𝐵

𝑙
, 𝑘 = 1, . . . , 𝐾, ∀ (𝑡) , (28)

𝐾

∑

𝑘=1

− 𝑛
𝑘𝑙 (𝑡) ≥ −𝑈𝐵

𝑙
, 𝑘 = 1, . . . , 𝐾, ∀ (𝑡) , (29)

𝛿
𝑖[𝑗𝑘]𝑙 (𝑡) + 𝛿𝑖[(𝑗+1)𝑘]𝑙 (𝑡) − 2𝑌𝑖[𝑗𝑘]𝑙𝑘𝑙 (𝑡) ≥ 0,

𝑖 = 1, . . . , 𝐼, 𝑗 = 1, . . . , 𝑗
𝑖
− 1, 𝑙, 𝑙


∈ 𝐿, 𝑘, 𝑘


∈ 𝐾, ∀ (𝑡) ,

(30)

−𝛿
𝑖[𝑗𝑘]𝑙 (𝑡) − 𝛿𝑖[(𝑗+1)𝑘]𝑙 (𝑡) + 𝑌

𝑖[𝑗𝑘]𝑙𝑘

𝑙
 (𝑡) ≥ −1,

𝑖 = 1, . . . , 𝐼, 𝑗 = 1, . . . , 𝑗
𝑖
− 1, 𝑙, 𝑙


∈ 𝐿, 𝑘, 𝑘


∈ 𝐾, ∀ (𝑡) ,

(31)

𝑛
𝑘𝑙 (𝑡) ≥ 0, 𝑊

𝑖[𝑗𝑘]𝑙𝑘

𝑙
 (𝑡) ≥ 0, 𝑌

𝑖[𝑗𝑘]𝑙𝑘

𝑙
 (𝑡) , 𝛿

𝑖[𝑗𝑘]𝑙 (𝑡) ,

(32)

𝑛
𝑘𝑙 (𝑡) = 0, 1 ∀𝑖, 𝑗, 𝑙, 𝑙


, 𝑘, 𝑘

, 𝑡. (33)

3. Numerical Examples

Two numerical examples with different structures from the
existing literature are presented in this section.The examples
have been solved using LINGO 12.0, a commercially available
optimization software, on a personal computer with Intel
Core2 Duo T6400 @ 2.00GHz processor and 4 GB RAM.

3.1. Example 1. The data used in this example has been
adapted from Chen [25] with slight modifications. In this
example, 3 cells, 3 time-periods, 10 part-types, and 7machine-
types are considered.The minimum and maximum numbers
of machines in each cell are 1 and 5, respectively. Detailed
production demand and unit inventory cost to hold each
part-type are presented in Table 1. Table 2 shows machine
operating costs, part-machine requirements, and refixturing
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Table 9: Intercell material handling cost for Example 2.

Cell number 1 2 3
1 0 55 44
2 55 0 25
3 44 25 0

costs. Machine operating costs are presented in the second
column of this table. For example, it will cost 15 units to
operate 1 unit of machine 1 in the system 10 units for machine
2, and so on. The 6th column of Table 2 shows that there
are 2 operations for processing part 4. It also indicates
that machine 4 and 7 are required to perform operations 2
and 1, respectively, for part 4. Meanwhile, intercell material
handling costs are shown in Table 3.

It is assumed that the specifications of time periods
do not influence the production-related costs which were
presented through Tables 1 to 3 (e.g, there is no inflation).
Considering the part-operation requirements in Table 2, in
order to reduce the number of variables and constraints, the
variables which can be fixed to zero were removed from the
model using sparse set membership filtering technique of
LINGO [29]. After fixing these variables, some constraints
became redundant and were subsequently removed. LINGO
solver defined the model of Example 1 as an integer linear
problem (MILP) and used the branch and bound (B-and-
B) method to solve it. The resulting formulation has a total
of 1089 variables and 1526 constraints. The solution was
achieved after 102 minutes of the solver running. The total
cost of this problem (which appears as objective value in
LINGO solution report) was 997.40 units. Table 4 shows the
solution matrix for the cell formation problem (machines
and part-types groups) in time-period 1. In addition, Table 5
presents machine cells for different time periods. The entries
in this table are the machine numbers.

FromTables 4 and 5, it can be observed thatmultiple units
of the same machine can be used in different cells. However,
the usage of more than one unit of each machine-type in the
same cell in neither necessary nor economical, since there is
no machine capacity constraint in the model. For example,
when t = 1, there are 2 units of machine-type 1 in cells 1 and 2,
and 2 units ofmachine-type 4 in cells 1 and 3. Table 6 presents
the solution of production planning problem. It shows the
times and amounts of production to satisfy demands of all
time periods. The sequence of parts in Table 6 the is same as
that in the solution matrix for t = 1 (Table 4). From Tables 2,
5 and 6, it can be observed that, for example, 22 units of part-
type 7 processed in t = 1 will flow from cell 3 to cell 1 to be
processed by machines 7 and 4, respectively.

3.2. Example 2. The data set of this example have been
used from Mungwattana [12] with little modifications. In
this example, 3 cells, 3 time periods, 19 part-types, and 12
machine-types are considered.Theminimum andmaximum
numbers of machines in each cell are 3 and 9, respectively.
Production demands for 19 part-types in 3 time-periods
and unit inventory cost to hold each part-type are shown

in Table 7. Table 8 shows machine operating costs, part-
machine requirements, and refixturing costs. In addition,
intercell material handling costs are presented in Table 9.

The linear model of Example 2 consists of 3015 variables
(including 849 integer variables) and 4421 constraints. The
solver was interrupted by the authors, since it was unable
to obtain the results after almost 70 hours of running. It is
due to increasing the number of variables and constraints in
comparison with Example 1.

However, this example can be solved by the single cell
formation model which was presented in Section 2.5. In this
case, under the single model for the cell formation and with
one time period, the model includes 663 variables and 727
constraints. The solver obtained the results after almost 6
minutes of running and objective function value was 19335.
Table 10 shows the solutionmatrix of Example 2 (for one time
period).

4. Performance Comparison

Several different CF problem-solving methodologies have
been proposed in the literature. Likewise, various perfor-
mance measures have been suggested in order to evaluate
and compare the efficiency of these methodologies. Hsu [30]
proposed the group capability index (GCI) as a measure of
goodness and claimed that this measure maybe is more con-
sistent in predicting the suitability of a manufacturing system
for CM. GCI simultaneously considers production volume
and processing time of operations factors and excludes voids
(“zero” entries) from the calculation of goodness. GCI is
defined by

GCI = 1 −
𝑒o
𝑒
, (34)

where 𝑒o is the number of exceptional elements in the
machine-partmatrix and 𝑒 is the total number of “one” entries
in the machine-component matrix.

Therefore, in this section, the CF results of the proposed
model are compared with the results of rank order clustering
(ROC) method [31] and direct clustering analysis (DCA)
[32] methods, by means of GCI measure. Table 11 shows
this comparison based on the results presented in Tables
4 and 10 and also the results of ROC and DCA methods.
For the sake of concise presentation, those steps required to
solve the examples with ROC and DCA methods are not
described in this paper. From Table 11, it is observed that
the proposed model represents significant improvements in
GCI, in comparison with the ROC and DCA methods for
Examples 1 and 2.

5. Conclusions

In this paper, a comprehensive dynamic deterministic inte-
grated mathematical model was developed to simultane-
ously solve the production planning and cell formation
problems in CM systems. The overall objective function of
the proposed model minimizes the intercell material han-
dlings (with respect to the different travel distances between
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Table 10: A solution matrix for Example 2.

Cell number Machine number Part-type
6 11 12 14 1 4 5 7 15 19 2 3 8 9 10 13 16 17 18

1
2 1 3 1 2
3 3 1 3 3 2
11 2 2 1 4 3

2
4 1 1 1 2 2 2
8 2 1 1 2 3 3
12 2 2 1 2 2

3

1 3 4 1
5 5 3 3
6 2 3 3 3 1
7 2 1 1 1
9 4 3 4 2 1 1
10 2 2 1 2 1

Table 11: CF results of the proposed model versus the results of ROC method.

Example number Method 𝑒
0

𝑒 GCI

1
ROC 6 22 72.72%
DCA 13 22 40.90%

Proposed model 0 22 100%

2
ROC 33 57 42.11%
DCA 33 57 42.11%

Proposed model 20 57 64.91%

cells), machine operating cost finished goods inventory, and
machine set-up costs (considering themachine set up cost for
each operation) for CM systems.The constraints of proposed
model define the relationships between variables, such as
the relationship of storage levels at different time periods,
and upper machine and minimum machine limits for each
cell. Some numerical examples with different sizes from
the existing literature were considered to test and illustrate
the proposed model. The examples were solved by means
of LINGO optimization software. In order to evaluate the
performance of the proposed model, it was compared with
the rank order clustering (ROC)method and direct clustering
analysis (DCA) method, using group capability index (GCI)
measure. It was shown that the proposed CF model has a
higher and satisfactory performance.

The proposed mathematical model offers the advantage
of solving CF problem with high performance, while it
simultaneously considers the production planning issues
with sequence data. However, it can be observed that the
proposed model is not suitable for solving the large scale
problems. Hence, the use of heuristic methods to deal with
such problems deserves further study.
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