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An analysis is carried out to study the steady two-dimensional stagnation-point flow of an incompressible viscous fluid towards
a stretching vertical sheet. It is assumed that the sheet is stretched nonlinearly, with prescribed surface heat flux. This problem
is governed by three parameters: buoyancy, velocity exponent, and velocity ratio. Both assisting and opposing buoyant flows are
considered.The governing partial differential equations are transformed into a system of ordinary differential equations and solved
numerically by finite difference Keller-box method. The flow and heat transfer characteristics for different values of the governing
parameters are analyzed and discussed. Dual solutions are found in the opposing buoyant flows, while the solution is unique for
the assisting buoyant flows.

1. Introduction

The study of fluid flow and heat transfer due to a stretching
surface has significant application in the industrial processes,
for example, in polymer sheet extrusion from a die, drawing
of plastic films, and manufacturing of glass fiber. The quality
of the final product greatly depends on the heat transfer rate at
the stretching surface as explained by Karwe and Jaluria [1, 2].

Different from the flow induced by a stretching horizontal
plate (see Crane [3], Weidman and Magyari [4], and Weid-
man and Ali [5]), the effect of the buoyancy force could not
be neglected for the vertical plate.There are several works that
reported the flow and heat transfer characteristics that are
brought about by the buoyancy force [6–11]. Ramachandran
et al. [12] studied the effect of buoyancy force on the
stagnation point flows past a vertically heated surface at
rest and found that dual solutions exist in the buoyancy
opposing flow region. In the present paper, in addition to the
flow under the influence of buoyancy force as discussed by
Ramachandran et al. [12], we discuss the consequent flow and
heat transfer characteristics that are also brought about by

the stretching sheet with power-law velocity variation. It is
worth mentioning that the problems of the stagnation-point
flow toward a stretching sheet have been considered by many
authors [13–27], by considering various flow configurations
as well as surface heating conditions.

2. Problem Formulation

Consider amixed convection stagnation-point flow towards a
vertical nonlinearly stretching sheet immersed in an incom-
pressible viscous fluid, as shown in Figure 1. The Cartesian
coordinates (𝑥, 𝑦) are taken such that the 𝑥-axis is measured
along the sheet oriented in the upwards or downwards
direction and the 𝑦-axis is normal to it. It is assumed that
the wall stretching velocity is given by 𝑈

𝑤
= 𝑎𝑥
𝑚 and the

far field inviscid velocity distribution in the neighborhood
of the stagnation point (0, 0) is given by 𝑈

∞
(𝑥) = 𝑏𝑥

𝑚,
𝑉
∞
(𝑦) = −𝑏𝑦

𝑚. The surface heat flux is in the form of
𝑞
𝑤
(𝑥) = 𝑐𝑥

(5𝑚−3)/2 (see Merkin and Mahmood [28]), where
𝑎, 𝑏, 𝑐, and 𝑚 are constants. This 𝑞

𝑤
(𝑥) ensured that the
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Figure 1: Physical model and coordinate system.
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Figure 2: Variation of the skin friction coefficient 𝑓(0) with 𝜆 for
various values of𝑚 when 𝜀 = 0.5.
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Figure 3: Variation of the skin friction coefficient 𝑓(0) with 𝜆 for
various values of𝑚 when 𝜀 = 1.

buoyancy parameter is independent of 𝑥. For the assisting
flow, as shown in Figure 1(a), the 𝑥-axis points upwards in
the same direction of the stretching surface such that the
external flow and the stretching surface induce flow and
heat transfer in the velocity and thermal boundary layers,
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Figure 4: Variation of the wall temperature 𝜃(0) with 𝜆 for various
values of𝑚 when 𝜀 = 0.5.
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Figure 5: Variation of the wall temperature 𝜃(0) with 𝜆 for various
values of𝑚 when 𝜀 = 1.

respectively. On the other hand, for the opposing flow, as
shown in Figure 1(b), the 𝑥-axis points vertically downwards
in the same direction of the stretching surface such that the
external flow and the stretching surface also induce flow
and heat transfer, respectively, in the velocity and thermal
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Figure 6: Velocity profile𝑓(𝜂) for various values of𝑚when 𝜀 = 0.5
and 𝜆 = −0.5.
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Figure 7: Temperature profile 𝜃(𝜂) for various values of 𝑚 when
𝜀 = 0.5 and 𝜆 = −0.5.

boundary layers. The steady boundary layer equations, with
Boussinesq approximation, are

𝜕𝑢

𝜕𝑥

+

𝜕𝑣

𝜕𝑦

= 0, (1)

𝑢

𝜕𝑢

𝜕𝑥

+ 𝑣

𝜕𝑢

𝜕𝑦

= 𝑈
∞

𝑑𝑈
∞

𝑑𝑥

+ 𝜈

𝜕
2

𝑢

𝜕𝑦
2
+ 𝑔𝛽 (𝑇 − 𝑇

∞
) ,

(2)

𝑢

𝜕𝑇

𝜕𝑥

+ 𝑣

𝜕𝑇

𝜕𝑦

= 𝛼

𝜕
2

𝑇

𝜕𝑦
2
, (3)

subject to the boundary conditions

𝑢 = 𝑈
𝑤
(𝑥) ,

𝑣 = 0,

𝜕𝑇

𝜕𝑦

= −

𝑞
𝑤

𝑘

at 𝑦 = 0,

𝑢 → 𝑈
∞
(𝑥) , 𝑇 → 𝑇

∞
as 𝑦 → ∞,

(4)

where 𝑢 and 𝑣 are the velocity components along the 𝑥- and
𝑦-axes, respectively, 𝑔 is the acceleration due to gravity, 𝛼 is
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Figure 8: Streamlines for the upper branch solutions when
𝑚 = 1, 𝜀 = 1, and 𝜆 = −2.
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Figure 9: Streamlines for the lower branch solutions when
𝑚 = 1, 𝜀 = 1, and 𝜆 = −2.

the thermal diffusivity of the fluid,𝜈 is the kinematic viscosity,
𝛽 is the coefficient of thermal expansion, 𝜌 is the fluid density,
and 𝑇

∞
is the far field ambient constant temperature.

The continuity equation (1) can be satisfied automatically
by introducing a stream function 𝜓 such that 𝑢 = 𝜕𝜓/𝜕𝑦

and 𝑣 = −𝜕𝜓/𝜕𝑥. The momentum and energy equations are
transformed by the similarity variables

𝜂 = (

𝑈
∞

𝜈𝑥

)

1/2

𝑦,

𝜓 = [𝜈𝑥𝑈
∞
]
1/2

𝑓 (𝜂) ,

𝜃 (𝜂) =

𝑘 (𝑇 − 𝑇
∞
)

𝑞
𝑤

(

𝑈
∞

𝜈𝑥

)

1/2

(5)

into the following nonlinear ordinary differential equations:

𝑓


+

𝑚 + 1

2

𝑓𝑓


+ 𝑚(1 − 𝑓
2

) + 𝜆𝜃 = 0,

1

Pr
𝜃


+

𝑚 + 1

2

𝑓𝜃


− (2𝑚 − 1) 𝑓


𝜃 = 0.

(6)

The transformed boundary conditions are

𝑓 (0) = 0, 𝑓


(0) = 𝜀, 𝜃


(0) = −1,

𝑓


(𝜂) → 1, 𝜃 (𝜂) → 0 as 𝜂 → ∞,

(7)
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Table 1: Comparison of the values of 𝑓(0)with those ofWang [29]
when𝑚 = 1 and 𝜆 = 0.

𝜀 Wang [29] Present
5 −10.26475 −10.26475
2 −1.88731 −1.88730
1 0 0
0.5 0.71330 0.71329
0.2 1.05113 1.05113
0.1 1.14656 1.14656
0 1.232588 1.23259

where 𝜀 = 𝑎/𝑏. Here primes denote differentiation with
respect to 𝜂, 𝜆 = 𝐺𝑟

𝑥
/Re5/2
𝑥

is the buoyancy or mixed
convection parameter, Pr = 𝜈/𝛼 is the Prandtl number,
𝐺𝑟
𝑥

= 𝑔𝛽𝑞
𝑤
𝑥
4

/(𝑘𝜈
2

) is the local Grashof number, and
Re
𝑥
= 𝑈
∞
𝑥/𝜈 is the local Reynolds number. We note that

𝜆 is a constant, with 𝜆 > 0 corresponds to the assisting
flow and 𝜆 < 0 denotes the opposing flow whilst 𝜆 = 0

is for forced convective flow. For the forced convection flow
(𝜆 = 0), the corresponding temperature problem possesses a
larger similarity-solution domain than the mixed convection
(𝜆 ̸= 0) one. The reason is that in the forced convection case,
the existence of similarity solutions does not require the
restriction of the applied wall heat flux to the special form
𝑞
𝑤
(𝑥) = 𝑐𝑥

(5𝑚−3)/2. Namely, in the forced convection case,
the much weaker assumption 𝑞

𝑤
(𝑥) = 𝑐𝑥

𝑛 suffices for the
similarity reduction of the problem, where the flux exponent
𝑛 does not depend on the velocity exponent𝑚 in any way.

The main physical quantities of interest are the values of
𝑓


(0), being a measure of the skin friction, and the non-
dimensional wall temperature 𝜃(0). Our main aim is to find
how the values of 𝑓(0) and 𝜃(0) vary in terms of the
parameters 𝜆 and𝑚.

3. Results and Discussion

Equations (6) subject to the boundary conditions (7) are inte-
grated numerically using a finite difference scheme known as
the Keller box method [30]. Numerical results are presented
for different physical parameters. To conserve space, we
consider the Prandtl number as unity throughout this paper.
The results presented here are comparable very well with
those of Ramanchandran et al. [12]. For no buoyancy effects
𝜆 = 0 and𝑚 = 1, comparison of the values of𝑓(0)wasmade
with those of Wang [29] as presented Table 1, which shows a
favourable agreement.

Figures 2 and 3 show the skin friction coefficient 𝑓(0)
against buoyancy parameter 𝜆 for some values of velocity
exponent parameter 𝑚 when velocity ratio parameter is 𝜀 =
0.5 and 𝜀 = 1. Two branches of solutions are found.The solid
lines are the upper branch solutions and the dash lines are
the lower branch solutions. With increasing𝑚, the range of 𝜆
for which the solution exists increases. Also from both figures
of the upper branch solutions, the skin friction is higher for
the assisting flow (𝜆 > 0) compared to the opposing flow
(𝜆 < 0). This implies that increasing the buoyancy parameter

𝜆 increases the skin friction coefficient𝑓(0)whilst for 𝜀 = 1,
the values of𝑓(0) as shown in Figure 3 are positive for 𝜆 > 0
and negatives for 𝜆 < 0. Physically, this means that positive
𝑓


(0) implies the fluid exerts a drag force on the sheet and
negative implies the reverse. Similarly this also happens for
𝜀 = 0.5 but at different values of 𝜆.

As seen in Figures 2 and 3, there exists a critical value
of velocity ratio 𝜆

𝑐
such that for 𝜆 < 𝜆

𝑐
there will be no

solutions, for 𝜆
𝑐
< 𝜆 < 0 there will be dual solutions, and

when 𝜆 > 0, the solution is unique. Our numerical compu-
tations presented in Figure 2 show that for the velocity ratio
𝜀 = 0.5, 𝜆

𝑐
= −8.331, −2.677, and −0.7411 for𝑚 = 2, 1, and 0.5,

respectively. On the other hand, for the velocity ratio 𝜀 = 1

shown in Figure 3, 𝜆
𝑐
= −14.98, −4.764, and −1.301 for𝑚 = 2,

1, and 0.5, respectively. The dual solutions exhibit the normal
forward flowbehavior and also the reverse flowwhere𝑓(𝜂) <
0. From these two results, it seems that an increase in velocity
ratio parameter 𝜀 leads to an increase of the critical values of
|𝜆
𝑐
|. This increases the dual solutions range of (6)-(7).
Figures 4 and 5 display the variations of the wall temper-

ature 𝜃(0) against the buoyancy parameter 𝜆, for some values
of𝑚when 𝜀 = 0.5 and 𝜀 = 1, respectively. Both figures clearly
show that the wall temperature increases as 𝑚 increases for
the upper branch solutions. For the lower branch solutions,
the wall temperature becomes unbounded as 𝜆 → 0

−.
The velocity and temperature profiles for 𝜀 = 0.5 when

𝜆 = −0.5 are presented in Figures 6 and 7, respectively.
Figure 6 shows that the velocity increases as 𝑚 increases for
the upper branch solutions, while opposite trend is observed
for the lower branch solutions. In Figure 7, for the upper
branch solutions, it is seen that an increase in 𝑚 tends to
decrease the temperature. Besides that, the temperature is
higher for the lower branch solution than the upper branch
solution at all points, near and away from the solid surface. It
can be seen from Figures 6 and 7 that all profiles approach
the far field boundary conditions (7) asymptotically, thus
supporting the numerical results obtained. Finally, the typical
streamlines for 𝑚 = 1, 𝜀 = 1, and 𝜆 = −2 for both solution
branches are shown in Figures 8 and 9.

4. Conclusions

The problem of mixed convection stagnation-point flow
towards a nonlinearly stretching vertical sheet immersed in
an incompressible viscous fluid was investigated numerically.
The effects of the velocity exponent parameter 𝑚, buoyancy
parameter 𝜆, and velocity ratio parameter 𝜀 on the fluid
flow and heat transfer characteristics were discussed. It was
found that for the assisting flow, the solution is unique, while
dual solutions were found to exist for the opposing flow
up to a certain critical value 𝜆

𝑐
. Moreover, increasing the

velocity exponent parameter𝑚 is to increase the range of the
buoyancy parameter 𝜆 for which the solution exists.

Nomenclature

𝑎, 𝑏, 𝑐: Constants
𝑓: Dimensionless stream function
𝑔: Acceleration due to gravity
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𝐺𝑟
𝑥
: Local Grashof number

𝑘: Thermal conductivity
𝑚: Velocity exponent parameter
Pr: Prandtl number
𝑞
𝑤
: Surface heat flux

Re
𝑥
: Local Reynolds number

𝑇: Fluid temperature
𝑇
∞
: Ambient temperature

𝑢, 𝑣: Velocity components along the 𝑥- and
𝑦-directions, respectively

𝑈
∞
: Free stream velocity

𝑈
𝑤
: Stretching velocity

𝑥, 𝑦: Cartesian coordinates along the surface
and normal to it, respectively.

Greek Letters

𝛼: Thermal diffusivity
𝛽: Thermal expansion coefficient
𝜀: Velocity ratio parameter
𝜂: Similarity variable
𝜃: Dimensionless temperature
𝜆: Buoyancy parameter
𝜈: Kinematic viscosity
𝜌: Fluid density
Ψ: Stream function.

Subscripts

𝑤: Condition at the solid surface
∞: Condition far away from the solid surface.

Superscript

: Differentiation with respect to
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