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A three-dimensional hybrid cellular automata (CA) model is developed to study the dynamic process of multicellular tumour
spheroid (MTS) growth by introducing hypoxia as an important microenvironment factor which influences cell migration and cell
phenotype expression. The model enables us to examine the effects of different hypoxic environments on the growth history of
the MTS and to study the dynamic interactions between MTS growth and chemical environments. The results include the spatial
distribution of different phenotypes of tumour cells and associated oxygen concentration distributions under hypoxic conditions.
The discussion of the model system responses to the varied hypoxic conditions reveals that the improvement of the resistance of

tumour cells to a hypoxic environment may be important in the tumour normalization therapy.

1. Introduction

Multicellular tumour spheroids (MTS) are three-dimensional
aggregates of malignant tumour cells, which can be grown
in vitro under strictly controlled nutritional and mechanical
conditions to mimic microtumour growth and metastases
[1]. Sutherland et al. [2, 3] were the first to use MTS for the
systematic study of tumour responses to therapy. Compared
to monolayer cultures, a significant advantage of the MTS
model is that they can more closely represent the in vivo
microenvironment in solid tumours [4].

Hypoxia is one of the most important hallmarks of the
abnormal metabolic microenvironment in solid tumours [5].
The imbalance of pro- and antiangiogenic factors results
in the formation of layered capillary network in tumours
and the abnormal structure and functions of tumour vessels
[6]. Since the diffusion limit of oxygen in tissues is 100-
200 um [7], the regions far from the blood vessels become
chronically hypoxic. In addition, due to the heterogeneous
and disorganized vessel network in tumours, there is no clear
relationship between the blood flow rate and oxygen tension

(pO,) [8], which may cause tumour tissue hypoxia despite the
presence of blood flow.

Hypoxia can upregulate various angiogenic growth fac-
tors, including vascular endothelial growth factor (VEGE),
thus triggering vascularization of tumours [9]. Furthermore,
hypoxia also modulates the rate of progression through the
cell cycle [10]. Whereas most normal cells undergo apoptosis
when the hypoxic stress is too intense or persists for too long,
tumour cells appear to have much more resistance to hypoxia
[11]. One reason for this phenomenon is that the hypoxia
inducible factor 1o (HIF 1le) upregulates the protein p27 to
cause the arrest of the G1/S transition in the tumour cell cycle
[12].

MTS have often been regarded as aggregates of cells
with intimate cell-cell contacts; however, it demonstrated the
existence of extracellular matrix (ECM) in the spheroids [13].
The ECM is a complex network composed of a variety of
proteins and polysaccharides such as fibronectin, collagen,
laminin, hyaluronate, heparan sulfate, and elastin, that are
produced by the cells to form this matrix [14]. The role of
ECM in the MTS growth has been investigated, including
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FIGURE 1: Flowchart of the hybrid CA model showing the different
phenotypes (proliferating, quiescent, necrosis, and mutation) under
hypoxic microenvironment.

TABLE 1: Parameter values used in the simulation.

Parameter Value

D 107° cm?s™!

& 13x10°cm®* M5
e 1.7x 107" Mcells ' s
B 58x 10 cm s
D} 10 cm?s™!

A 1.7x107s™"

o 6.25x 1077 Mcells' s

*Pettet et al. [21].
bMansury and Deisboeck [23].

the cell-matrix adhesion through integrins [15] and ECM-
dependent cell survival [16]. Although few studies have been
conducted examining the cell-matrix interactions in MTS,
the importance of these interactions in regulating cell growth,
especially that in three-dimensional spheroids, should be
addressed.

To investigate the physiological phenomena and patho-
logical characteristics of MTS, mathematical models for MTS
growth have been well developed in recent years [17-20].
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Growth models for MTS are usually classified into three
groups: (a) continuum models, formulated through partial
differential equations (PDEs) to describe the changes in
distributions of certain substances [21]; (b) discrete models,
often represented by cellular automata (CA) [22], agent-based
[23], and Monte-Carlo inspired models [24]; (c) hybrid mod-
els, incorporating continuum models and discrete models
[25]. CA models were originally introduced by von Neumann
[26] as a possible idealization of biological systems and
typically constructed by the setup of the transition rules
(CA rules) generating the desired behaviour. In recent years,
CA models for MTS growth have been studied to improve
the understanding of the dynamic process of MTS growth
and the changes of microenvironments in MTS. The benefit
of using CA models is that they provide a description and
allow a more realistic stochastic approach at both cellular and
subcellular levels. However, one of the main disadvantages
of CA models is that they require very large amounts of
computational resources.

We have established a 2D coupled mathematical model
of tumour growth, angiogenesis, and blood perfusion in the
previous work [27], in which the simulation of the early
stage of tumour cell growth was simplified. At the avascular
phase, the influence of hypoxic environment on the tumour
growth is more significant than after angiogenesis process.
Hypoxia is not only associated with the trigger of tumour
angiogenesis, but also affects the tumour cell survival and
proliferating. Moreover, some tumour cells can undergo a
series of mutations in a certain hypoxic environment to
become more aggressive and more resistant to chemotherapy
and radiotherapy. Therefore, a mathematical model focuses
on the hypoxia microenvironment, and associated MTS
growth will be helpful in improving our understanding of the
dynamic processes in early tumour growth.

The main aim of this study is to develop a 3D hybrid CA
model to investigate the dynamic growth of MTS to the varied
levels of hypoxic microenvironment. We define a continuum
deterministic model (a system of conservation equations) to
control the chemicals dynamics and a discrete CA model
(individual-based processes) to control the individual cell
migration and interactions. In addition, we focus on the
influence of hypoxic microenvironment on the MTS growth
by considering different cell phenotypes, which are caused
by different hypoxia levels and may in turn induce different
resistances of tumour cells to hypoxia.

2. Method

2.1. 'The Conservation Equations for Chemicals. The model is
defined on a 3D region of 100 x 100 x 100 grids to cover
a2mm x 2mm x 2mm space, for MTS cell proliferating,
quiescent, and apoptosis. Each tumour cell occupies one
individual element and competes for space and oxygen with
others. The interactions of cells with the microenvironment
are governed by the ECM concentration (denoted by cy)
and the oxygen concentration (denoted by ¢,). The ECM
can be degraded by the matrix-degrading enzymes (MDEs)
(denoted by c,,,) which are produced by the tumour cells. The
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FIGURE 2: Continued.
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FIGURE 2: The growth histories of MTS in hypoxic microenvironment and cross-sections at plane z = 50. Different colours represent different
phenotypes of tumour cells (proliferating cells: blue; quiescent cells: green; necrotic cells: red; and mutated cells: yellow).
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FIGURE 3: The growth curves of MTS in the model. The number of total cells (a) and the volume of spheroid (b) in time.
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The ECM concentration ¢ is controlled by the degradation by
MDE, while the MDE is governed by diftusion, production
by the tumour cells, and decay of itself. Since we choose
to focus on the MTS growth, the vascularization inside the
tumour is not included in the current model. Therefore, we
assume that oxygen is produced by the macromolecules in
the ECM, transported by pure diffusion in interstitial space,
and consumed by the tumour cells. For simplicity, oxygen
production is assumed to be proportional to the ECM density
(25]. The T} ;  term represents a tumour cell located at a node
position (i, j, k). The value is either 1 if a cell is present or 0 if it
isnot. D,, and D, are MDE and oxygen diffusion coefficients,
respectively. 8, yr, A, y, and B are positive constants. The
values of these parameters are shown in Table 1.

2.2. CA Model for an Individual Cell. Figurel shows a
flowchart of the hybrid CA model under hypoxic microen-
vironment. Four phenotypes of tumour cells are defined in
the model. Types P, Q, N, and M represent the proliferating
cells, the quiescent cells, the necrotic cells, and the mutated

TABLE 2: Parameters of the four different phenotypes.

Phenotypes prol\(/lltll)cl;:ion conos?r’rzg;?ion Ai
Proliferating cells (P) Yr y 2
Quiescent cells (Q) url5 y/2 4
Necrotic cells (N) ur/10 p/4 6
Mutated cells (M) 4/3ur 2y 0

cells, respectively. Initially, all tumour cells are proliferating
cells. At each time step, a tumour cell will increase its age
and be checked to see if there is enough space and oxygen
(€, = Ghresn = 0.5) for its proliferation; (a) if there is, the
cell will be divided by mitosis to two daughter cells which are
proliferating cells; one daughter cell will replace the parent
cell, and the other one will move to the neighbouring element
possessing the highest ECM concentration; (b) if there is
no space for proliferation, the cell will become quiescent;
for every quiescent cell, if the oxygen is inadequate, the cell
will apoptose to become a necrotic cell with a predefined
probability (0.1% X T,g.). Tumour cells have been found to
be able to survive in a very poorly oxygenated environment
[9]. Therefore, we assume a phenotype of mutated cells, which
has the most resistance to hypoxia. If the proliferating cell and
quiescent cell have survived in a certain hypoxic environment
(¢ < CGhres.m = 0.8) for a long time (t > T,, = 200),
they are assumed to become mutated cells with a certain
probability (10%). Since the process of ECM regeneration and
the removal of dead tumour cells are not clear, the dead cell
will still occupy the space but will cease any interaction with
the environment. It needs to be mentioned here that there is
no reverse change of cell from quiescent back to proliferating
in this model.

Different coefficients of the MDE production and the
consumption rate of oxygen are defined for different phe-
notypes of tumour cells, as shown in Table 2. The mutated
tumour cells have the biggest production coeflicients of
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FIGURE 4: Distribution of integrated oxygen concentration ¢, along x-axis at z = 50 plane. x = 0 is the centre of the simulation region and
the MTS. The green dotted line is the average value of ¢, . All values are normalized to be 0-1.
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MDE, which means they are more aggressive and more likely
to invade into surrounding tissues. Based on the work of
Anderson [25], each cell has its own internal adhesion value
A;. Only if the number of external neighbours of the cell is
larger than A;, the cell is allowed to migrate. The different
values of A; of different phenotypes are also shown in Table 2.

2.3. Simulation. The simulation was carried out on a 3D
domain of 2mm X 2 mm x 2 mm, divided uniformly into
100 x 100 x 100 grids. A no-flux boundary condition was
imposed on the square grid to restrict the tumour cells, MDE,
ECM, and oxygen to the volume within the grid.

The initial distributions of oxygen and ECM were pre-
defined as constant nondimensional values (they were 1 in
this study) in the simulation space. Initially, 50 proliferating
tumour cells were centered around grid element (50, 50, and
50) with age one. The simulation step is set to be 45 mins,
according to the basic mitosis time for tumour cells [24].

The simulation process is as follows:

at each major iteration,

(1) MTS growth according to the CA rules (described in
Section 2.2);

(2) solve (1) and update the chemicals (oxygen, MDE, and
ECM) concentrations;

(3) update the distribution of tumour cells based on the
changed microenvironment.

3. Results

In the results presented here, the simulation starts from the
initial tumour and finishes at 800 time steps.

3.1. MTS Growth History. Figure 2 shows the growth histories
of MTS under hypoxic microenvironment and the cross-
section at the plane z = 50. Different colours represent
different cell phenotypes (proliferating cells: blue; quiescent
cells: green; necrotic cells: red; and mutated cells: yellow). At
the beginning, most of the tumour cells stay in proliferating
and quiescent. However, the necrotic cells arise after ¢ = 200
and spread rapidly in the tumour interior, due to the limited
oxygen supply and high oxygen consumption of proliferating
cells. Once the necrotic core is formed at t = 400 (see
the cross-section pictures more clearly), the quiescent cells
decrease continually, and the hypoxic environment in the
MTS is satisfied for mutated cells. Eventually, some proliferat-
ing cells have survived and formed finger-like invasions to the
surrounding matrix at the periphery area, while the mutated
cells, which are the most aggressive, are scattered inside the
MTS (also see Figure 5(a)).

Figure 3 shows the growth curves of MTS in the model.
The number of total cells and the spheroid volume first grow
exponentially at early days and then slow down after ~600
time steps (almost 18 days). The exponent growth and the
saturation size are consistent with experimental observations
by a series studies from Freyer et al. [29-31].

3.2. Oxygen Concentration Distribution. The integrated oxy-
gen concentration ¢, along the x-axis at the plane z = 50 is
shown in Figure 4, where x = 0 is the centre of the simulation
region and the MTS. The hypoxia inside the MTS becomes
more and more extensive with the growth: (a) the hypoxic
region is always at the MTS interior and spreads gradually
to surrounding tissue; (b) the lowest value and the average
value (shown as the green dotted line in Figure 3) of oxygen
concentration decrease simultaneously with the growth time.
However, the lowest oxygen concentration occurs in the
centre area and may move towards the periphery of the
MTS (especially at t = 800), which is consistent with our
previous work of coupled tumour growth model [27]. This
is partly due to the fact that the quiescent and necrotic cells
consume less oxygen than the proliferating ones. In addition,
no assumptions about reverse changes from quiescent cells
back to proliferating cells in this model also contribute this
result.

At the end of the simulation process, the lowest value
of oxygen concentration in the MTS is stable at around
0.75, which is between the two thresholds for necrotic cells
(Ghresn = 0.5) and mutated cells (¢ 5y = 0.-8). This implies
that the mutated cells will increase with the MTS growth
according to the assumptions used in the current model.

3.3. Sensitivity to Hypoxic Microenvironment. To assess the
sensitivities to the oxygen thresholds in the model, we
changed the parameters s n> Chres.m and performed three
more simulations, as shown in Figure 5. Figure 5(a) shows the
baseline model presented in the above sections. The numbers
of proliferating cells and quiescent cells reach their peak
values at t = 300 and decrease gradually at the late period. As
a consequence, a rapid increase of necrotic cells appears after
t = 300 due to the inadequate oxygen supply caused by the
increased proliferating cells and quiescent cells propagated at
an earlier stage. At the end of the simulation (after t = 600),
all the MTS cells of four different phenotypes almost stop
growing and tend towards stability, which is one of the signals
to stop the simulation.

The threshold for necrotic cells ¢y, , Will influence the
cell distribution by controlling the cell death in response to
low oxygen concentration. A higher value of ¢y , (=0.7)
will reduce the resistance of tumour cells to the hypoxic
environment and increase the necrotic cell number at the end
of the simulation, as shown in Figure 5(b). At the same time,
the proliferating cell number decreases due to the rapidly
increasing number of necrotic cells which occupy most of the
volume in the simulation region. This result suggests that the
resistance of tumour cells to the hypoxic environment may
play an important role in the development of MTS.

Another threshold defined in this model for cell pheno-
type to local oxygen concentration is ¢y, .5 > which affects the
mutated cell number. We assumed a phenotype of mutated
cells to represent the most aggressive cells, which can survive
in a very poorly oxygenated environment. The threshold for
mutated cells ¢y, m has been changed to be 0.7 and 0.9,
respectively, to test the system responses to this threshold.
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According to Figures 5(c) and 5(d), the changes of ¢ . 1, can
affect the number of mutated cells. Although the influence
on mutated cell number seems weak, the growth histories
of other cells, especially the necrotic cells, have remarkable
changes. This is due to the assumption that mutated cells have
the strongest relationship with the hypoxic microenviron-
ment. The varied mutated cell numbers may have a significant
effect on the oxygen distribution in the simulation region
and then influence the growth of the MTS. For example,
a decreasing value of e m (=0.7) leads to a reduction of
mutated cell number (Figure 5(c)), which will reduce the
oxygen consumption in the MTS and improve the hypoxic
environment. As a consequence, the growth speed of necrotic
cell number decreases compared with the baseline model
(Figure 5(a)). On the contrary, a higher value of ¢, 1 (=
0.9) will induce the increase of the mutated cell number,
as well as the growing speed of the necrotic cell number

(Figure 5(d)).
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4. Discussion

In this study, we established a hybrid CA model for 3D MTS
growth by introducing hypoxia as an important microenvi-
ronment factor which influences cell migration and pheno-
type expression. It was assumed that (a) the distributions
of the chemicals in the MTS (including ECM, MDE, and
oxygen) are controlled by continuum equations and (b) the
individual behaviour of single cell is determined by discrete
CA rules. In addition, we introduced four different cell
phenotypes (the proliferating cells, the quiescent cells, the
necrotic cells, and the mutated cells) to reflect the different
correlations between cells and environments.

The model has demonstrated the process of MTS growth
and the spatial distribution of oxygen concentration in an
MTS. The simulation results showed typical MTS growing
features, such as a necrotic core in the centre, associated
with the hypoxia region of the MTS, and more aggressive
cells at the periphery area, which are consistent with the
physiological knowledge (Figure 6).

To assess the model system responses to the varied
hypoxic conditions, we examined the sensitivities to the
oxygen thresholds in this model. The results showed that
the resistance of tumour cells to hypoxic environment and
the number of mutated cells influence the MTS growth
significantly, which suggests that the improvement of the
resistance of tumour cells to hypoxic environment may be
important in the tumour normalization therapy.

Compared with our previous models of tumour devel-
opment [27, 32, 33], the major improvements for the model
presented here include the following: (a) 3D simulation
instead of 2D to make the overall model more realistic; (b)
more sophisticated assumptions for individual cell to let us
go deep into the system responses of different environmental
conditions; (c) the examinations of the sensitivities to the
varied hypoxic environment show the importance of the
resistance and adaption of tumour cells.

However, some physiological details were ignored or sim-
plified during the model development. Firstly, we assumed
phenotype M (mutated cells) to represent the most aggressive
cells, having the most resistance to hypoxia, consuming
the most oxygen, and being more likely invade to the
surrounding tissues. This assumption was based on the fact
that hypoxia can modulate the rate of progression of tumour
cells through the cell cycle. However, the details of the
regulation of cell cycle of certain cells were not included in
the current model. The multiscale modelling considering the
subcellular levels should be addressed in the future. Secondly,
the possibility that quiescent cells revert to the proliferating
stage was not included in the model. Many experimental
investigations have revealed that quiescent cancer cells can
reactivate their cell cycles, becoming proliferative again and
thus restarting tumour growth, which is one common cause
of chemotherapeutic treatment failure [34]. A model with CA
rules for quiescent cells returning to the proliferating stage
according to the microenvironment changing will be helpful
in studying the impact of quiescent cells on MTS growth
and chemotherapy effectiveness. Thirdly, the mechanical
properties of ECM and the complex cell-matrix interactions

were not investigated in the study. The inclusion of ECM
in this modelling of MTS growth suggests that the model
could be used to describe an in vivo tumour growth in the
avascular phase. A deeper understanding of the interrela-
tionships between the presence of ECM components and
cell-cell contact may help to advance mathematical models
to examine the migration and metastasis of in vivo cancer
cells. These model potentialities will be the subjects of future
studies.
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