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This paper addresses the Klein-Gordon-Zakharov equation with power law nonlinearity in (1 + 1)-dimensions. The integrability
aspect as well as the bifurcation analysis is studied in this paper.The numerical simulations are also given where the finite difference
approach was utilized. There are a few constraint conditions that naturally evolve during the course of derivation of the soliton
solutions. These constraint conditions must remain valid in order for the soliton solution to exist. For the bifurcation analysis, the
phase portraits are also given.

1. Introduction

The theory of nonlinear evolution equations (NLEEs) has
come a long way in the past few decades [1–20]. Many of the
NLEEs are pretty well known in the area of theoretical physics
and applied mathematics. A few of them are the nonlinear
Schrödinger’s equation, Korteweg-de Vries (KdV) equation,
sine-Gordon equationwhich appear in nonlinear optics, fluid
dynamics, and theoretical physics, respectively. It is also very
common to come across several combo NLEEs such as the
Schrödinger-KdV equation, Klein-Gordon-Zakharov (KGZ)
equation, andmany others that are also studied in the context
of applied mathematics and theoretical physics. This paper is
going to focus on the KGZ equation that will be studied with
power law nonlinearity in (1 + 1)-dimensions.

The integrability aspects and the bifurcation analysis will
be the main focus of this paper. The ansatz method will
be applied to obtain the topological 1-soliton solution, also
known as the shock wave solution, to this equation. The
constraint conditions will be naturally formulated in order
for the soliton solution to exist. Subsequently, the bifurcation

analysis will be carried out for this paper. In this context,
the phase portraits will be given. Additionally, other traveling
wave solutions will be enumerated. Finally, the numerical
simulation to the equation will be given. The finite difference
scheme will also be given.

2. Mathematical Analysis

The KGZ equation with power law nonlinearity in (1 + 1)-
dimensions that are going to be studied in this paper is given
by [6]

𝑞
𝑡𝑡
− 𝑘
2
𝑞
𝑥𝑥
+ 𝑎𝑞 + 𝑏𝑟𝑞 + 𝑐

𝑞


2𝑛

𝑞 = 0, (1)

𝑟
𝑡𝑡
− 𝑘
2
𝑟
𝑥𝑥
= 𝑑(

𝑞


2𝑛

)
𝑥𝑥
, (2)

where 𝑎, 𝑏, 𝑐, 𝑑, and 𝑘 are real valued constants. Additionally
𝑞(𝑥, 𝑡) is a complex valued dependent variable and 𝑟(𝑥, 𝑡) is
a real valued dependent variable. This section will focus on
extracting the shock wave solutions to the KGZ equation (1)
and (2) that are also known as topological soliton solution.
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Therefore the starting hypothesis will be

𝑞 (𝑥, 𝑡) = 𝐴
1
tanh𝑝1𝜏𝑒𝑖𝜙, (3)

𝑟 (𝑥, 𝑡) = 𝐴
2
tanh𝑝2𝜏, (4)

where

𝜏 = 𝐵 (𝑥 − 𝑣𝑡) . (5)

Here, in (3) and (4)𝐴
1
, 𝐴
2
and 𝐵 are free parameters, while 𝑣

is the velocity of the soliton. The unknown exponents 𝑝
1
and

𝑝
2
will be determined, in terms of 𝑛 by the aid of balancing

principle. The phase component of (3) is given by

𝜙 = −𝜅𝑥 + 𝜔𝑡 + 𝜃, (6)

where 𝜅 represents the soliton frequency, 𝜔 is the soliton
wave number, and 𝜃 is the phase constant. Substituting the
hypothesis (3) and (4) into (1) and (2) yields

𝑝
1
(𝑝
1
− 1) (𝑣

2
− 𝑘
2
) 𝐵
2tanh𝑝1−2𝜏

− 2𝑖𝑝
1
(𝑣𝜔 − 𝜅

2
𝑘
2
) 𝐵 tanh𝑝1−1𝜏

− {2𝑝
2

1
(𝑣
2
− 𝑘
2
) 𝐵
2
+ 𝜔
2
+ 𝐾
2
𝜅
2
} tanh𝑝1𝜏

+ 2𝑖𝑝
1
(𝑣𝜔 − 𝜅

2
𝑘
2
) 𝐵 tanh𝑝1+1𝜏

+ 𝑝
1
(𝑝
1
+ 1) (𝑣

2
− 𝑘
2
) 𝐵
2 tanh𝑝1+2𝜏 + 𝑎 tanh𝑝1𝜏

+ 𝑏𝐴
2
tanh𝑝1+𝑝2𝜏 + 𝑐𝐴2𝑛

1
tanh(2𝑛+1)𝑝1𝜏 = 0,

(7)

𝑝
2
(𝑝
2
− 1) (𝑣

2
− 𝑘
2
)𝐴
2
𝐵
2 tanh𝑝2−2𝜏

− 2𝑝
2

2
(𝑣
2
− 𝐾
2
)𝐴
2
𝐵
2 tanh𝑝2𝜏

+ 𝑝
2
(𝑝
2
+ 1) (𝑣

2
− 𝑘
2
)𝐴
2
𝐵
2 tanh𝑝2+2𝜏

− 𝑑𝐴
2𝑛

1
𝐵
2
{2𝑛𝑝
1
(2𝑛𝑝
1
− 1) tanh2𝑛𝑝1−2𝜏 − 8𝑛2𝑝2

1
tanh2𝑛𝑝1𝜏

+2𝑛𝑝
1
(2𝑛𝑝
1
+ 1) tanh2𝑛𝑝1+2𝜏} = 0,

(8)

respectively. Now, splitting (7) into two real and imaginary
parts gives

𝑝
1
(𝑝
1
− 1) (𝑣

2
− 𝑘
2
) 𝐵
2tanh𝑝1−2𝜏

− {2𝑝
2

1
(𝑣
2
− 𝑘
2
) 𝐵
2
+ 𝜔
2
+ 𝑘
2
𝜅
2
} tanh𝑝1𝜏

+ 𝑝
1
(𝑝
1
+ 1) (𝑣

2
− 𝑘
2
) 𝐵
2 tanh𝑝1+2𝜏 + 𝑎 tanh𝑝1𝜏

+ 𝑏𝐴
2
tanh𝑝1+𝑝2𝜏 + 𝑐𝐴2𝑛

1
tanh(2𝑛+1)𝑝1𝜏 = 0,

(9)

2𝑖𝑝
1
(𝑣𝜔 − 𝜅

2
𝑘
2
) 𝐵 tanh𝑝1−1𝜏

− 2𝑖𝑝
1
(𝑣𝜔 − 𝜅

2
𝑘
2
) 𝐵 tanh𝑝1+1𝜏 = 0.

(10)

From (9), equating the exponents 𝑝
1
+ 𝑝
2
and 𝑝

1
+ 2 gives

𝑝
2
= 2, (11)

and then equating (2𝑛 + 1)𝑝
1
with 𝑝

1
+ 2 gives

𝑝
1
=
1

𝑛
. (12)

Finally, equating the exponent pairs (2𝑛 + 1)𝑝
1
and 𝑝

1
+ 𝑝
2

gives

𝑝
2
= 2𝑛𝑝

1
. (13)

Now the values of 𝑝
1
and 𝑝

2
from (11) and (12) satisfy (13).

Finally, equating the coefficients of the linearly indepen-
dent functions tanh𝑝1±𝑗𝜏, 𝑗 = ±1, 0, ±2 in (9) and (10) to zero
gives

(𝑣𝜔 − 𝜅
2
𝑘
2
) 𝐵 = 0,

2 (𝑣
2
− 𝑘
2
) 𝐵
2
+ 𝑛
2
(𝜔
2
+ 𝜅
2
𝑘
2
− 𝑎) = 0,

(𝑛 + 1) (𝑣
2
− 𝑘
2
) 𝐵
2
+ 𝑛
2
(𝑏𝐴
2
+ 𝑐𝐴
2𝑛

1
) = 0.

(14)

Again, equating the coefficients of the linearly independent
functions tanh𝑝2±𝑗𝜏, 𝑗 = ±1, ±2 in (8) to zero implies

(𝑣
2
− 𝑘
2
)𝐴
2
− 𝑑𝐴
2𝑛

1
= 0. (15)

Solving (14)-(15) we get

𝜔 =
𝑘
2
𝜅
2

𝑣
, (16)

𝐵 = 𝑛√
𝑎 − 𝑘
2
𝜅
2
− 𝜔
2

2 (𝑣
2
− 𝑘
2
)
, (17)

𝐴
1
= [

(𝑛 + 1) (𝑣
2
− 𝑘
2
) (𝜔
2
− 𝑎 − 𝜅

2
𝑘
2
) 𝑑

2 {𝑐 (𝑣
2
− 𝑘
2
) + 𝑏𝑑}

]

1/2𝑛

, (18)

𝐴
2
=

𝑑 (𝑛 + 1) (𝜔
2
− 𝑎 − 𝑘

2
𝜅
2
)

2 {𝑐 (𝑣
2
− 𝑘
2
) + 𝑏𝑑}

. (19)

The relations (17), (18), and (19) introduce the restrictions
given by

(𝑎 − 𝑘
2
𝜅
2
− 𝜔
2
) (𝑣
2
− 𝑘
2
) > 0,

𝑑 (𝑣
2
− 𝑘
2
) (𝜔
2
− 𝑎 − 𝐾

2
𝜅
2
) {𝑐 (𝑣

2
− 𝑘
2
) + 𝑏𝑑} > 0,

𝑐 (𝑣
2
− 𝑘
2
) + 𝑏𝑑 ̸= 0.

(20)

Thus the topological solution of the 𝑞 and 𝑟 wave functions
are given:

𝑞 (𝑥, 𝑡) = 𝐴
1
tanh1/𝑛 [𝐵 (𝑥 − 𝑣𝑡)] 𝑒𝑖(−𝜅𝑥+𝜔𝑡+𝜃),

𝑟 (𝑥, 𝑡) = 𝐴
2
tanh2 [𝐵 (𝑥 − 𝑣𝑡)] .

(21)
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3. Bifurcation Analysis

This section will carry out the bifurcation analysis of the
Klein-Gordon-Zakharov equation with power law nonlin-
earity. Initially, the phase portraits will be obtained and the
corresponding qualitative analysis will be discussed. Several
interesting properties of the solution structure will be
obtained based on the parameter regimes. Subsequently, the
traveling wave solutions will be discussed from the bifurca-
tion analysis.

3.1. Phase Portraits and Qualitative Analysis. We assume that
the traveling wave solutions of (1) and (2) are of the form

𝑞 (𝑥, 𝑡) = 𝑒
𝑖𝜂
𝜑 (𝜉) , 𝑟 (𝑥, 𝑡) = 𝜓 (𝜉) , (22)

𝜂 = 𝑚𝑥 + 𝑙𝑡, 𝜉 = 𝑝𝑥 − 𝑣𝑡, (23)

where 𝜑(𝜉) and 𝜓(𝜉) are real functions,𝑚, 𝑙, 𝑝, and 𝑣 are real
constants.

Substituting (22) and (23) into (1) and (2), we find that
𝑝 = −𝑣𝑙/𝑚𝑘

2, 𝜑 and 𝜙 satisfy the following system:

(𝑣
2
− 𝑘
2
𝑝
2
) 𝜑

− (𝑙
2
− 𝑘
2
𝑚
2
− 𝑎) 𝜑 + 𝑏𝜑𝜓 + 𝑐𝜑

2𝑛+1
= 0,

(24)

(𝑣
2
+ 𝑘
2
𝑝
2
) 𝜓

− 𝑑𝑝
2
(𝜑
2𝑛
)


= 0. (25)

Integrating (25) twice and letting the first integral constant be
zero, we have

𝜓 =
𝑑𝑝
2
𝜑
2𝑛

𝑣
2
− 𝑘
2
𝑝
2
+ 𝑔, 𝑣

2
− 𝑘
2
𝑝
2
̸= 0, (26)

where 𝑔 is the second integral constant.
Substituting (26) into (24), we have

(𝑣
2
− 𝑘
2
𝑝
2
) 𝜑

− (𝑙
2
− 𝑘
2
𝑚
2
− 𝑎 − 𝑏𝑔) 𝜑

+ (𝑐 +
𝑏𝑑𝑝
2

𝑣
2
− 𝑘
2
𝑝
2
)𝜑
2𝑛+1

= 0.

(27)

To facilitate discussions, we let

𝛿 =

𝑏𝑑𝑝
2
+ 𝑐 (𝑣

2
− 𝑘
2
𝑝
2
)

(𝑣
2
− 𝑘
2
𝑝
2
)
2

, (28)

𝜃 =
𝑙
2
− 𝑘
2
𝑚
2
− 𝑎 − 𝑏𝑔

𝑣
2
− 𝑘
2
𝑝
2

. (29)

Letting 𝜑 = 𝑧, then we get the following planar system:

d𝜑
d𝜉
= 𝑧,

d𝑧
d𝜉
= −𝛿𝜑

2𝑛+1
+ 𝜃𝜑.

(30)

Obviously, the above system (30) is a Hamiltonian system
with Hamiltonian function

𝐻(𝜑, 𝑧) = 𝑧
2
+

𝛿

𝑛 + 1
𝜑
2𝑛+2

− 𝜃𝜑
2
. (31)

In order to investigate the phase portrait of (30), set

𝑓 (𝜑) = −𝛿𝜑
2𝑛+1

+ 𝜃𝜑. (32)

Obviously, when 𝛿𝜃 > 0, 𝑓(𝜑) has three zero points, 𝜑
−
, 𝜑
0
,

and 𝜑
+
, which are given as follows:

𝜑
−
= −(

𝜃

𝛿
)

1/2𝑛

, 𝜑
0
= 0, 𝜑

+
= (

𝜃

𝛿
)

1/2𝑛

. (33)

When 𝛿𝜃 ⩽ 0, 𝑓(𝜑) has only one zero point

𝜑
0
= 0. (34)

Letting (𝜑
𝑖
, 0) be one of the singular points of system (30),

then the characteristic values of the linearized system of
system (30) at the singular points (𝜑

𝑖
, 0) are

𝜆
±
= ±√𝑓


(𝜑
𝑖
). (35)

From the qualitative theory of dynamical systems, we know
the following.

(I) If 𝑓(𝜑
𝑖
) > 0, (𝜑

𝑖
, 0) is a saddle point.

(II) If 𝑓(𝜑
𝑖
) < 0, (𝜑

𝑖
, 0) is a center point.

(III) If 𝑓(𝜑
𝑖
) = 0, (𝜑

𝑖
, 0) is a degenerate saddle point.

Therefore, we obtain the bifurcation phase portraits of
system (30) in Figure 1.

Let

𝐻(𝜑, 𝑧) = ℎ, (36)

where ℎ is Hamiltonian.
Next, we consider the relations between the orbits of (30)

and the Hamiltonian ℎ.
Set

ℎ
∗
=
𝐻 (𝜑+, 0)

 =
𝐻 (𝜑−, 0)

 . (37)

According to Figure 1, we get the following propositions.

Proposition 1. Suppose that 𝛿 > 0 and 𝜃 > 0, one has the
following.

(I) When ℎ ⩽ −ℎ∗, system (30) does not have any closed
orbits.

(II) When −ℎ∗ < ℎ < 0, system (30) has two periodic orbits
Γ
1
and Γ
2
.

(III) When ℎ = 0, system (30) has two homoclinic orbits Γ
3

and Γ
4
.

(IV) When ℎ > 0, system (30) has a periodic orbit Γ
5
.

Proposition 2. Suppose that 𝛿 < 0 and 𝜃 < 0, one has the
following.

(I) When ℎ < 0 or ℎ > ℎ∗, system (30) does not have any
closed orbits.

(II) When 0 < ℎ < ℎ∗, system (30) has three periodic orbits
Γ
6
, Γ
7
, and Γ

8
.



4 Journal of Applied Mathematics

ϕ

ϕϕ

ϕ

θ

δ

(I)(II)

(III) (IV)

zz

z z

Γ3

Γ5

Γ2 Γ4

Γ9

Γ6 Γ7 Γ12

Γ10

Γ8

Γ1

Γ11

Figure 1: The bifurcation phase portraits of system (30). (I) 𝛿 > 0, 𝜃 > 0, (II) 𝛿 < 0, 𝜃 ⩾ 0, (III) 𝛿 < 0, 𝜃 < 0, (IV) 𝛿 > 0, 𝜃 ⩽ 0.

(III) When ℎ = 0, system (30) has two periodic orbits Γ
9
and

Γ
10
.

(IV) When ℎ = ℎ∗, system (30) has two heteroclinic orbits
Γ
11
and Γ
12
.

Proposition 3. (I)When 𝛿 > 0, 𝜃 ⩾ 0 and ℎ > 0, system (30)
has a periodic orbits.

(II) When 𝛿 < 0, 𝜃 ⩽ 0, system (30) does have not any
closed orbits.

From the qualitative theory of dynamical systems, we
know that a smooth solitary wave solution of a partial
differential system corresponds to a smooth homoclinic orbit
of a traveling wave equation. A smooth kink wave solution or
a unbounded wave solution corresponds to a smooth hetero-
clinic orbit of a traveling wave equation. Similarly, a periodic
orbit of a traveling wave equation corresponds to a peri-
odic traveling wave solution of a partial differential system.
According to the above analysis, we have the following pro-
positions.

Proposition 4. If 𝛿 > 0 and 𝜃 > 0, one has the following.

(I) When −ℎ∗ < ℎ < 0, (1) and (2) have two periodic wave
solutions (corresponding to the periodic orbits Γ

1
and Γ
2

in Figure 1).
(II) When ℎ = 0, (1) and (2) have two solitary wave

solutions (corresponding to the homoclinic orbits Γ
3
and

Γ
4
in Figure 1).

(III) When ℎ > 0, (1) and (2) have two periodic wave
solutions (corresponding to the periodic orbit Γ

5
in

Figure 1).

Proposition 5. If 𝛿 < 0 and 𝜃 < 0, one has the following.

(I) When 0 < ℎ < ℎ
∗, (1) and (2) have two periodic

wave solutions (corresponding to the periodic orbit Γ
7

in Figure 1) and two periodic blow-up wave solutions

(corresponding to the periodic orbits Γ
6
and Γ

8
in

Figure 1).
(II) When ℎ = 0, (1) and (2) have periodic blow-up wave

solutions (corresponding to the periodic orbits Γ
9
and

Γ
10
in Figure 1).

(III) When ℎ = ℎ∗, (1) and (2) have two kink profile solitary
wave solutions. (corresponding to the heteroclinic orbits
Γ
11
and Γ
12
in Figure 1).

3.2. Exact TravelingWave Solutions. Firstly, wewill obtain the
explicit expressions of traveling wave solutions for (1) and (2)
when 𝛿 > 0 and 𝜃 > 0. From the phase portrait, we see that
there are two symmetric homoclinic orbits Γ

3
and Γ

4
con-

nected at the saddle point (0, 0). In (𝜑, 𝑧)-plane the expres-
sions of the homoclinic orbits are given as

𝑧 = ±√
𝛿

𝑛 + 1
𝜑√−𝜑

2𝑛
+
(𝑛 + 1) 𝜃

𝛿
. (38)

Substituting (38) into d𝜑/d𝜉 = 𝑧 and integrating them along
the orbits Γ

3
and Γ
4
, we have

±∫

𝜑

𝜑
1

1

𝑠√−𝑠
2𝑛
+ (𝑛 + 1) 𝜃/𝛿

d𝑠 = √ 𝛿

𝑛 + 1
∫

𝜉

0

d𝑠,

±∫

𝜑

𝜑
2

1

𝑠√−𝑠
2𝑛
+ (𝑛 + 1) 𝜃/𝛿

d𝑠 = √ 𝛿

𝑛 + 1
∫

𝜉

0

d𝑠,

(39)

where 𝜑
1
= −((𝑛 + 1)𝜃/𝛿)

1/2𝑛 and 𝜑
2
= ((𝑛 + 1)𝜃/𝛿)

1/2𝑛.
Completing the above integrals we obtain

𝜑 = (√
(𝑛 + 1)𝜃

𝛿
sech 𝑛√𝜃𝜉)

1/𝑛

𝜑 = −(√
(𝑛 + 1) 𝜃

𝛿
sech 𝑛√𝜃𝜉)

1/𝑛

.

(40)



Journal of Applied Mathematics 5

Noting (22), (23), and (26), we get the following solitary wave
solutions:

𝑞
1
(𝑥, 𝑦, 𝑡) = 𝑒

𝑖𝜂
(√

(𝑛 + 1) 𝜃

𝛿
sech 𝑛√𝜃𝜉)

1/𝑛

,

𝑟
1
(𝑥, 𝑦, 𝑡) =

− (𝑛 + 1) 𝛽𝜃(sech 𝑛√𝜃𝜉)
2

𝛿 (𝑝
2
+ 𝑚
2
)

+ 𝑔,

𝑞
2
(𝑥, 𝑦, 𝑡) = −𝑒

𝑖𝜂
(√

(𝑛 + 1) 𝜃

𝛿
sech 𝑛√𝜃𝜉)

1/𝑛

,

𝑟
2
(𝑥, 𝑦, 𝑡) =

− (𝑛 + 1) 𝛽𝜃(sech 𝑛√𝜃𝜉)
2

𝛿 (𝑝
2
+ 𝑚
2
)

+ 𝑔,

(41)

where 𝛿 is given by (28), 𝜃 is given by (29), 𝜂 = 𝑚𝑥 + 𝑙𝑡, and
𝜉 = 𝑝𝑥 − 𝑣𝑡.

Secondly, we will obtain the explicit expressions of trav-
eling wave solutions for (1) and (2) when 𝛿 < 0 and 𝜃 < 0.
From the phase portrait, we note that there are two special
orbits Γ

9
and Γ
10
, which have the same Hamiltonian with that

of the center point (0, 0). In (𝜑, 𝑧)-plane the expressions of the
orbits are given as

𝑧 = ±√−
𝛿

𝑛 + 1
𝜑√𝜑
2𝑛
−
(𝑛 + 1) 𝜃

𝛿
. (42)

Substituting (42) into d𝜑/d𝜉 = 𝑧 and integrating them along
the two orbits Γ

9
and Γ
10
, it follows that

±∫

+∞

𝜑

1

𝑠√𝑠
2𝑛
− (𝑛 + 1) 𝜃/𝛿

d𝑠 = √− 𝛿

𝑛 + 1
∫

𝜉

0

d𝑠,

± ∫

𝜑

𝜑
4

1

𝑠√𝑠
2𝑛
− (𝑛 + 1) 𝜃/𝛿

d𝑠 = √− 𝛿

𝑛 + 1
∫

𝜉

0

d𝑠,

(43)

where 𝜑
4
= ((𝑛 + 1)𝜃/𝛿)

1/2𝑛.
Completing the above integrals we obtain

𝜑 = ±(√
(𝑛 + 1)𝜃

𝛿
csc 𝑛√−𝜃𝜉)

1/𝑛

,

𝜑 = ±(√
(𝑛 + 1)𝜃

𝛿
sec 𝑛√−𝜃𝜉)

1/𝑛

.

(44)

Noting (22), (23), and (26), we get the following periodic
blow-up wave solutions:

𝑞
3
(𝑥, 𝑦, 𝑡) = ±𝑒

𝑖𝜂
(√

(𝑛 + 1) 𝜃

𝛿
csc 𝑛√−𝜃𝜉)

1/𝑛

,

𝑟
3
(𝑥, 𝑦, 𝑡) =

− (𝑛 + 1) 𝛽𝜃(csc 𝑛√−𝜃𝜉)
2

𝛿 (𝑝
2
+ 𝑚
2
)

+ 𝑔,

𝑞
4
(𝑥, 𝑦, 𝑡) = ±𝑒

𝑖𝜂
(√

(𝑛 + 1) 𝜃

𝛿
sec 𝑛√−𝜃𝜉)

1/𝑛

,

𝑟
4
(𝑥, 𝑦, 𝑡) =

− (𝑛 + 1) 𝛽𝜃(sec 𝑛√−𝜃𝜉)
2

𝛿 (𝑝
2
+ 𝑚
2
)

+ 𝑔,

(45)

where 𝛿 is given by (28), 𝜃 is given by (29), 𝜂 = 𝑚𝑥 + 𝑙𝑡, and
𝜉 = 𝑝𝑥 − 𝑣𝑡.

4. Numerical Simulation

We decompose the function 𝑞 in (1) in the form

𝑞 = 𝑢 + 𝑖𝑣 (46)

Substituting in (1) and (2) we have

𝑢
𝑡𝑡
− 𝑘
2
𝑢
𝑥𝑥
+ 𝑎𝑢 + 𝑏𝑟𝑣 + 𝑐(𝑢

2
+ 𝑣
2
)
𝑛

𝑢 = 0,

𝑣
𝑡𝑡
− 𝑘
2
𝑣
𝑥𝑥
+ 𝑎𝑣 + 𝑏𝑟𝑣 + 𝑐(𝑢

2
+ 𝑣
2
)
𝑛

𝑣 = 0,

𝑟
𝑡𝑡
− 𝑘
2
𝑢
𝑥𝑥
− 𝛼(𝑢

2
+ 𝑣
2
)
𝑛

𝑥𝑥
= 0.

(47)

We assume that 𝑢𝑛
𝑚
, 𝑣𝑛
𝑚
, 𝑟𝑛
𝑚
is the exact solution and 𝑈𝑛

𝑚
, 𝑉𝑛
𝑚
,

𝑅
𝑛

𝑚
is the approximate solution at the grid point (𝑥

𝑚
, 𝑡
𝑛
). The

proposed scheme can be displayed as

1

𝑘
2
𝛿
2

𝑡
𝑈
𝑛

𝑚
−
𝑘
2

ℎ
2
𝛿
2

𝑥
𝑈
𝑛

𝑚
+ 𝑎𝑈
𝑛

𝑚
+ 𝑏𝑅
𝑚,𝑛
𝑈
𝑛

𝑚

+ 𝑐((𝑈
𝑛

𝑚
)
2

+ (𝑈
𝑛

𝑚
)
2

)
𝑛

𝑈
𝑛

𝑚
= 0,

1

𝑘
2
𝛿
2

𝑡
𝑉
𝑛

𝑚
−
𝑘
2

ℎ
2
𝛿
2

𝑥
𝑉
𝑛

𝑚
+ 𝑎𝑉
𝑛

𝑚
+ 𝑏𝑅
𝑚,n𝑉
𝑛

𝑚

+ 𝑐((𝑈
𝑛

𝑚
)
2

+ (𝑉
𝑛

𝑚
)
2

)
𝑛

𝑉
𝑛

𝑚
= 0,

1

𝑘
2
𝛿
2

𝑡
𝑅
𝑛

𝑚
−
𝑘
2

ℎ
2
𝛿
2

𝑥
𝑅
𝑛

𝑚
+ 𝛼((𝑈

𝑛

𝑚
)
2

+ (𝑉
𝑛

𝑚
)
2

)
𝑛

𝑥𝑥
= 0,

(48)

where

𝛿
2

𝑡
𝑈
𝑛

𝑚
= 𝑈
𝑛+1

𝑚
− 2𝑈
𝑛

𝑚
+ 𝑈
𝑛−1

𝑚
,

𝛿
2

𝑥
𝑈
𝑛

𝑚
= 𝑈
𝑛

𝑚+1
− 2𝑈
𝑛

𝑚
+ 𝑈
𝑛

𝑚−1
.

(49)
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Figure 2: Topological solution for the Klein-Gordon-Zakharov
equations.

The similar notation for 𝛿2
𝑡
𝑉
𝑛

𝑚
, 𝛿
2

𝑥
𝑉
𝑛

𝑚
and 𝛿2
𝑡
𝑅
𝑛

𝑚
, 𝛿
2

𝑥
𝑅
𝑛

𝑚
are

𝛿
2

𝑡
𝑉
𝑛

𝑚
= 𝑉
𝑛+1

𝑚
− 2𝑉
𝑛

𝑚
+ 𝑉
𝑛−1

𝑚
,

𝛿
2

𝑥
𝑉
𝑛

𝑚
= 𝑉
𝑛

𝑚+1
− 2𝑉
𝑛

𝑚
+ 𝑉
𝑛

𝑚−1
,

𝛿
2

𝑡
𝑅
𝑛

𝑚
= 𝑅
𝑛+1

𝑚
− 2𝑅
𝑛

𝑚
+ 𝑅
𝑛−1

𝑚
,

𝛿
2

𝑥
𝑅
𝑛

𝑚
= 𝑅
𝑛

𝑚+1
− 2𝑅
𝑛

𝑚
+ 𝑅
𝑛

𝑚−1
,

(50)

The proposed scheme is implicit and can be easily solved by
the fixed point method. The scheme is second order in space
and time directions.

To get the numerical solution the initial conditions are
taken from the exact solution (21). Figure 2 displays the
numerical solutions of |𝑞(𝑥, 𝑡)| and 𝑟(𝑥, 𝑡) at 𝑛 = 1,
respectively. We choose the parameter

𝑛 = 1, 𝐾 = 1, 𝜅 = 0.5, 𝑎 = 0.5, 𝑏 = 0.5,

𝑐 = −0.5, 𝑑 = 0.5, 𝑐 = 0.5, 𝑣 = 0.6.

(51)

5. Conclusions

This paper studied the KGZ equation in (1+1)-D with power
law nonlinearity from three different avenues. First, the
topological 1-soliton solution to the equation was determined
by the aid of ansatz method. The by-product of this solution
is a couple of constraint conditions that must remain valid in
order for the solitons to exist. Subsequently, the bifurcation

analysis is carried out for this equation that leads to the phase
portraits and several other solutions to the equation, using the
travelingwave hypothesis.This leads to the solitarywaves and
periodic singular waves. Finally, the numerical simulation
that was conducted using finite difference scheme leads to the
simulations for the topological soliton solutions.

These results are pretty complete in analysis. They are
going to be extended in the future. An obvious way to expand
or generalize these results is going to extend to (2 + 1)-D.
These results will be reported soon. Another avenue to look
into this equation further is to consider the perturbation
terms and then obtain exact solution, and additionally study
the perturbed KGZ equation using other tools of integra-
bility. These include mapping method, Lie symmetries, exp-
function method, and the 𝐺/𝐺-expansion method. These
will lead to a further plethora of solutions. Such results will
be reported in the future. That is just a foot in the door.
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