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This paper presents a new numerical approach for computing the internal force and displacement of portal double-row piles used
to stabilize potential landslide. First, the new differential equations governing the mechanical behaviour of the stabilizing pile
are formulated and the boundary conditions are mathematically specified. Then, the problem is numerically solved by the high-
accuracy Runge-Kutta finite difference method. A program package has been developed in MATLAB depending on the proposed
algorithm. Illustrative examples are presented to demonstrate the validity of the developed program. In short, the proposed
approach is a practical new idea for analyzing the portal double-row stabilizing pile as a useful supplement to traditional methods
such as FEM.

1. Introduction

Double-row stabilizing piles have been widely used in
slope reinforcement engineering and treatment of landslide
geological disasters, which have some advantages such as
larger rigidity, less displacement in the top of the piles,
and large resisting force. Existing methods for the analysis
of double-row stabilizing piles can be generally classified
into the following two categories [1–6]: (1) coupled method
(continuumanalysis) that simultaneously solves pile response
and slope stability [7]; (3) uncoupled method which deals
with pile and slope separately. In the uncoupled method,
pile-soil interaction is commonly represented by equivalent
Winkler or p-y springs [8–13].

As for coupled method, the finite element method is cer-
tainly the most comprehensive approach to study pile-slope
stability. However, its use generally requires high numerical
costs and accurate measurements of material properties.This
makes the use of this method rather unattractive for practical
applications [6].

To date, in practical engineering applications, the uncou-
pled method is the most widely used approach to design the
double-row reinforcing piles to increase slope stability due to

its simplicity of use. First, the lateral force acting on the pile
segment above the slip surface due to soil movement is eval-
uated usually by the limit equilibrium method. Second, the
response of the double-row pile subjected to lateral loading
is analysed by FEM modeling it as a beam resting on linear
or nonlinear soil/rock spring supports. The FEMmodeling is
reasonably accurate but complicated and time consuming.

In this paper, a new uncoupled method to compute the
response of portal double-row piles subjected to lateral earth
pressure loading based on new boundary value problem
approach is introduced. First, the new governing differential
equations including six variables (three internal forces and
three displacements) are formulated and the boundary con-
dition is specified. Second, the high-accuracy Runge-Kutta
differential method is used to solve the corresponding system
of differential equations to obtain the pile’s internal forces
and displacements. A program for pile response analysis and
graphics edit is developed. At last, the program was verified
against the FEM analysis results in terms of pile deflection,
bendingmoment, and shear force along the length of the pile.

The objective of this study is to provide an alternative
method for the design of portal double-rowpile used for slope
stabilization or earth retaining.
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Figure 1: The uncoupled analysis model for the double-row portal
stabilizing piles.

2. Derivation of Governing
Differential Equations

In order to solve the complicated engineering problem of
the response of double-row stabilizing pile under laterally
loading by using accurately mathematical model, we often
need to define its boundary value problemwhich involves the
governing differential equations and corresponding bound-
ary conditions. Then, closed-form or numerical solutions
for the engineering problem can be obtained by many
appropriate mathematical methods.

Under the scheme of uncoupled analysis of the pile (as
shown in Figure 1), the new governing differential equations
for stabilizing piles embedded in slope will be developed
in the following according to the general principles of solid
and structural mechanics including static force equilibrium,
deformation compatibility, and constitutive relationship.

2.1.The Loading Condition. Below the slip surface, the sliding
bed is assumed to be stable and cannot move. Before the
active force induced by the sliding mass act upon the pile
segment above the slip surface, the earth pressure acting at
the front and back sides of the pile segment below the slip
surface is in equilibrium. So it can be neglected. Only the
active force induced by the movement of the sliding mass
is considered in the calculation model, which are loaded on
the pile segment above the slip surface. Their distribution
along the pile shaft can be assumed as uniform, triangular,
trapezoidal, and rectangular profiles.Then, the reaction force
acting at the pile segment below the slip surface is calculated.
These active forces and reaction forces considered are in
equilibrium [14].

2.2. The Soil-Pile Interaction Model. Due to its simplicity
and reasonable accuracy, the Winkler foundation model is

adopted in current analysis to describe the pile-soil inter-
action behavior. The Winkler method assumed that the
substratum is composed of independent horizontal springs.
Under theWinkler hypothesis, the soil reaction pressures (𝑝)
acting on the pile can be modeled by discrete independent
linear or nonlinear springs in the form of the following
equation:

𝑝 = 𝑘 ⋅ 𝑤, (1)

where 𝑘 is the spring constant, also called themodulus of hor-
izontal subgrade reaction (it has a unit of force/length3). The
main difference between the different Winkler foundation
models available is in the selection of the foundation stiffness
coefficients. 𝑝 is the horizontal soil reaction pressure (it has
a unit of force/length2). 𝑤 is the horizontal displacement (it
has a unit of length).

2.3. The New Equilibrium Differential Equations. Let us con-
sider an isolated free portion of pile, as shown in Figure 2,
having a infinitesimal length of 𝑑𝑠 and acted upon by external
distributed normal load 𝑞

𝑛
and tangential load 𝑞

𝜏
. The free

segment can be imagined to be cut out of the pile, and the
internal forces (𝑀,𝑁,𝑄) in the original pile may become
external forces on the isolated free portion.

Figure 2 also shows the coordinate system used in this
paper for introducing the governing equations.

We adopt sign conventions so that the six variables as
shown in Figure 2 are positive. The sign convention adopted
for forces is that positive sign indicates tensile axial force
𝑁, the positive shearing force 𝑄 should be directed so that
they will tend to rotate the element counterclockwise, and
the positive bending moment 𝑀 will tend to make the
element concave leftward. The sign convention adopted for
displacements is that the positive normal displacement V
points outward normal, the positive tangential displacement
𝑢 points right when facing outward normal, and the positive
𝜑 is counterclockwise. The lateral pressure 𝑞

𝑛
is considered

positive when applied from left to right. The lateral pressure
𝑞
𝜏
is considered positive when applied from up to down.
Thus, considering the equilibrium of the above infinitesi-

mal pile segment, as it bends under the action of the applied
loads (shown in Figure 2), we arrive at two force equilibrium
equations in the directions of 𝑢 and V and one moment
equilibrium equation:

(𝑁 +
𝑑𝑁

𝑑𝑠
𝑑𝑠) − 𝑁 − 𝑞

𝜏
𝑑𝑠 − 𝑘

𝑠
𝐻𝑢𝐷𝑑𝑠 = 0,

(𝑄 +
𝑑𝑄

𝑑𝑠
𝑑𝑠) − 𝑄 − 𝑞

𝑛
𝑑𝑠 − 𝑘

𝑛
𝐻V𝑏𝑑𝑠 = 0,

(𝑀 +
𝑑𝑀

𝑑𝑠
𝑑𝑠) −𝑀 + (𝑄 +

𝑑𝑄

𝑑𝑠
𝑑𝑠)

𝑑𝑠

2
+ 𝑄

𝑑𝑠

2
= 0.

(2)

Simplifying the above equations and neglecting the
higher-order term and the term with the square of the
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Figure 2: The free-body diagram of infinitesimal isolated segment
of pile.

differential, the equilibrium equations now take the following
forms:

𝑑𝑁

𝑑𝑠
= 𝑘
𝑠
𝐻𝐷𝑢 + 𝑞

𝜏
,

𝑑𝑄

𝑑𝑠
= 𝑘
𝑛
𝐻𝑏V + 𝑞

𝑛
,

𝑑𝑀

𝑑𝑠
= −𝑄,

(3)

where 𝐻 = {
1, contact,
0, noncontact, the “one” indicates that Winkler

reaction force exists and the “zero” indicates that Winkler
reaction force does not exist. 𝑆 is the position coordinate;
𝐷 is perimeter of the cross-section. 𝑏 is the width of the
cross-section, 𝑘

𝑠
is the Winkler modulus of vertical subgrade

reaction, and 𝑘
𝑛
is the Winkler modulus of horizontal

subgrade reaction.
For the sake of convenience of formula deducing, let

𝑋 = [

[

𝑁

𝑄

𝑀

]

]

; 𝑍 = [

[

𝑢

V
𝜑

]

]

; 𝑃 = [

[

𝑞
𝜏

𝑞
𝑛

0

]

]

. (4)

The set of equations of equilibrium (3) can be rewritten in
the following matrix form:

𝑑𝑋

𝑑𝑠
= 𝐵 ⋅ 𝑋 + 𝐿 ⋅ 𝑍 + 𝑃, (5)

where 𝐵 = [
0 0 0

0 0 0

0 −1 0
]; 𝐿 = [

𝑘
𝑠
𝐻𝐷 0 0

0 𝑘
𝑛
𝐻𝑏 0

0 0 0

].

2.4. Geometric and Constitutive Equations. When the defor-
mation (𝑑𝑢, 𝑑V, 𝑑𝜑) of the differential element (shown
in Figure 2) induced by the internal forces (𝑁,𝑄,𝑀) is
considered given, the corresponding strains can be expressed
as

𝑑𝑈

𝑑𝑠
= (

𝑑𝑢

𝑑𝑠
,
𝑑V

𝑑𝑠
,
𝑑𝜑

𝑑𝑠
) . (6)

According to the related theory of elastic beam, the internal
forces (𝑁,𝑄,𝑀) can be related to strains as in the following
linear constitutive equation:

𝑑𝑈

𝑑𝑠
=

[
[
[
[
[
[
[
[

[

𝑑𝑢

𝑑𝑠

𝑑V

𝑑𝑠

𝑑𝜑

𝑑𝑠

]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[

[

1

𝐸𝐴
0 0

0
𝛼

𝐺𝐴
0

0 0
1

𝐸𝐼

]
]
]
]
]
]
]

]

⋅ [

[

𝑁

𝑄

𝑀

]

]

, (7)

where 𝛼 is the constant related to the shape of pile cross-
section (𝛼 = 6/5 for rectangular cross-section; 𝛼 = 10/9 for
circular cross-section);𝐴 is the cross-sectional area; 𝐸𝐼 is the
flexural rigidity of the pile’s cross-section.

Considering the deformation, 𝑑𝑈 can be decomposed
into two parts. One part is the 𝑑𝑍 induced by the displace-
ment on its direction and another part is the projection of
other displacement onto this direction which takes the form
𝐵𝑍𝑑𝑠, where 𝐵 is the a undetermined third-order square
matrix. Then, the deformation 𝑑𝑈 can be expressed as

𝑑𝑈 = 𝑑𝑍 + 𝐵𝑍𝑑𝑠. (8)

Applying the principle of virtual work to the isolated dif-
ferential element of pile (shown in Figure 2), 𝐵 can be
determined. We suppose that each point of the body is
given an infinitesimal virtual displacement 𝛿𝑍 satisfying
displacement boundary conditions where prescribed. The
virtual deformation associated with the infinitesimal virtual
displacement is 𝛿𝑈. The virtual work of the external surface
forces is −∫𝑃

𝑇

(𝛿𝑍)𝑑𝑠, where 𝑃 = 𝑃 + 𝐿𝑍. The virtual
work of the internal forces is ∫𝑋

𝑇
𝑑(𝛿𝑈). By equating the

external work to the internal work, we have −∫𝑃
𝑇

(𝛿𝑍)𝑑𝑠 =

∫𝑋
𝑇
𝑑(𝛿𝑈). Substituting (5) and (8) into the above equation

and simplifying yields ∫𝑋
𝑇
(𝐵
𝑇
− 𝐵)𝛿𝑍𝑑𝑠 = 0. Since this

equation is satisfied for arbitrary 𝛿𝑍, the terms in the brackets
in the integral must vanish at every point which means that
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𝐵 = 𝐵
𝑇. At last, we develop the following geometric and

constitutive equations:

𝑑𝑢

𝑑𝑠
=

𝑁

𝐸𝐴
,

𝑑V

𝑑𝑠
=

𝛼𝑄

𝐺𝐴
+ 𝜑,

𝑑𝜑

𝑑𝑠
=

𝑀

𝐸𝐼
.

(9)

2.5. Matrix Form of the Governing Equations. For the sake
of convenience of problem solving, combining the three
equilibriumdifferential equations (3) and the three geometric
and constitutive equations (9) leads to a system of six
equations:

𝑑𝑁

𝑑𝑠
= 𝑘
𝑠
𝐻𝐷𝑢 + 𝑞

𝜏
,

𝑑𝑄

𝑑𝑠
= 𝑘
𝑛
𝐻𝑏V + 𝑞

𝑛
,

𝑑𝑀

𝑑𝑠
= −𝑄,

𝑑𝑢

𝑑𝑠
=

𝑁

𝐸𝐴
,

𝑑V

𝑑𝑠
=

𝛼𝑄

𝐺𝐴
+ 𝜑,

𝑑𝜑

𝑑𝑠
=

𝑀

𝐸𝐽
.

(10)

Let 𝐾 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0 0 0 𝐻𝑘
𝑠
𝐷 0 0

0 0 0 0 𝐻𝑘
𝑛
𝑏 0

0 −1 0 0 0 0

1

𝐸𝐴
0 0 0 0 0

0
𝛼

𝐺𝐴
0 0 0 1

0 0
1

𝐸𝐼
0 0 0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝑋 = {𝑁 𝑄 𝑀 𝑢 V 𝜑}
𝑇

,

𝑝 = {𝑞𝜏 𝑞
𝑛

0 0 0 0}
𝑇

.

(11)

Then, we can use matrix notation to present the above
equations (10) in the form:

𝑑𝑋

𝑑𝑠
= 𝐾𝑋 + 𝑝 = 𝐹 (𝑋, 𝑠) , (12)

where 𝐾 is the coefficients square matrix of six order and 𝑋

and 𝑝 represent two column matrices.
This system of six independent differential equations can

be solved for six unknown functions (three independent
forces and three independent displacements).

3. Boundary Conditions

Asmentioned above, there are total six unknowns to be deter-
mined (𝑁,𝑄,𝑀, 𝑢, V, 𝜑). Therefore, six boundary conditions
are needed for the problem solving.

The boundary conditions for (12) are determined accord-
ing to the way in which the pile’s head and base are supported
or restrained.There are three conditions at the base point and
three conditions at the head point. We use matrix notation to
present these boundary conditions in the following form:

𝐶𝑋
󵄨󵄨󵄨󵄨󵄨𝑆=0

= 𝑜,

𝐷𝑋
󵄨󵄨󵄨󵄨󵄨𝑆=𝐿

= 𝑜,

(13)

where 𝑆 = 0 indicates the beginning point of calculation
(the pile’s base point), 𝑆 = 𝐿 indicates the end point of
calculation (the pile’s head point),𝐶 is thematrix of boundary
condition on the beginning point, and 𝐷 is the matrix of
boundary condition on the end point.They are 3×6matrices.
In this study, the following possible pile end conditions were
considered.

(1) Free head (allows both displacement and rotation):
𝑁 = 𝑄 = 0, 𝑀 = 0. The corresponding matrix of
boundary condition is

[

[

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

]

]

×

{{{{{{{

{{{{{{{

{

𝑁

𝑄

𝑀

𝑢

V
𝜑

}}}}}}}

}}}}}}}

}

= 𝑜. (14)

(2) In case of bottom end hinged (allows rotation without
displacement): 𝑢 = V = 0,𝑀 = 0. The corresponding
matrix of boundary condition is

[

[

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

]

]

×

{{{{{{{

{{{{{{{

{

𝑁

𝑄

𝑀

𝑢

V
𝜑

}}}}}}}

}}}}}}}

}

= 𝑜. (15)

(3) In case of bottom end fixed (allows neither displace-
ment nor rotation): 𝑢 = V = 0, 𝜑 = 0. The
corresponding matrix of boundary condition is

[

[

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

]

]

×

{{{{{{{

{{{{{{{

{

𝑁

𝑄

𝑀

𝑢

V
𝜑

}}}}}}}

}}}}}}}

}

= 𝑜. (16)

(4) In case of bottom end partially hinged (allows rota-
tion without vertical displacement): 𝑢 = 0, 𝑄 = 0,
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and 𝑀 = 0. The corresponding matrix of boundary
condition is

[

[

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

]

]

×

{{{{{{{

{{{{{{{

{

𝑁

𝑄

𝑀

𝑢

V
𝜑

}}}}}}}

}}}}}}}

}

= 𝑜. (17)

(5) Elastic vertical support at the bottom end:𝑁 = 𝐾V ⋅ 𝑢 ⋅

Area, 𝑄 = 0, and 𝑀 = 0. The corresponding matrix
of boundary condition is

[

[

1 0 0 −𝐾V ⋅ Area 0 0

0 1 0 0 0 0

0 0 1 0 0 0

]

]

×

{{{{{{{

{{{{{{{

{

𝑁

𝑄

𝑀

𝑢

V
𝜑

}}}}}}}

}}}}}}}

}

= 𝑜, (18)

where 𝐾V is the modulus of vertical compressibility. Area is
the cross-sectional area of the pile.

4. Definition of Boundary Value Problem

Next, we impose the boundary conditions (13) at the pile
head and base upon the derived new governing differential
equations (12) to define a boundary value problem of the
following equations:

𝑑𝑋

𝑑𝑠
= 𝐾𝑋 + 𝑝,

𝐶𝑋|𝑆=0 = 𝑜,

𝐷𝑋|𝑆=𝐿 = 𝑜.

(19)

To this end, the response of double-row portal stabilizing pile
is mathematically idealised as the boundary value problem of
(19).

Thus, many numerical methods to solve the ordinary
differential equations can be adopted to solve the boundary
value problem of (19).

It should be noted that the existence and uniqueness
of solution for the boundary value problem of (19) should
be mathematically proved. This matter is however outside
the scope of the writer’s major. According to the physical
character of the problem, we can imagine that the solution
exists and is unique. The solution can be validated through
comparative studies.

5. Method of Solution

5.1. Uniformity Preprocessing. The orders of magnitude of the
section internal forces (𝑁,𝑄,𝑀) are so much higher than
those of the displacements (𝑢, V, 𝜑) that numerical solving of
the equations may meet singularity difficulty. So for reasons
of numerical stability, it is necessary to perform uniformity
preprocessing for the order ofmagnitude of the element in the

coefficient matrix 𝐾. We multiply the displacements (𝑢, V, 𝜑)
by 𝐸 and substitute the original displacement variables by
the expressions (𝐸𝑢, 𝐸V, 𝐸𝜑). So, we redefine two variables as
follows:

𝑋 =

{{{{{{{

{{{{{{{

{

𝑁

𝑄

𝑀

𝑢

V
𝜑

}}}}}}}

}}}}}}}

}

=

{{{{{{{

{{{{{{{

{

𝑁

𝑄

𝑀

𝐸𝑢

𝐸V
𝐸𝜑

}}}}}}}

}}}}}}}

}

,

𝐾̃ =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0 0 0
𝐻𝑘
𝑠
𝐷

𝐸
0 0

0 0 0 0
𝐻𝑘
𝑛
𝑏

𝐸
0

0 −1 0 0 0 0

1

𝐴
0 0 0 0 0

0
𝐸𝛼

𝐺𝐴
0 0 0 1

0 0
1

𝐼
0 0 0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(20)

Finally, we obtain the following system of ordinary
differential equations:

𝑑𝑋

𝑑𝑠
= 𝐾̃𝑋 + 𝑝,

𝐶 ⋅ 𝑋
󵄨󵄨󵄨󵄨󵄨𝑆=0

= 𝑜,

𝐷 ⋅ 𝑋
󵄨󵄨󵄨󵄨󵄨𝑆=𝐿

= 𝑜.

(21)

This system of six independent differential equations
subjected to boundary conditions can be numerically solved
for six unknown functions (three forces and three displace-
ments).

5.2.TheRunge-Kutta Finite Difference Algorithm. TheRunge-
Kutta algorithm is commonly used for the solution of the
ordinary differential equation of the form 𝑑𝑋/𝑑𝑠 = 𝐹(𝑋, 𝑠).
So, it is chosen to solve (21).

5.2.1. Derivation of the Recursion Formula. The following
finite difference formula (22) is one format of the Runge-
Kutta methods:

𝑋
𝑛+1

= 𝑋
𝑛
+
1

6
(𝐾
1
+ 2𝐾
2
+ 2𝐾
3
+ 𝐾
4
) ,

𝐾
1
= 𝛿 ⋅ 𝐹 (𝑋

𝑛
, 𝑠
𝑛
) ,

𝐾
2
= 𝛿 ⋅ 𝐹 (𝑋

𝑛
+
1

2
𝐾
1
, 𝑠
𝑛
+
1

2
𝛿) ,

𝐾
3
= 𝛿 ⋅ 𝐹 (𝑋

𝑛
+
1

2
𝐾
2
, 𝑠
𝑛
+
1

2
𝛿) ,

𝐾
4
= 𝛿 ⋅ 𝐹 (𝑋

𝑛
+ 𝐾
3
, 𝑠
𝑛
+ 𝛿) .

(22)
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The Runge-Kutta algorithm of this type (22) is a numeri-
cal method of fifth order, where 𝛿 is the stepsize of difference
and 𝐹(𝑋, 𝑠) = 𝐾𝑋 + 𝑝. For convenience of computation, this
formulation may be rewritten in the following form:

𝑋
𝑛+1

= 𝐺
𝑛
𝑋
𝑛
+ 𝐻
𝑛
𝛿. (23)

As we can see, the value of function at point (𝑛 + 1) can
be determined from the value of function at point (𝑛), where
𝑛 = 0 represents the beginning point of calculation and 𝑛 = 𝑚

represents the end point of calculation.
In the above equation, 𝐺

𝑛
and 𝐻

𝑛
can be obtained from

the following recursion formula:

𝐾
(𝑗)

𝑛
= 𝐾̃ (𝑠

𝑛
+ 𝛿
𝑗
) , 𝑃

(𝑗)

𝑛
= 𝑝 (𝑠

𝑛
+ 𝛿
𝑗
) ,

𝛼
1
= 𝛼
2
= 𝛼
3
=

1

2
, 𝛼

4
= 1,

𝛽
1
= 𝛽
4
=

1

6
, 𝛽

2
= 𝛽
3
=

1

3
,

𝛿
𝑗
= (

𝑗

∑

𝑘=1

𝛾
𝑘
)𝛿, 𝛾

1
= 𝛾
3
= 0, 𝛾

2
= 𝛾
4
=

1

2
,

󳨐⇒ 𝛿
1
= 0, 𝛿

2
= 𝛿
3
=

1

2
𝛿, 𝛿

4
= 𝛿,

(24)

𝐺
𝑛
= 𝐼 +

4

∑

𝑗=1

𝛽
𝑗
𝐺
(𝑗)
, 𝐻

𝑛
=

4

∑

𝑗=1

𝛽
𝑗
𝐻
(𝑗)
,

𝐺
(𝑗)

= (𝛿𝐾
(𝑗)
) (𝐼 + 𝛼

𝑗
𝐺
(𝑗−1)

) , 𝐺
(0)

= 0,

𝐻
(𝑗)

= (𝛿𝐾
(𝑗)
) 𝛼
𝑗
𝐻
(𝑗−1)

+ 𝑃
(𝑗)
, 𝐻
(0)

= 0,

(25)

where 𝐼 is the identity matrix.

5.2.2. Determination of the Initial Vector𝑋
0
. The initial value

is the start point of the recursion formula. Now, we discuss
in the following how to obtain the initial vector 𝑋

0
by using

the recursion formula of (23) and imposing the boundary
conditions at pile head and base.

Considering the recursion formula of (23), 𝑋
𝑛
can be

expressed in terms of𝑋
0
as follows:

𝑋
𝑛
= 𝐷
(𝑛)
𝑋
0
+ 𝐹
(𝑛)
. (26)

In the case of 𝑛 = 0, we have 𝐷
(0)

= 𝐼, 𝐹
(0)

= 0 and
substitute it into the recursion formula of (23). We get

𝑋
𝑛+1

= 𝐺
𝑛
(𝐷
(𝑛)
𝑋
0
+ 𝐹
(𝑛)
) + 𝐻

𝑛
𝛿. (27)

It can be rewritten as follows:

𝑋
𝑛+1

= (𝐺
𝑛
𝐷
(𝑛)
)𝑋
0
+ (𝐺
𝑛
𝐹
(𝑛)

+ 𝐻
𝑛
𝛿) ,

𝑋
𝑛
= 𝐷
(𝑛)
𝑋
0
+ 𝐹
(𝑛)

󳨐⇒ 𝑋
𝑛+1

= 𝐷
(𝑛+1)

𝑋
0
+ 𝐹
(𝑛+1)

,

𝑋
𝑛+1

= (𝐺
𝑛
𝐷
(𝑛)
)𝑋
0
+ (𝐺
𝑛
𝐹
(𝑛)

+ 𝐻
𝑛
𝛿) ,

𝑋
𝑛+1

= 𝐷
(𝑛+1)

𝑋
0
+ 𝐹
(𝑛+1)

.

(28)
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Figure 3: Scheme of local coordinate system transformation
between pile and connection beam.

Comparing the above two equations, the recursion for-
mula for𝐷(𝑛) and 𝐹

(𝑛) is obtained as follows:

𝐷
(0)

= 𝐼, 𝐷
(𝑛+1)

= 𝐺
𝑛
𝐷
(𝑛)
,

𝐹
(0)

= 0, 𝐹
(𝑛+1)

= 𝐺
𝑛
𝐹
(𝑛)

+ 𝐻
𝑛
𝛿.

(29)

Now considering the case of boundary point: 𝑋
𝑚

=

𝐷
(𝑚)

𝑋
0
+ 𝐹
(𝑚), we substitute the boundary conditions at end

point 𝐶𝑋
0
= 𝑜, 𝐷𝑋

𝑚
= 𝑜 into the above equation. This leads

to the equation to solve for𝑋
0
:

[
𝐶

𝐷𝐷
(𝑚)]𝑋0 = [

𝑜

−𝐷𝐹
(𝑚)] . (30)

The above set of linear algebraic equations can be solved
for 𝑋

0
by using the method of Gaussian elimination with

pivot selection. Once 𝑋
0
is known, 𝑋

𝑛
can be obtained in

sequence using the recursion formula of (23).

5.2.3. Coordinate Transformation between Pile and Beam.
When solving the problem of double-row portal piles using
the recursion formula of (23), due to the direction change
of the axes of the pile and the beam at the connection point
(shown in Figure 3), first we need to distinguish 𝐾 and 𝑝 in
the recursion formula for the two connected segments. And
then in order to satisfy the equilibrium of internal forces and
maintain the continuity of displacements at the connection
point, we need to introduce the so-called connection matrix
to the corresponding formula when dealing with𝐷

𝑚
,𝐹
𝑚
, and

𝑋
𝑛
, recursively.
The centroidal axes’ rotation from pile to beam at con-

nection pointmeansmathematically that the local coordinate
system rotates clockwise by 𝛽 degree at the connection point
(shown in Figure 3).
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According to the principle of equilibrium of internal
forces, we get

[
𝑁

𝑄
] = [

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 ] [

𝑁

𝑄
] . (31)

And the bending moment remains unchanged.
According to the principle of vector analysis, we get

[
𝑢

V
] = [

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 ] [

𝑢

V
] . (32)

And the rotation displacement remains unchanged.
Combining the above equations, the corresponding

transformation matrix for the local coordinate system rotat-
ing clockwise by 𝛽 degree can be expressed as follows:

[
[
[
[
[
[
[
[
[

[

𝑁
𝑛

𝑄
𝑛

𝑀
𝑛

𝑢
𝑛

V
𝑛

𝜑
𝑛

]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[

[

cos𝛽 − sin𝛽 0 0 0 0

sin𝛽 cos𝛽 0 0 0 0

0 0 1 0 0 0

0 0 0 cos𝛽 − sin𝛽 0

0 0 0 sin𝛽 cos𝛽 0

0 0 0 0 0 1

]
]
]
]
]
]
]

]

×

[
[
[
[
[
[
[
[

[

𝑁
𝑛

𝑄
𝑛

𝑀
𝑛

𝑢
𝑛

V
𝑛

𝜑
𝑛

]
]
]
]
]
]
]
]

]

,

𝑋
𝑛
= 𝐶
𝑛
⋅ 𝑋
𝑛
.

(33)

As we can see, the above connection matrix is the so-
called orthogonal matrix whose inverse is its transposed
matrix.

As shown in Figure 3, the node of difference (no. 𝑛) is the
connection node. First we need to distinguish𝐾 and 𝑝 in the
recursion formula for the two connected segments and then
insert the connection matrix for transformation from 𝑋

𝑛
to

𝑋
𝑛
when dealing with the 𝐷

𝑚
, 𝐹
𝑚
, and 𝑋

𝑛
, recursively. The

detailed procedure is as follows.
(1) For the calculation of𝑋

𝑛
,

𝑋
𝑖+1

= 𝐺
𝑖
𝑋
𝑖
+ 𝐻
𝑖
𝛿, (𝑖 = 1, 2, . . . , 𝑛 − 1) (34)

𝑋
𝑛
= 𝐶
𝑛
𝑋
𝑛
= 𝐶
𝑛
(𝐺
𝑛−1

𝑋
𝑛−1

+ 𝐻
𝑛−1

𝛿), where 𝐶
𝑛
is

the transformation matrix for point 𝑛. Thus, 𝑋
𝑛+1

=

𝐺
𝑛
𝑋
𝑛
+ 𝐻
𝑛
𝛿. Next,

𝑋
𝑖+1

= 𝐺
𝑖
𝑋
𝑖
+ 𝐻
𝑖
𝛿, (𝑖 = 𝑛 + 1, 𝑛 + 2, . . . 𝑚) , (35)

where𝑚 indicates the end point of calculation.
(2) For the calculation of𝐷

𝑚
: because𝑋

𝑛
= 𝐷
(𝑛)
𝑋
0
+𝐹
(𝑛),

and
𝑋
𝑛+1

= 𝐺
𝑛
𝑋
𝑛
+ 𝐻
𝑛
𝛿

= 𝐺
𝑛
(𝐶
𝑛
𝑋
𝑛
) + 𝐻
𝑛
𝛿

= 𝐺
𝑛
(𝐶
𝑛
(𝐷
(𝑛)
𝑋
0
+ 𝐹
(𝑛)
)) + 𝐻

𝑛
𝛿

= 𝐺
𝑛
𝐶
𝑛
𝐷
(𝑛)
𝑋
0
+ 𝐺
𝑛
𝐶
𝑛
𝐹
(𝑛)

+ 𝐻
𝑛
𝛿

= 𝐷
(𝑛+1)

𝑋
0
+ 𝐹
(𝑛+1)

󳨐⇒ {
𝐷
(𝑛+1)

= 𝐺
𝑛
𝐶
𝑛
𝐷
(𝑛)

𝐹
(𝑛+1)

= 𝐺
𝑛
𝐶
𝑛
𝐹
(𝑛)

+ 𝐻
𝑛
𝛿,

(36)

So, the above procedure also applies to calculation of
𝐷
(𝑚) as follows:

𝐷
(𝑖+1)

= 𝐺
𝑖
𝐷
(𝑖)
, (𝑖 = 1, 2, . . . , 𝑛 − 1) ,

𝐷
(𝑛+1)

= 𝐺
𝑛
𝐶
𝑛
𝐷
(𝑛)
,

𝐷
(𝑖+1)

= 𝐺
𝑖
𝐷
(𝑖)
, (𝑖 = 𝑛 + 1, 𝑛 + 2, . . . 𝑚) .

(37)

(3) For the calculation of 𝐹
𝑚
,

𝐹
(𝑖+1)

= 𝐺
𝑖
𝐹
(𝑖)
+ 𝐻
𝑖
𝛿, (𝑖 = 1, 2, . . . , 𝑛 − 1) ,

𝐹
(𝑛+1)

= 𝐺
𝑛
𝐶
𝑛
𝐹
(𝑛)

+ 𝐻
𝑛
𝛿,

𝐹
(𝑖+1)

= 𝐺
𝑖
𝐹
(𝑖)
+ 𝐻
𝑖
𝛿, (𝑖 = 𝑛 + 1, 𝑛 + 2, . . . 𝑚) ,

(38)

where𝑚 denotes the end point of calculation.

5.2.4. The Solution Flow Process. In short, the proposed
solution procedure involves four main steps:

(1) calculating the value of 𝐺
𝑛
and 𝐻

𝑛
using the given

Equation (25);
(2) calculating 𝐷

(𝑚) and 𝐹
(𝑚) using the given recursion

formula of (29);
(3) calculating the vector 𝑋

0
by solving linear algebraic

Equations (30);
(4) calculating 𝑋

𝑛
using the given recursion formula of

(23).

Because the equations and solution formula are all given
in form of matrices, a simple computer program has been
written on the platform of MATLAB to run this procedure.
At last, we can get the shear, bending-moment, and deflection
diagram along the pile.

6. Verification

The practical examples of portal double-row piles used to
stabilize an potential landslide (shown in Figure 4) are con-
sidered herein to verify the developed numerical calculation
techniques. Soil strength parameters used in the stability
analysis are from laboratory shear testing on the undisturbed
soil samples. The resisting (shear) force required to achieve
the desired safety factor and transferred by the pile is
estimated to be 2147 kN/m. Before the pile is installed, the
slope is approaching limit state and the safety factor can be
assumed to be one. The values of 𝑐 and 𝜑 can be determined
based on experiment data and satisfying this limit state
condition. Then, the required resisting force 2147 kN/m can
be obtained using back analysis.When this additional force is
applied to the specified place of the landslide, the safety factor
calculated using the limit equilibrium method can achieve
the desired value 1.3. The manual digging discrete reinforced
concrete piles were designed to be installed at a spacing of
4m to increase the factor of safety of the whole slope to the
required value of 1.3.
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Figure 4: Scheme of portal double-row piles used to stabilize a landslide (units: m).
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Figure 5: The conceptual calculation model for portal double-row
stabilizing pile.

The front row pile has a length 𝐿 = 16.0m and sectional
dimension 1.5 × 2.0m. The length of the portion embedded
into the sliding surface is 6.0m. The back row pile has a
length 𝐿 = 37.0m and sectional dimension 1.5 × 2.8m.
The length of the portion embedded into the sliding surface
is 18.0m. The sectional dimension of the connection beam
is 0.8 × 0.8m. The pile is constructed using C30 concrete
(assuming that concrete does not crack during working). A
lateral force 𝐹 = 2147 × 4 kN is assumed to act upon the pile
segment above the sliding surface. The pressure distribution
is considered to have a rectangular shape, as proposed by the
Chinese design code (Code for design on retaining structures
of railway subgrade no. TB10025-2006).

The conceptual calculation model used to simulate the
lateral response of the pile is shown in Figure 5.The boundary
condition at the pile base is considered as free head which
allows both lateral displacement and rotation.

For simplicity of program editing, the friction force
along the pile-soil interface can be neglected. The modulus
of horizontal subgrade reaction for the mudstone below
the slip surface is listed in Table 1 for the three different

Table 1: Parameters of material properties.

Young’s
modulus
(GPa)

Shear
modulus
(GPa)

Modulus of
subgrade reaction

(MPa/m)
C30 concrete 30 12 /
Completely decomposed
mudstone / / 80

Intensely weathered
mudstone / / 110

Moderately weathered
mudstone / / 150

mudstone layers. The coefficient of subgrade reaction was
determined according to the suggestions for the mudstone in
the related Chinese design code and in situ tests. The related
Chinese design code provides detailed experiment procedure
to determine the modulus of horizontal subgrade reaction.

Then, the developed method is applied to analyze the
lateral response of the double-row pile which is also com-
puted by the FEM program we developed. We employ an
elastic beam column element tomodel the pile and horizontal
spring element to represent the reactions of the surrounding
soil in the FEM model. Comparisons of shear force, bending
moment, and deflection of the pile between boundary value
method (BVM) and FEM are presented in Figures 6 and 7.
Complete agreement between them can be observed.

Through the above comparative studies, it has been found
that the program we developed works very well and can
replace the existing numerical methods that have been used
to design the portal double-row stabilizing pile.

7. Summary and Conclusions

In this paper, a new numerical uncoupled method for
calculating the response of portal double-row stabilizing
piles is proposed. The theoretical background and a detailed
derivation of the proposed numerical solution scheme are
described. The feasibility of the method developed was
verified using the comparative case study. The proposed
method has more higher modeling and computing efficiency
than the FEM and can be an alternative method for analyzing
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Figure 6: Comparison of internal force and deflection of front row pile between the boundary value method and FEM.
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Figure 7: Comparison of internal force and deflection of back row pile between the boundary value method and FEM.

the behavior of portal double-row piles used for slope
stabilization.
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