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Based on the hypothesis that the penetration of a single pile can be simulated by a series of spherical cavity expansions, this paper
presents an analytical solution of cavity expansion near the sloping ground. Compared with the cavity expansion in the half-space,
the sloping free boundary has been taken into account as well as the horizontal free boundary. The sloping and horizontal free
surfaces are considered by the introduction of a virtual image technique, the harmonic function, and the Boussinesq solution. The
results show that the sloping free boundary and the variation of the inclination angle have pronounced influences on the distribution
of the stress and displacement induced by the spherical cavity expansion. The present solution provides a simplified and realistic
theoretical method to predict the soil behaviors around the spherical cavity near the sloping ground.The approach can also be used
for the determination of the inclination angle of the slope according to the maximum permissible displacement.

1. Introduction
There aremany situations where foundations need to be loca-
ted on the top of a slope, such as the piled bridge abutment
adjacent to a slope crest. Hence, pile installation in sloping
ground has attracted wide concerns [1–3]. In contrast to the
horizontal ground surface case, the boundary effects of a
slope should be considered for situations of piles embedded
adjacent to the slope. The existing boundary not only affects
the bearing capacity of piles, but also adds the risk of slope
failure [4]. For instance, a riverbank dike, located along the
Bailianjing River in Shanghai, was damaged by pile driving
in soft clay during the construction of a newly elevated dike
[5].

Following the early suggestion [6, 7], solutions of the
limit pressures of spherical and cylindrical cavities are used
to predict the end bearing and shaft capacities of piles [8, 9],
as well as the stress fields and lateral displacements of the
surrounding subsoil induced by installation of a pile [10–13].
However, the solutions of a cavity expansion in an infinite
medium do not satisfy the stress conditions at the free surface
during the pile installation. Sagaseta et al. [14] and Sagaseta
[15] considered the problem as strain controlled and obtained
strains by using only the incompressibility condition. The

presence of the top free surface was considered by means
of a virtual image technique and some results for the elastic
half-space. Besides, Keer et al. [16] derived a solution for the
expansion of spherical cavity in a half-space by using the
image sourcemethod [17] and the concept of cavity expansion
source [18]. These methods can be well used to analyze the
boundary effects of the free surface of the half-space, but
they are not directly applicable to cavity expansion near a
slope. Compared with cavity expansion in a semi-infinite
half-space, the slope surface should be taken into account.

In this paper, the expansion caused by pile tip is simulated
as a spherical cavity expansion. Theoretical solutions for
the expansion of a single spherical cavity near slope are
derived by using the virtual image approach. Meanwhile, the
correction stress functions and the Boussinesq solutions are
introduced to consider the effects of both horizontal ground
surface and slope surface in this analysis.

2. Basic Theories and Geometry of
the Problem

The concept of the cavity expansion source was first used by
Hopkins [18]. The model shown in Figure 1 is a cavity under
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Figure 1: Cavity expansion source induced by the uniform pressure
on the internal spherical surface.

a uniform pressure 𝑞 on the internal spherical surface with
radius 𝑎.

The fields of stress and displacement induced by the
pressure are as follows:
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where the 𝑅 is the distance between the center and the
calculation point, the 𝐺 is the shear modulus of the soil, and
the𝜎
𝑅
,𝜎
𝜑
, and𝜎

𝜃
refer to radial, hoop, and tangential stresses,

respectively. Due to the spherical symmetry, the shear stresses
are equal to zero, that is, 𝜏

𝑅𝜑
= 𝜏
𝑅𝜃
= 𝜏
𝜑𝜃
.

The expansion caused by the pile tip is usually simulated
as a spherical cavity expansion [19, 20]. Hence, attention will
be paid to the solutions of a single cavity expansion adjacent
to a slope. As shown in Figure 2, the depth of the cavity below
the horizontal ground surface is denoted by ℎ, and the angle
between the slope and vertical direction is denoted by 𝛽.
Unlike cavity expansion in an infinite medium, the analytical
solutions of cavity problem near a slope are currently only
possible in elastic materials. Accordingly, the soil is assumed
to be an isotropic, homogeneous, and linear elastic material,
and only small strains occur during the process of the
cavity expansion. For simplicity, the gravitational stresses are
ignored.

3. The Solution Method

3.1. The Expansion of a Spherical Cavity and Its Image in the
Half-Space. The theoretical solution for the expansion of a
single spherical cavity in a half-space has been presented by
Keer et al. [16], where the free surface of the half-space is
horizontal (𝑧 = 0). Similarly, the solutions can also be derived
when the free surface is vertical (𝑟 = 0). Taking the vertical
surface as the plane of symmetry, another virtual spherical
cavity is put at the image point which is shown in Figure 3.
The coordinate of the calculation point 𝑝 is (𝑟, 𝑧), and 𝑡 is the
horizontal distance between the center of spherical cavity and
the vertical free surface. 𝑅

1
is the distance from the spherical

o
t

z

𝛽

r

h

q

a

Expansion of
a spherical

cavity

Ground

Slope

Figure 2: Expansion of a spherical cavity near the sloping ground.
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Figure 3: A cavity expansion source and its image.

cavity to point 𝑝, and 𝑅
2
is the distance from the image to

point 𝑝. 𝜑
1
and 𝜑

2
are the angles from 𝑟 direction to 𝑅

1
and

𝑅
2
, respectively.
The stress and displacement components of the cavity

expansion in a cylindrical coordinate system can be written
as

𝜎
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By substituting (1) to (3) into (4) to (7) and using the
principle of superposition, the stress and displacement of the
spherical cavity and its image in the cylindrical coordinate are
as follows:
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Figure 4: The expansion of the single spherical cavity near a slope. (a) The image source is located above the ground surface. (b) The image
source is located on the ground surface. (c) The image source is located below the ground surface.
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where 𝑅
1
= √(𝑡 + 𝑟)

2
+ 𝑧2 and 𝑅

2
= √(𝑡 − 𝑟)

2
+ 𝑧2.

The horizontal ground and the slope are both free
surfaces, on which the normal and shear stresses are zero.
Because of the symmetry, the source and its image produce
zero shear stress (𝜏

𝑟𝑧
= 0) and a nonzero normal stress

(𝜎
𝑟
̸= 0) on the free surface 𝑟 = 0. Thus, the presence of the

normal stress violates the free surface boundary condition
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where 𝑅
0
= √𝑡2 + 𝑧2.

3.2. The Expansion of a Spherical Cavity and Its Image Near
a Slope. The boundary effects of both ground surface and
slope should be investigated during the analysis of the cavity
expansion near the sloping ground. The problem turns to
be more difficult due to the increase of the slope boundary.
Similarly, the virtual image technique is employed to consider
the boundary effects of the slope. Taking the slope as the plane
of symmetry, the image source is set at the image point as
shown in Figure 4.

The solutions of the two cavities expansion (the actual
spherical cavity and its virtual image) can be obtained
by the principle of superposition. As a result, the stress
and displacement components in the cylindrical coordinate
system are shown to be
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where the cavity depth below the ground surface is denoted
by ℎ, the distance from the source 𝑜

1
to the calculation point

𝑝 is𝑅
3
, and the image 𝑜

2
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4
. According to the

relationship of geometry shown in Figure 4, the expressions
for 𝑅
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With the increasing of depth of the spherical cav-
ity, the image cavity gradually moves from above ground
(Figure 4(a)) to the ground below (Figure 4(c)). Accordingly,
the expressions of 𝑅

3
and 𝑅

4
will be changed with the depth

of cavities. Specifically, when the virtual image cavity is just
on the ground surface as shown in Figure 4(b), the 𝑅

4
can be

simplified to be
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𝑚 = 2 (ℎ tan𝛽 + 𝑡) cos2𝛽, (23)

𝑛 = (ℎ tan𝛽 + 𝑡) sin 2𝛽, (24)

where 𝑚 and 𝑛 are defined as the horizontal (𝑟 direction)
and vertical (𝑧 direction) distances between the source and
its image, respectively.

3.3. The Correction of the Stresses on the Horizontal Ground.
According to the models shown in Figure 4, the actual
expansion cavity and its image do produce not only nonzero
normal stress but also shear stress on the horizontal ground
surface 𝑧 = 0, which can be shown to be as follows:
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2.
In order to satisfy the condition of the free horizontal

boundary (𝑧 = 0), the different correction functions are
introduced to deal with the normal stress (see (25)) and
shear stress (see (26)) on the boundary. Based on the theory
of superposition, the stresses on the ground surface can be
divided into two parts:

(i) only normal stress on the horizontal ground surface:
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(ii) only shear stress on the horizontal ground surface:
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Using the axially symmetric stress function 𝑓(𝑟, 𝑧) of
Kassir and Sih [21] in the first part (i), the corresponding
stress and displacement solutions are written as follows:
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Thus, the normal stress on the horizontal ground surface
𝑧 = 0 could be eliminated by the stress function 𝑓 with accu-
rate value of 𝐴. According to the following equation:
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it can be obtained that
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𝑎
3
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Substituting the above expression of𝐴 back into (33), one
has
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and then the stress and displacement components can be
obtained by substituting (39) into (27) to (32).

For the second part (ii), there is only shear stress on the
horizontal ground surface. In the same way, the stress har-
monic function 𝑔(𝑟, 𝑧) is given to eliminate the shear on the
boundary, and the solutions of the stress and displacement
are as follows:
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Similarly, the expression of stress function can be written
as follows:
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𝜎
(2)

𝑧

𝑧=0
= 0,

𝜏
(2)

𝑟𝑧

𝑧=0
= 2𝐺𝐵[

3ℎ (𝑡 + 𝑟)

𝑅
3𝑡

+
3 (ℎ − 𝑛) (𝑡 + 𝑟 − 𝑚)

𝑅
4𝑡

] .

(47)

Accordingly, it can be obtained that 𝐵 = −𝑎3𝑞/4𝐺.
The final expression for the stress function is then as

follows:

𝑔 = −
𝑎
3
𝑞

4𝐺
(
1

𝑅
3𝑡

+
1

𝑅
4𝑡

) . (48)

Substituting (48) into (40) to (45), the stress and displace-
ment components can be obtained.
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Figure 5: The stress distribution of the slope surface.

3.4. The Correction of the Stresses on the Slope Surface.
Considering a virtual source, positive mirror image of the
actual cavity with respect to a slope surface will produce the
same normal stresses and opposite shear stresses as the actual
cavity, the shear stress is eliminated, and the normal stress
increases doubly, as shown in Figure 5.

Using the method of coordinate transformation, the
normal and shear stresses can be obtained as follows:

𝜎
𝑧


𝑧=0 = 3𝑎
3
𝑞[

[

(𝑡 + 𝑟
 sin𝛽)

2

+ 𝑐
2

𝑅
5

0

−
1

𝑅
3

0

]

]

× cos2𝛽−3𝑎3𝑞 ⋅[
(𝑟
cos𝛽 −ℎ)(𝑡 + 𝑟 sin𝛽) + 𝑐𝑑

2𝑅
5

0

]

× sin 2𝛽 +
𝑎
3
𝑞

2

[

[

4

𝑅
3

0

−
3(𝑡 + 𝑟

 sin𝛽)
2

+ 3𝑐
2

𝑅
5

0

]

]

𝜏
𝑟

𝑧


𝑧=0 = 0,

(49)

where 𝑐 = 𝑡 + 𝑟
 sin𝛽 − 𝑚, 𝑑 = 𝑟

 cos𝛽 − ℎ + 𝑛, and 𝑅
0
=

√(𝑡 + 𝑟 sin𝛽)2 + (𝑟 cos𝛽 − ℎ)2.
In order to satisfy the free surface boundary condition

as much as possible, the Boussinesq solution has been
introduced to correct the normal stress. Stress 𝑞 is applied
on the surface of the slope, which is equal to the normal stress
𝜎
𝑧
 |
𝑧

=0

in value but opposite in direction.
As shown in Figure 6, 𝑜𝑙 is the intersection line of the

slope and the horizontal plane. A small element with an area
of 𝜌𝑑𝜃𝑑𝜌 is taken out of the slope lor (i.e., or in Figure 5)
for analysis. Further, the force exerted on the small element is
equal to q𝜌d𝜃d𝜌. Using the Boussinesq solutions, the stress
and displacement components of soil under the action of the
force (q𝜌d𝜃d𝜌) can be derived as follows:

𝑑𝜎
𝑧
 =

3𝑞

𝑧
3

2𝜋𝑅5
𝜌𝑑𝜃𝑑𝜌,

𝑑𝜎
𝜃
 =

(1 − 2]) 𝑞

2𝜋𝑅2
(

𝑅


𝑅 + 𝑧
−
𝑧


𝑅
)𝜌𝑑𝜃𝑑𝜌,

𝑑𝜎
𝑟
 =

𝑞


2𝜋𝑅2
[
3𝑟
2
𝑧


𝑅3
−
(1 − 2]) 𝑅

𝑅 + 𝑧
] 𝜌𝑑𝜃𝑑𝜌,
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Figure 6:The stress analysis of calculation point by the force on the
small element.

𝑑𝜏
𝑟

𝑧
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3𝑞

𝑟

𝑧
2

2𝜋𝑅5
𝜌𝑑𝜃𝑑𝜌,

𝑑𝑢
𝑧
 =

(1 + ]) 𝑞

2𝜋𝐸𝑅

[2 (1 − ]) +

𝑧
2

𝑅2
] 𝜌𝑑𝜃𝑑𝜌,

𝑑𝑢
𝑟
 =

(1 + ]) 𝑞

2𝜋𝐸𝑅

[
𝑟

𝑧


𝑅2
−
(1 − 2]) 𝑟

𝑅 + 𝑧
] 𝜌𝑑𝜃𝑑𝜌,

(50)

in which

𝑟
2
= 𝜌
2
+ 𝑟
2
− 2𝜌𝑟

 cos(𝜃 − 𝜋
2
) ,

𝑅
2
= 𝑟
2
+ 𝑧
2
= 𝜌
2
+ 𝑟
2
− 2𝜌𝑟

 cos(𝜃 − 𝜋
2
) + 𝑧
2
.

(51)

The directions of stress and displacement induced by the
force on the small element are not always in accordance
with coordinate axes (Figure 6). By means of coordinate
transformation, the solutions of stresses and displacements in
the coordinate system roz (Figure 5) can be obtained. After
that, integrating results with respect to the whole sloping
ground surface can lead to the following:

𝜎
𝑧
 = ∫

𝜋

0

∫

∞

0

𝑑𝜎
𝑧
 ,

𝜎
𝜃
 = ∫

𝜋

0

∫

∞

0

(𝑑𝜎
𝑟
sin2𝜃 + 𝑑𝜎

𝜃
cos2𝜃) ,

𝜎
𝑟
 = ∫

𝜋

0

∫

∞

0

(𝑑𝜎
𝑟
cos2𝜃 + 𝑑𝜎

𝜃
sin2𝜃) ,

𝜏
𝑟

𝑧
 = ∫

𝜋

0

∫

∞

0

𝑑𝜏
𝑟

𝑧
 cos 𝜃,

𝑢
𝑧
 = ∫

𝜋

0

∫

∞

0

𝑑𝑢
𝑧
 ,

𝑢
𝑟
 = ∫

𝜋

0

∫

∞

0

𝑑𝑢
𝑟
 cos 𝜃.

(52)

Hence, the stress and displacement components in the
coordinate system roz can be derived as follows:

𝜎
(3)

𝑟
= 𝜎
𝑟
sin2𝛽 + 𝜎

𝑧
cos2𝛽 − 𝜏

𝑟

𝑧
 sin 2𝛽,

𝜎
(3)

𝑧
= 𝜎
𝑟
cos2𝛽 + 𝜎

𝑧
sin2𝛽 + 𝜏

𝑟

𝑧
 sin 2𝛽,

𝜏
(3)

𝑟𝑧
=
1

2
(𝜎
𝑟
 − 𝜎
𝑧
) sin 2𝛽 − 𝜏

𝑟

𝑧
 cos 2𝛽,

𝜎
(3)

𝜃
= 𝜎
𝜃
 ,

𝑢
(3)

𝑟
= 𝑢
𝑟
 sin𝛽 − 𝑢

𝑧
 cos𝛽,

𝑢
(3)

𝑧
= 𝑢
𝑟
 cos𝛽 + 𝑢

𝑧
 sin𝛽,

(53)

where 𝜃 = arctan(𝜌 sin(𝜃 − (𝜋/2))/(𝑟 − 𝜌 cos(𝜃 − (𝜋/2)))),
𝑟

= 𝑟 sin𝛽 + 𝑧 cos𝛽, and 𝑧 = −𝑟 cos𝛽 + 𝑧 sin𝛽.
With (53), the stress and displacement fields induced by

the stresses q on the slope can be derived. Using a virtual
source of the actual cavity at the image point, the lateral
deformations of soil around spherical cavity were predicted
by Rao et al. [22]. Meanwhile, the Cerruti solutions are used
to eliminate the shear stresses produced by the expansion
of both the real and the imaginary spherical cavities in
an infinite space. However, their results are inappropriate
because of the incorrect using of the Cerruti solutions. It is
known that a distributed stress is clearly not a point force in
the elementary sense. Hence, the stress should be integrated
with respect to the slope surface when it is substituted into
the Cerruti solutions.

Accordingly, when considering the effects of both hor-
izontal and sloping free boundaries, the final results of the
expansion of a single spherical cavity near a slope (Figure 2)
can be obtained by superposition of all the parts stresses and
displacements:

𝜎
𝑟
= 𝜎
(0)

𝑟
+ 𝜎
(1)

𝑟
+ 𝜎
(2)

𝑟
+ 𝜎
(3)

𝑟
,

𝜎
𝑧
= 𝜎
(0)

𝑧
+ 𝜎
(1)

𝑧
+ 𝜎
(2)

𝑧
+ 𝜎
(3)

𝑧
,

𝜎
𝜃
= 𝜎
(0)

𝜃
+ 𝜎
(1)

𝜃
+ 𝜎
(2)

𝜃
+ 𝜎
(3)

𝜃
,

𝜏
𝑟𝑧
= 𝜏
(0)

𝑟𝑧
+ 𝜏
(1)

𝑟𝑧
+ 𝜏
(2)

𝑟𝑧
+ 𝜏
(3)

𝑟𝑧
,

𝑢
𝑟
= 𝑢
(0)

𝑟
+ 𝑢
(1)

𝑟
+ 𝑢
(2)

𝑟
+ 𝑢
(3)

𝑟
,

𝑢
𝑧
= 𝑢
(0)

𝑧
+ 𝑢
(1)

𝑧
+ 𝑢
(2)

𝑧
+ 𝑢
(3)

𝑧
.

(54)

4. Discussion of the Solutions

The presence of the horizontal and sloping free surfaces is
considered in this paper. Consequently, the present solutions
have more extensive applications compared with solutions of
Keer et al. [16]. According to Section 3, the solutions for this
problem can be derived in four steps (cavity expansion in an
infinite medium, cavity and its image expansion in an infinite
medium, and the corrections of stresses on horizontal surface
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and sloping surface). The range of the angle 𝛽 between the
slope and the vertical plane is 0 ⩽ 𝛽 ⩽ 𝜋/2.

When𝛽 = 0, the slope turns to be vertical plane, as shown
in Figure 3. Meanwhile, it can be derived from (23) and (24)
that the horizontal distance between the actual cavity and its
image is 𝑚 = 2𝑡, while the vertical distance is 𝑛 = 0. As a
result, (15) to (20) convert into (8) to (13) in sequence.

When 𝛽 = 𝜋/2, there is only a free surface in the
horizontal direction. In this case, substituting 𝛽 into (23) and
(24), 𝑚 = 0 and 𝑛 = 2ℎ can be obtained. Accordingly, (15)
converts into equations that were proposed by Keer et al. [16].

When 0 < 𝛽 < 𝜋/2, there are horizontal and sloping
free boundaries as described in this paper. Therefore, the
solutions of expansion of spherical cavity in half-space with
horizontal and vertical free boundaries or only a horizontal
free boundary are the particular cases of present solutions.

As stated above, (15) to (20) can degenerate to the
existing solutions for the extreme cases of horizontal ground
and vertical slope, which demonstrates the correctness of
solutions derived by the first two steps. Steps 3 and 4 involve
the correction of stresses on free surface, which is based on
an understanding that existing stresses can be offset by the
stresses with the same magnitude and opposite direction. In
fact, effects of Steps 3 and 4 are further demonstrated by the
analysis cases below.

5. Results and Parameters Analysis

In order to consider all the stress components together, the
variation of the Mises stress during the expansion of the
cavity is analyzed. The parameters in the example analyses
are 𝑞 = 200 kPa, 𝐸 = 5000 kPa, 𝑎 = 0.25m, and ] = 0.5

(incompressible undrained clay). As the distance (𝑡 + 𝑟)/𝑎
increases or the sloping free boundary is approached, the
Mises stress decreases very rapidly in the range 2 ⩽ (𝑡 +

𝑟)/𝑎 ⩽ 3, but then it decreases it decreases more slowly with
further increase of the distance (𝑡+𝑟)/𝑎, as shown in Figure 7.
In order to give a further discussion of the influence from
the inclination angle of the slope, the analysis covers with
different angles: 𝛽 = 15

∘, 𝛽 = 30
∘, 𝛽 = 45

∘, 𝛽 = 60
∘,

and 𝛽 = 75∘. The corresponding Mises stresses are shown in
Figure 7, respectively. Evidently, the angle𝛽has a pronounced
influence on the distributions of theMises stress. At the same
point near the spherical cavity, theMises stress increases with
the increase of the angle 𝛽. For example, theMises stress rises
from 5.6 × 10

−4 kPa to 1.3 × 10−3 kPa, again at the instant of
(𝑡 + 𝑟)/𝑎 = 4, while the 𝛽 increases from 15∘ to 75∘. This is
consistent with the results for spherical cavity expansion in
half-space reported by Keer et al. [16]. The function 𝑓

𝑀
in

Figure 7 represented the Mises stress: 𝑓
𝑀
= 𝑘
2
/(𝐸/ℎ

3
). Here,

𝑘
2
= √𝐼
2
(𝐼
2
is the second principle invariance).

If the free surfaces are not taken into account, normal and
shear stresses will appear at the place where there ought to be
the free surface, so violating the imposed boundary condition
of a free surface [13, 15, 16, 23]. As described in Section 3.4, the
shear stress on the sloping ground can be eliminated by using
the virtual image technique. In order to cancel the normal
stress on sloping surface as much as possible, the Boussinesq
solutions are introduced. Another group of normal and shear
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Figure 7: The Mises stress varies with the distance (𝑡 + 𝑟)/𝑎.

stresses is produced again when the Boussinesq solutions are
applied to correct stresses on the sloping surface, although
the original stresses on horizontal free surface have been
removed by introduction of harmonic functions (see (39) and
(48)). That is because the Boussinesq solutions are aimed at
half-space problems.

Figures 8(a) and 8(b) show the normal and shear stresses
that vary along the horizontal free surface, respectively, where
D is the distance from origin of the coordinate on the
horizontal free surface to the opposite direction of the 𝑟-axis.
The stresses induced by the cavity expansion in an infinite
space show large variations, which are determined by the
distance from the center to the calculation point. Compared
with solutions in an infinite space, both normal and shear
stresses on the horizontal free surface corrected by the
introduction of the harmonic functions are in close proximity
to zero (Figure 8), which demonstrates the validity of the
present method. For example, the maximum of the normal
stress calculated by present method falls from −0.95 kPa
to −0.029 kPa, and the shear stress falls from 0.14 kPa to
0.047 kPa in case that ℎ = 7𝑎. With the increase of the
distance𝐷/𝑎, the normal and shear stresses on the horizontal
free surface decrease gradually. This is because the influence
from the stresses on sloping surface weakens when the
distance𝐷/𝑎 increases.

For the sloping free surface, although stresses have been
offset by means of virtual image technique, both normal and
shear stresses on the sloping surface are produced again when
the harmonic functions (see (39) and (48)) are used to correct
the stresses on horizontal free surface. Figures 9(a) and 9(b)
show, respectively, the variations of the normal and shear
stresses vary along the sloping free surface in cases 𝑙 = 4𝑎

and 5𝑎, where𝐷 is the distance from origin of the coordinate
to an arbitrary point on the sloping free surface and 𝑙 is the
distance between the slope and the center of the spherical
cavity. Compared to solutions in an infinite space, the stresses
on the sloping free surface have been partly corrected by
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Figure 8: Stress along the horizontal free surface.

the introduction of the correction functions. Figures 9(a)
and 9(b) show that, after being corrected, both the normal
and shear stresses still have larger values in the range 1 ⩽

𝐷/𝑎 ⩽ 4 and then decrease with further increase of 𝐷/𝑎.
The larger distance of 𝐷/𝑎, the smaller the stresses on the
slope surface will be produced.The condition of zero stress at
the horizontal and sloping free surface is not strictly satisfied.
However, this approximate approach is purposeful in reality.

From Figures 8 and 9, the stresses, particularly the shear
stresses, on the two free surfaces are close to zero after
correction. Thus, the stresses will decrease until zero if the
correction processes are iterated continually. It is obvious
that the stresses on the free surface decline slowly with the
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Figure 9: Stress along the sloping free surface.

iteration increase, so further trivial corrections are not carried
out here.

The displacement of soil induced by the cavity expansion
is discussed in this section. Figure 10 illustrates that the
slope and its inclination angles have pronounced influence
on the distributions of the displacements induced by a
cavity expansion source.The displacement decreases with the
increase of the distance (𝑡 + 𝑟)/𝑎. Similarly, the displacement
decreases rapidly in the range 1 ⩽ (𝑡 + 𝑟)/𝑎 ⩽ 3,
but then more slowly with further increase of (𝑡 + 𝑟)/𝑎.
Meanwhile, the displacement induced by a cavity expansion
source approaching a free surface, in general, is larger than
that in infinite medium (no boundary effect). The findings
are in accordance with the results proposed by Keer et al. [16]
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and Chai et al. [20]. Here, 𝑢 = √𝑢2
𝑟
+ 𝑢2
𝑧
(𝑢
𝑟
and 𝑢

𝑧
are the

displacements in the 𝑟 and 𝑧 directions, resp.).
Using the theory of the spherical cavity expansion in an

infinite space implies that there is an infinitely thick “soil
wall” existing on the side of the slope, which will restrain
the lateral displacement induced by the spherical expansion.
According to the Figure 2, the slope tends to be flat with
the increase of the angle 𝛽. As a result, the displacement at
the same point in the soil decreases due to the increase of
the thickness of “restriction.” For instance, when 𝛽 = 0

∘,
the displacement is 2.4 times of the displacement induced by
cavity with no boundary effect at the instant of (𝑡 + 𝑟)/𝑎 = 3.
Thus, the presence and inclination angle of the sloping free
boundary have a great influence on the displacement due to
cavity expansion.

6. Conclusions

Analytical solutions of the cavity expansion near the sloping
ground were proposed based on the understanding that
expansion caused by pile tip can be simulated as a spher-
ical cavity expansion. Both the horizontal and sloping free
surfaces are taken into account by using of a virtual image
technique, harmonic functions, and theBoussinesq solutions,
and the solutions will convert into the solutions reported by
Keer et al. [16] when the sloping ground turn to the horizontal
direction.

The results show that the presence and inclination angle
of sloping free boundary have a considerable influence on the
distributions of the stress and displacement fields induced by
the spherical cavity expansion.As the distance from the cavity
increases or when the boundary is approached, the Mises
stress decreases. With the increase of the angle 𝛽 between
the slope and the vertical plane, the slope tends to flat and
the displacement at the same point in the soil decreases
with the increase of the “lateral restriction.” Likewise, the
displacement increases with the decrease of the angle 𝛽.
Therefore, the existence of the slope increases the risk of the
slope failure due to the pile installation.
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