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Many real-world problems can be formulated as numerical optimization with certain objective functions. However, these objective
functions often contain numerous local optima, which could trap an algorithm frommoving toward the desired global solution. To
improve the search efficiency of traditional genetic algorithms, this paper presents a mutual-evaluation genetic algorithm (MEGA).
A novel mutual-evaluation approach is employed so that the merit of selected genes in a chromosome can be determined by
comparing the fitness changes before and after interchanging with those in the mating chromosome. According to the determined
genome merit, a therapy crossover can generate effective schemata to explore the solution space efficiently. The computational
experiments for twelve numerical problems show that the MEGA can find near optimal solutions in all test benchmarks and
achieve solutions with higher accuracy than those obtained by eight existing algorithms. This study also uses the MEGA to find
optimal flow-allocation strategies for multipath-routing problems. Experiments on quality-of-service routing scenarios show that
the MEGA can deal with these constrained routing problems effectively and efficiently. Therefore, the MEGA not only can reduce
the effort of function analysis but also can deal with a wide spectrum of real-world problems.

1. Introduction

Many engineering optimization issues can be formulated
as global optimization problems with numerical functions.
When solving a complex problem, the particular challenge is
that algorithms may be trapped in local optima and fail in
finding global optima. Recently, genetic algorithms (GAs)
have received considerable attention for solving complex and
unstructured problems [1, 2]. However, traditional genetic
algorithm (TGA) often suffers from the drawbacks of prema-
ture convergence and weak exploitation capabilities [3].

To overcome the deficiencies of the TGA, this paper pro-
poses a mutual-evaluation approach to incorporate with the
TGA as a mutual-evaluation genetic algorithm (MEGA).The
proposed therapy crossover can implicitly generate effective
schemata to efficiently exploit the given search space without
explicitly analyzing the solution space. The performance of
the proposed MEGA is experimented on 12 well-known
numerical functions and compared with four well-known
evolutionary algorithms (EAs) and four existing modified
GAs.The experimental results show that the proposedMEGA

is able to increase the accuracy by several orders ofmagnitude
in almost all the cases. That is, MEGA can effectively
approach the global optimumwithout being trapped inmany
local optima.

Because of the simplification property of themutual-eval-
uation approach, the MEGA is suitable to deal with a wide
spectrum of real world problems. In this paper, the proposed
MEGA is also realized to deal with multipath routing prob-
lems in a multicommodity network, where more than one
routes will be connected for each origin-destination (OD)
pair. The goal is to find an optimal flow-allocation strategy to
minimize the total transmission cost and satisfy all quality-
of-service (QoS) requirements at the same time. The perfor-
mance of the proposedMEGA is experimented by optimizing
several multipath routing problems. The experiment results
show that the MEGA outperforms the TGA dramatically.
Furthermore, the search ability of the MEGA is robust in
obtaining consistent results.

The rest of the paper is organized as follows. Section 2
describes the proposed mutual-evaluation approach. The
main operations of the MEGA are introduced in Section 3.
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In Section 4, the experimental studies on 12 numerical opti-
mization problems are described. The results are compared
with eight existing optimization algorithms. In Section 5,
the MEGA is realized to deal with a real-world problem:
multipath routing problem. A novel representation of chro-
mosomes for routing problems is also proposed. Finally,
conclusions and contributions are offered in Section 6.

2. Mutual Evaluation Approach

To overcome the deficiencies of the TGA, modified GAs
should keep evolutional population as diverse as possible
to improve algorithms’ exploration capability for discover-
ing new solution area. In regard to evaluation approaches,
existing GAs can be classified into three categories: (1)
chromosome-oriented, (2) gene-oriented, and (3) schema-
oriented.

2.1. Chromosome-Oriented Approaches. Chromosome-ori-
ented GAs concentrate on the chromosome fitness in the
evolutionary process.TheTGAadopts chromosomefitness to
evaluate the quality of whole individual chromosome [4, 5]. A
number of researches recently focus on incorporating math-
ematical methods with the chromosome-oriented GAs to
alleviate the deficiency of premature convergence [4]. For
example, Yao et al. proposed fast evolutionary programming
(FEP) with Cauchy mutation to solve the premature con-
vergence deficiency [6]. To improve slow finishing deficiency,
Tu and Lu developed a stochastic genetic algorithm (StGA)
with mathematical methods, which not only can find global
optima, but also can reduce the computational effort [7].
By merging niche techniques and Nelder-Mead’s simplex
method, Wei and Zhao proposed the niche hybrid genetic
algorithm (NHGA) to alleviate premature convergence and
weak exploitation deficiencies of TGA [3].

2.2. Gene-Oriented Approaches. In gene-oriented GAs, the
compact genetic algorithm (cGA) is a common representative
[8].The cGA represents the population as a probability vector
over the set of individuals to mimic the order-one behavior
of TGA. The cGA manipulates the gene distribution and
essentially evolves each gene individually [8]. To enhance
cGA’s performance, Ahn and Ramakrishna proposed a strong
elitism version of cGA [9] and then Rimeharoen et al. intro-
duced a moving average technique to update the probability
vector [10]. Although the cGA reduces memory requirement
and offers many advantages, its limitation is the assumption
of the independency between individual genes.

2.3. Schema-Oriented Approaches. The schema-orientedGAs
explore the exact schemata by borrowing from the schema
theorem proposed by Holland [11]. A schema is a pattern
within a chromosome defined by fixing the values of specific
chromosome loci. The increase of effective schemata enables
the efficient search within a solution space and guides the
evolution of the population in approaching the global optimal
solution [12]. Yen and Shyu proposed a statistical gene
evaluation method that uses simple statistical quantities to

investigate the individual gene influence which suggests
better choices for a gene evolution [13]. Kubota et al. proposed
the virus-evolutionary genetic algorithm (VEGA) [14] that
simulates coevolution of a virus population and a host pop-
ulation. VEGA applies horizontal propagation and vertical
inheritance in a population with virus infection operators
and genetic operators [14]. In this paper, the proposed
MEGA is a new schema-oriented GA in which an innovative
mutual-evaluation approach is used to achieve highly efficient
evolution with necessary robustness. The MEGA does not
only evaluate a chromosome by its fitness but also analyze
genome’s merit to improve the population’s quality.

2.4. The Proposed Mutual-Evaluation Approach. According
to the biological concept of the genetic engineering, a gene
splicing is a process that manipulates genes outside the tra-
ditional random reproductive process. The proposed MEGA
integrates a mutual-evaluation approach in a novel therapy
crossover operation to produce offspring by introducing iso-
lation, manipulation, and reintroduction of gene splicing
techniques to improve the chromosome’s fitness. The algo-
rithm randomly selects two parents from a mating pool of
generation 𝑡. Let the parent with superior fitness be named as
the good parent �⃗�good(𝑡) and the other one is the bad parent
�⃗�bad(𝑡). The MEGA generates a therapy mask to indicate
which gene loci in a chromosome are chosen for crossover
points. For each bit in a chromosome, we uniformly generate
a random number in interval [0, 1] and compare the number
with a predefined therapy rate𝑝. If the randomnumber is less
than 𝑝, its mask bit of the corresponding locus is set to value
1, which means that this gene locus belongs to the therapy
genome. Otherwise, the mask bit is 0 that means the gene in
this locus will not change during crossover operation.

Step 1. According toDarwin’s evolution theory, two crossover
parents are combined to produce new offspring in the hope
that the fitness of next generation may improve gradually. In
this paper, the therapy crossover wants to preserve parents’
advantage and enhance population’s diversity at the same
time. Thus, offspring inherits the majority of parents’ prop-
erties from the good parent than the bad one. Each mating
parent has a different therapy rate according to its fitness; for
example, good parent �⃗�good(𝑡) has a lower therapy rate (e.g.,
𝑝good = 0.45 in this paper) than that of the bad one �⃗�bad(𝑡)
(e.g.,𝑝bad = 0.9). On average, 45% of genes in the good parent
will be merged with those genes in the bad parent.

Example 1. Aminimization function𝑓(𝑥) = �⃗�𝑇×�⃗� is adopted
here to illustrate the rationale of the therapy crossover. Let
two parents with five genes at generation 𝑡 be �⃗�good(𝑡) =
[1.0 1.0 1.0 1.0 1.0]

𝑇 and �⃗�bad(𝑡) = [2.0 2.0 2.0 2.0 2.0]
𝑇,

where �⃗�good(𝑡) is the good parent with better fitness
𝑓(�⃗�good(𝑡)) = 5 and �⃗�bad(𝑡) is the bad one with worst fitness
𝑓(�⃗�bad(𝑡)) = 20. Two therapy masks for �⃗�good(𝑡) and �⃗�bad(𝑡)
are randomly generated by comparing five random numbers
with therapy rates 𝑝good = 0.45 and 𝑝bad = 0.9, respectively.
Without loss of generality, we assume that these two masks
are �⃗�good = [0 1 0 1 0]

𝑇 and �⃗�bad = [1 1 1 1 0]
𝑇. That
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is, the second and fourth genes of �⃗�good(𝑡) should be merged,
and most of the genes in �⃗�bad(𝑡) should be merged except for
the fifth one.

Step 2. For comparison purpose, two auxiliary chromosomes
⃗𝑠good and ⃗𝑠bad are generated for �⃗�good(𝑡) and �⃗�bad(𝑡), respec-
tively. The auxiliary chromosome clones genes from the
corresponding parent and replaces the selected therapy loci
with those genes in the other parent. Thus, in (1), ⃗𝑠good copies
all genes from �⃗�good(𝑡) and then replaces the genes (its locus
marked by �⃗�good) by those genes in �⃗�bad(𝑡). On the other
hand, (2) describes the value of each gene in ⃗𝑠

𝑏
according to

its therapy mask �⃗�bad:

⃗𝑠good = [𝑠𝑔𝑖] , where 𝑠
𝑔𝑖
= 𝑥
𝑔𝑖
× (¬𝑚

𝑔𝑖
) + 𝑥
𝑏𝑖
× 𝑚
𝑔𝑖
, (1)

⃗𝑠bad = [𝑠𝑏𝑖] , where 𝑠
𝑏𝑖
= 𝑥
𝑏𝑖
× (¬𝑚

𝑏𝑖
) + 𝑥
𝑔𝑖
× 𝑚
𝑏𝑖
. (2)

Notation (¬) denotes logic negation (usually expressed by
“NOT”) which operates on one Boolean value and returns its
complement as result.

Example 2. Thus, (1) guides ⃗𝑠good to copy the majority of
genes (i.e., 1st, 3rd, and 5th) from �⃗�good(𝑡) and the minority
of genes (i.e., 2nd and 4th) from �⃗�bad(𝑡), that is, ⃗𝑠good =
[1.0 2.0 1.0 2.0 1.0]

𝑇, with respect to �⃗�good = [0 1 0 1

0]
𝑇. For �⃗�bad(𝑡) in this example, ⃗𝑠bad also can be produced as
⃗𝑠bad = [1.0 1.0 1.0 1.0 2.0]

𝑇 by (2).

Step 3. Because it is difficult to determine the merit of a set of
genes in a chromosome, a simple but effective method pro-
posed in this paper is the mutual-evaluation approach, which
measures the merit of two selected genomes by compar-
ing the fitness changes before and after interchanging the
genome with the other mating chromosome. Comparing the
fitness change before and after the genome replacement (i.e.,
𝑓(�⃗�good(𝑡)) versus 𝑓( ⃗𝑠good) and 𝑓(�⃗�bad(𝑡)) versus 𝑓( ⃗𝑠bad)) can
realize the substitution effect and can be used to represent the
relative merit of these genomes.

Example 3. Because the fitness of ⃗𝑠good (i.e., 𝑓( ⃗𝑠good) = 𝑓([1.0
2.0 1.0 2.0 1.0]𝑇) = 11) is worse than that of �⃗�good(𝑡) (i.e.,
𝑓(�⃗�good(𝑡)) = 𝑓([1.0 1.0 1.0 1.0 1.0]𝑇) = 5), we can intui-
tively deduce that genome [∗ 1.0 ∗ 1.0 ∗]𝑇 may perform
better than genome [∗ 2.0 ∗ 2.0 ∗]𝑇 with respect to [1.0
∗ 1.0 ∗ 1.0]

𝑇. Therefore, the offspring �⃗�good(𝑡 + 1) inher-
its more genetic material from [∗ 1.0 ∗ 1.0 ∗]𝑇 than [∗

2.0 ∗ 2.0 ∗]
𝑇 for the second and forth genes. Comparing

the fitness of ⃗𝑠bad (i.e., 𝑓( ⃗𝑠bad) = 𝑓([1.0 1.0 1.0 1.0 2.0]𝑇)
= 8) and that of �⃗�bad(𝑡) (i.e., 𝑓(�⃗�bad(𝑡)) = 𝑓([2.0 2.0 2.0
2.0 2.0]𝑇) = 20), one can deduce that genome [1.0 1.0 1.0
1.0
∗
]
𝑇 performs better than [2.0 2.0 2.0 2.0 ∗]𝑇 with

respect to [∗ ∗ ∗ ∗ 2.0]𝑇.

Start Create initial population

Mutually evaluate genome merit

Selection

Crossover Mutation

Replace chromosomes in the
old population by

new individuals

Stopping?End
NoYes

Figure 1: Flowchart of the proposed MEGA.

3. Mutual-Evaluation Genetic
Algorithm (MEGA)

The main operations of the MEGA are initialization, mutual
evaluation, selection, crossover, mutation, and replacement.
Wedepict the flowchart of theMEGA in Figure 1 and describe
their functionality in this section.

3.1. Encoding and Initialization. For illustration, the follow-
ing minimization problem with fixed boundaries is consid-
ered:

Minimize 𝑓 (�⃗�)

subject to ⃗𝑙 ≤ �⃗� ≤ �⃗�.

(3)

Notation �⃗� = [𝑥
1
𝑥
2
⋅ ⋅ ⋅ 𝑥

𝑁
]
𝑇
∈ R𝑁 is the variable

vector and 𝑓(�⃗�) denotes the objective function. Because the
lower bound ⃗𝑙 = [𝑙

1
𝑙
2
⋅ ⋅ ⋅ 𝑙
𝑁
]
𝑇 and the upper bound

�⃗� = [𝑢
1
𝑢
2
⋅ ⋅ ⋅ 𝑢

𝑁
]
𝑇 define the feasible solution space, the

domain of each 𝑥
𝑖
is denoted as interval [𝑙

𝑖
, 𝑢
𝑖
].

For numerical problems, each decision variable is treated
as a gene and encoded by a floating-point number. Each
chromosome representing a feasible solution is encoded
as a vector of genes �⃗� = [𝑥

1
𝑥
2
⋅ ⋅ ⋅ 𝑥

𝑁
]
𝑇, where 𝑥

𝑖

denotes the value of the 𝑖th gene and 𝑁 is total number of
variables in an optimization problem. An initial population
of𝑀 chromosomes is randomly generated within the feasible
solution space [ ⃗𝑙, �⃗�].

3.2. Selection Operation. Fitness of each chromosome repre-
sents the objective function value of this solution, denoted
as 𝑓
𝑗
= 𝑓(�⃗�

𝑗
) = 𝑓([𝑥

𝑗1
𝑥
𝑗2
⋅ ⋅ ⋅ 𝑥

𝑗𝑁
]
𝑇
) for the 𝑗th chro-

mosome.TheMEGA employs a traditional roulette selection
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method as a discriminator of the solution quality that uses
chromosome’s fitness to create a selective pressure towards
global optimal solution. Those chromosomes with higher
fitness should have a greater selection chance, thus creating
a selective pressure towards high-fitness solutions [1].

3.2.1. Therapy Crossover. The proposed MEGA incorporates
the mutual-evaluation approach with a therapy crossover
to enhance the exploitation ability and speed up the con-
vergence rate. According to the determined relative merit
of genome, the parents linearly combine their genomes to
generate a new genome for their offspring like (4) for �⃗�good(𝑡+
1) and (5) for �⃗�bad(𝑡 + 1), respectively. If a mask bit in its
therapy mask is 0 (e.g., 𝑚

𝑔1
= 0), the gene at the locus of the

good parent does not change (i.e., 𝑥
𝑔1
= 𝑠
𝑔1
). Otherwise, if a

mask bit is 1 (e.g., 𝑚
𝑔2
= 1), the locus in the crossover child

(e.g., �⃗�good(𝑡 + 1)) inherits from both genetic materials from
two parents (i.e., 𝑥

𝑔1
×coef+𝑠

𝑔1
×(1−coef)).The principle of

this linear combination is to retain the favorable schemata in
the evolution process.Therefore, each gene of crossover child
can be reproduced by the following equations:

�⃗�good (𝑡 + 1)

={
�⃗�good(𝑡)×coef+ ⃗𝑠good×(1−coef) , if 𝑓(�⃗�good)≤𝑓( ⃗𝑠good)
�⃗�good(𝑡)×(1−coef)+ ⃗𝑠good×coef, if 𝑓(�⃗�good)>𝑓( ⃗𝑠good) ,

(4)

�⃗�bad (𝑡 + 1)

={
�⃗�bad (𝑡)×coef+ ⃗𝑠bad×(1−coef) , if 𝑓 (�⃗�bad)≤𝑓 ( ⃗𝑠bad)
�⃗�bad (𝑡)×(1−coef)+ ⃗𝑠bad×coef, if 𝑓 (�⃗�bad)>𝑓 ( ⃗𝑠bad) .

(5)

Coefficient coef = 0.8+(rand/2) is a random value in interval
[0.8, 1.3] to reduce the deficiency of premature convergence.
The rand function returns a uniformly distributed pseudo-
random number between 0 and 1.

Example 4. In this example, we assume the random coeffi-
cient coef = 1.2. Because 𝑓(�⃗�good(𝑡)) = 5 is better than
𝑓( ⃗𝑠good) = 11, (4) guides us to get �⃗�good(𝑡 + 1) = �⃗�good(𝑡) ×
1.2 + ⃗𝑠good × (1 − 1.2) = [1 0.8 1 0.8 1]

𝑇. Thus, this child’s
fitness 𝑓(�⃗�good(𝑡 + 1)) = 4.28 is better than 𝑓(�⃗�good(𝑡)) = 5.
Similarly, (5) calculates �⃗�bad(𝑡+1) = �⃗�bad(𝑡)×(1−1.2)+ ⃗𝑠bad×
1.2 = [0.8 0.8 0.8 0.8 2]

𝑇 because fitness 𝑓(�⃗�bad(𝑡)) = 20
is worse than 𝑓( ⃗𝑠bad) = 8. The child’s fitness 𝑓(�⃗�bad(𝑡 + 1)) =
6.56 is better than 𝑓(�⃗�bad(𝑡)) = 20. Therefore, both children
have better fitness values than that of their parents.

The exclusive features of the therapy crossover include
that (1) the merit of each genome is evaluated individually;
and (2) the gene merit facilitates the MEGA to perform an
efficient search by adaptively shifting emphasis on significant
genome without explicit functional analysis [15]. That is,
the therapy crossover can avoid frequently throwing away
potential schemata in inferior chromosomes and inherit

the genetic advantages of superior chromosomes without loss
of genetic diversity.

3.2.2. Partial-Gaussian Mutation. In this paper, a partial-
Gaussian mutation used in the MEGA can increase popula-
tion diversity to enhance its exploration ability. The original
Gaussian mutation proposed by Hinterding in 1995 can
converge to near-optimal solutions of some multimodal
optimization problems [16]. Our partial-Gaussian mutation
concentrates on exploiting potential optimal areas and speeds
up the convergent effect. At the beginning of evolution, a
high mutation rate is assigned to sample the search space
extensively. And then, the mutation rate decreases with time
to fine tune solutions and concentrates on exploiting potential
optimal areas. Equation (6) calculates themutation rate 𝑝

𝑚
as

𝑝
𝑚
= 0.5 × (1 −

Current Generation
Maximal Generation

) , (6)

where maximal generation is 3000. A random number in
interval [0, 1] is generated for each gene and then compared
with the mutation rate 𝑝

𝑚
. If the mutation rate is greater than

or equal to the randomnumber, this gene valuewill be flipped
by adding a unit Gaussian distributed random value to the
chosen gene. Otherwise, nomutation occurs at this gene.This
mutation operation can only be used for integer and float
genes.

3.3. Reproduction Operation. The MEGA adopts a replace-
ment-with-elitism method to monotonously enhance the
solution quality. A number of the elite parents can survive
into next generation for preventing good solutions from
being lost through a nondeterministic selection operation.
Successive population consists of three evolutionary sources:
(1) the elite 10% chromosomes can survive to next generation;
(2) 80% offsprings are produced by the crossover operation;
and, (3) the rest 10% chromosomes are produced by the
mutation operation.

4. Performance Analyses for
Numerical Optimization Problems

4.1. Numerical Test Functions. Numerical experiments are
conducted to demonstrate the robustness and reliability of
the proposedMEGA.Thiswork selects 12 well-known bench-
mark functions, which cover broad range functionality char-
acteristics with two categories: unimodal functions (Func-
tions 𝑓

1
–𝑓
6
) and multimodal functions (Function 𝑓

7
–𝑓
12
).

Table 1 depicts these test functions with their formulation,
problem dimension (𝑁), prescribed search domain (𝐷), and
their global optimum function value (𝑓min) in each column.
The high-dimension unimodal functions are the Sphere
function (𝑓

1
), the Schwefel’s Problem 2.22 (𝑓

2
), the Schwefel’s

Problem 1.2 (𝑓
3
), the Schwefel’s Problem 2.21 (𝑓

4
), a modified

Rosenbrock function (𝑓
5
), and the noisy quadratic function

(𝑓
6
). Unimodal functions are relatively easy to solve but

the difficulty increases as the problem dimension goes high.
The high-dimension multimodal functions are a generalized
Schwefel’s function 7 (𝑓

7
), the Rastrigin’s function 6 (𝑓

8
),
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Table 2: Experimental results obtained by the MEGA over 50 independent trails.

Test function 𝑓min Mean best value Standard deviation Mean required generations Computational effort (MNFE)
𝑓
1

0 2.44 × 10
−19

1.33 × 10
−18 64 17,280

𝑓
2

0 2.00 × 10−7 4.27 × 10−7 725 195,750
𝑓
3

0 5.49 × 10−30 2.74 × 10−29 650 175,500
𝑓
4

0 1.99 × 10
−8

2.42 × 10
−8 185 49,950

𝑓
5

0 0.03762 0.02816 88 23,760
𝑓
6

0 3.78 × 10−3 1.84 × 10−3 96 25,920
𝑓
7

−12596.5 −12596.5 9.98 × 10
−3 132 35,640

𝑓
8

0 0.0 0.0 155 41,850
𝑓
9

0 2.78 × 10
−8

5.15 × 10
−8 400 108,000

𝑓
10

0 0.0 0.0 23 6,210
𝑓
11

0 7.85 × 10−7 4.42 × 10−7 215 58,050
𝑓
12

0 1.11 × 10
−5

8.31 × 10
−6 70 18,900

Table 3: Comparison of the mean best value (and Std Dev) with other EAs.

Test function PSO
(Variance)

EO
(Variance) CEP FEP MEGA

𝑓
1

11.175 9.8808 2.2 × 10−4 5.7 × 10−4 2.44 × 10−19

(1.3208) (0.9444) (5.9 × 10−4) (1.3 × 10−4) (1.33 × 10−18)

𝑓
2 N/A N/A 2.6 × 10−3 8.1 × 10−3 2.00 × 10−7

(1.710−4) (7.7 × 10−4) (4.27 × 10−7)

𝑓
3 N/A N/A 0.05 0.016 5.49 × 10

−30

(0.066) (0.014) (2.74 × 10
−29
)

𝑓
4 N/A N/A 2.0 0.3 1.99 × 10−8

(1.2) (0.5) (2.42 × 10−8)

𝑓
5

1911.598 1610.39 6.17 5.06 0.03762
(374.2935) (293.5783) (13.61) (5.87) (0.02816)

𝑓
6 N/A N/A 0.018 7.6 × 10−3 3.78 × 10−3

(6.4 × 10−3) (2.6 × 10−3) (1.84 × 10−3)

𝑓
7 N/A N/A −7917.1 −12554.5 −12596.5

(634.5) (52.6) (9.98 × 10
−3
)

𝑓
8

47.1354 46.4689 89.0 0.046 0.0
(1.8782) (2.4545) (23.1) (0.012) (0.0)

𝑓
9 N/A N/A 9.2 0.018 2.78 × 10−8

(2.8) (0.0021) (5.15 × 10−8)

𝑓
10

0.4498 0.4033
2.52 × 10−7

0.016 0.0
(0.0566) (0.0436) (0.022) (0.0)

𝑓
11 N/A N/A 1.76 9.2 × 10−6 7.85 × 10−7

(2.4) (3.6 × 10−6) (4.42 × 10−7)

𝑓
12 N/A N/A 1.4 1.6 × 10

−4
1.11 × 10

−5

(3.7) (7.3 × 10
−5
) (8.31 × 10

−6
)

a modified Ackley’s Path Function 10 (𝑓
9
), the Griewank’s

function 8 (𝑓
10
), a generalized Penalized Function 1 (𝑓

11
),

and a generalized Penalized Function 2 (𝑓
12
). Multimodal

functions represent the most difficult class of problems,
which possessmany local optima and could trap an algorithm
into one of its local optimal solutions.

4.2. Algorithm Implementation and Parameter Settings. In all
cases, the population size is 150, in which the number of
elite individuals is 15; the therapy crossover produces 120

individuals, and the mutation produces 15 ones. The therapy
rates for good parent and bad parent are 𝑝good = 0.45 and
𝑝bad = (1 −𝑝good) = 0.55, respectively. For each test function,
50 independent trials with different seeds are performed
using the MATLAB environment.

For complexity analysis, the mean number of function
evaluations serves as a measure of required computational
effort for an algorithm. Different from the crossover in
traditional GAs, the exclusive feature ofMEGA is the usage of
themutual-evaluation approach for genome therapy. Because
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Table 4: Comparison of the computational effort (MNFE) with other EAs.

Test function PSO EO CEP FEP MEGA
𝑓
1

250,000 500,000 100,500 100,500 17,280
𝑓
2

N/A N/A 200,000 200,000 195,750
𝑓
3

N/A N/A 500,000 500,000 175,500
𝑓
4

N/A N/A 500,000 500,000 49,950
𝑓
5

250,000 500,000 2000,000 2000,000 23,760
𝑓
6

N/A N/A 300,000 300,000 25,920
𝑓
7

N/A N/A 900,000 900,000 35,640
𝑓
8

250,000 500,000 500,000 500,000 41,850
𝑓
9

N/A N/A 150,000 150,000 108,000
𝑓
10

250,000 500,000 200,000 200,000 6,210
𝑓
11

N/A N/A 150,000 150,000 58,050
𝑓
12

N/A N/A 150,000 150,000 18,900

only an auxiliary chromosome should be extraevaluated for
one crossover child, the number of required evaluations
in each generation is (function evaluations per generation)
= [(population size) × (1 + crossover fraction)] = [150 ×
(1 + 80%)] = 270. Therefore, the total number of function
evaluations in each experimental run is equal to (functional
evaluations per generation) × (no. of terminal generations).

4.3. Experimental Results. Table 2 summarizes the experi-
mental results of the MEGA in 50 trials, which include (1)
the global optimum (𝑓min), (2) the mean best function value,
(3) the standard deviation of the obtained function values, (4)
the mean required generation, and (5) the mean number of
function evaluations (MNFEs).

The first thing we can observe from Table 2 is that the
obtained results are equal or really close to the “known”
optimal solutions. Particulary, this paper uses a computa-
tional precision of 60 digits after point. Thus, the results
“0” on 𝑓

8
and 𝑓

10
in Table 2 mean that they are less than

10−60. The standard deviation with respect to the functions
𝑓
8
and 𝑓

10
is equal to zero; that is, the results of all 50 runs

reach the optimum. All the obtained results approach the
“known” optimal values with small differences. Secondly, the
small standard deviations for all test functions also indicate
that the MEGA consistently converges to the near-optimal
solutions in all 50 trails. Finally, all of the mean num-
bers of function evaluations are relatively small. Therefore,
the proposed MEGA can address a variety of numerical
optimization functions effectively. To further analyze the
solution capability of the proposed MEGA, the following
sections describe the comparisons between the MEGA and
two groups of optimization algorithms for the 12 benchmark
functions.

4.4. Comparison with Other Evolutionary Algorithms. The
performance of the MEGA is compared with four state-of-
the-art EAs: particle swarm optimization (PSO) [17], evo-
lutionary optimization (EO) [17], conventional evolutionary
programming (CEP) [6], and FEP [6].The comparison of the
experimental results for 12 test functions is shown in Table 3.

For all the unimodal functions (𝑓
1
–𝑓
6
) in Table 3, we can

observe that the MEGA can achieve dramatically the highest
accuracy than others, while other four algorithms experience
premature convergence on functions𝑓

3
,𝑓
4
, and𝑓

5
. For all the

multimodal functions (𝑓
7
–𝑓
10
), the results shown in Table 3

clearly indicate that theMEGA can identify the actual optima
of these functions with the highest accuracy. The MEGA can
achieve better solution accuracy than other four EAs for all 12
benchmark functions.

The computational efforts required for the algorithms are
measured by theirmean numbers of function evaluations and
depicted in Table 4. Obviously, the comparison demonstrates
that the MEGA outperformed all the four algorithms for
all the 12 functions with respect to the convergent ability.
Therefore, the comparison indicates that the MEGA is both
efficient and effective in solving the unimodal and multi-
modal benchmark functions.

4.5. Comparison with Other Genetic Algorithms. The per-
formance of the MEGA is compared with those of four
well-known GAs: cluster-based adaptive mutation genetic
algorithm (CMGA) [18], orthogonal genetic algorithm with
quantization (OGA/Q) [19], hybrid taguchi genetic algorithm
(HTGA) [20], and StGA [7]. The OGA/Q is a quantized-
version of the OGA, which incorporates with the Taguchi
method to minimize the effect of chromosome variation
without eliminating the population diversity [21].TheHTGA
enhanced the Taguchi method as a new operation to adapt
a dynamically extended precision method from a low-
precision solution space to a high-precision one [20]. The
above algorithms have been executed to solve the test func-
tions and the results were reported in the literature. We will
use these existing results for a direct comparison in Tables 5
and 6.

As the termination criteria used in these four algorithms
are different, to make a fair comparison basis, we let the
solution qualities obtained by our MEGA be slightly better
than those of the four algorithms (in Table 5), and then,
compared the mean computational effort at the given accu-
racy (in Table 6). For the unimodal functions (𝑓

1
–𝑓
6
), the

convergence rate of an algorithm is a more important issue
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Table 5: Comparison of the mean best value (and Std Dev) with other GAs.

Test function CMGA OGA/Q HTGA StGA (Variance) MEGA

𝑓
1

N/A 0 0 2.45 × 10−15 2.44 × 10−19

(0) (0) (5.25 × 10−16) (1.33 × 10−18)

𝑓
2

N/A 0 0 2.0 × 10−7 2.00 × 10−7

(0) (0) (2.95 × 10
−8
) (4.27 × 10

−7
)

𝑓
3

N/A 0 0 9.98 × 10
−29

5.49 × 10
−30

(0) (0) (6.90 × 10
−29
) (2.74 × 10

−29
)

𝑓
4

N/A 0 0 2.01 × 10−8 1.99 × 10−8

(0) (0) (3.42 × 10−9) (2.42 × 10−8)

𝑓
5

N/A 0.7520 0.7 0.04435 0.03762
(0.1140) (0) (0.0) (0.02816)

𝑓
6

N/A 6.301 × 10
−3

1.000 × 10
−3

8.4 × 10
−4

3.78 × 10
−3

(4.069 × 10
−4
) (0) (1.00 × 10

−3
) (1.84 × 10

−3
)

𝑓
7

−8722.16
−12569.4537 −12569.4600 −12569.5 −12596.5

(6.447 × 10−4) (0) (0.0) (9.98 × 10−3)

𝑓
8

157.76 0 0 4.42 × 10−13 0.0
(0) (0) (1.14 × 10−13) (0.0)

𝑓
9

N/A 4.440 × 10−16 0 3.52 × 10−8 2.78 × 10−8

(3.989 × 10
−17
) (0) (3.51 × 10

−9
) (5.15 × 10

−8
)

𝑓
10

0.3283 0 0 2.44 × 10
−17 0.0

(0) (0) (4.54 × 10−17) (0.0)

𝑓
11

N/A 6.019 × 10−6 1.000 × 10−6 8.03 × 10−7 7.85 × 10−7

(1.159 × 10−6) (0) (1.96 × 10−14) (4.42 × 10−7)

𝑓
12

N/A 1.869 × 10−4 1.000 × 10−4 1.13 × 10−5 1.11 × 10−5

(2.615 × 10
−5
) (0) (4.62 × 10

−13
) (8.31 × 10

−6
)

Table 6: Comparison of the computational effort (MNFE) with other GAs.

Test function CMGA OGA/Q HTGA StGA MEGA
f 1 N/A 112,559 20,844 30,000 17,280
f 2 N/A 112,612 14,285 17,600 195,750
f 3 N/A 112,576 26,469 23,000 175,500
f 4 N/A 112,893 21,261 32,000 49,950
f 5 N/A 167,863 60,737 45,000 23,760
f 6 N/A 112,652 20,065 25,500 25,920
f 7 600,000 302,166 163,468 1,500 35,640
f 8 600,000 224,710 16,267 28,500 41,850
f 9 N/A 112,421 16,632 10,000 108,000
f 10 600,000 134,000 20,999 52,500 6,210
f 11 N/A 134,556 66,457 8,000 58,050
f 12 N/A 134,143 59,003 16,000 18,900

than the achieved satisfactory accuracy. Because of different
problem dimensions used in the HTGA (i.e., 𝑁 = 100), this
study cannot compare its performance with other algorithms
for these six unimodal functions. In Table 6, we can observe
that the proposed MEGA requires fewer MNFEs than the
OGA/Q for four of the six test functions. The convergence
rate of the MEGAwas similar to that of the StGA for a half of
the six test functions. Because of the narrow valleys of 𝑓

2
and

𝑓
3
, the MEGA was forced to change its searching direction

continually; thus, it approached the high-accuracy optimum

slowly. That is why the convergence rates of the MEGA were
lower than those of other algorithms for 𝑓

2
and 𝑓

3
.

For the multimodal functions (𝑓
7
–𝑓
12
), the quality of the

solutions is more crucial than the required computational
effort because the solution quality reveals the algorithm’s
ability to escape from local optima and achieves near-
global solutions. From the obtained results of the numerical
experiments in Tables 5 and 6, we can see that theMEGAwas
superior to the CMGAwith respect to both solution accuracy
and convergence rate. The solution accuracies achieved by
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the MEGA were similar to those of the OGA/Q, HTGA,
and StGA for all the six multimodal functions. However,
the MEGA converged slower than the HTGA and StGA
for the multimodal function 𝑓

9
. This finding implies that

the proposed MEGA is robust and effective in solving the
multimodal functions and can perform as good as the four
state-of-the-art GAs.

5. Performance Evaluation for
Multipath Routing Problems

5.1. Multipath Routing Problems. Multipath traffic engineer-
ing becomes more attractive for ubiquitous networks to
satisfy the required QoS of mobile network applications [22].
For a given network topology with available link capacities,
it is required to determine the optimal distribution of traffic
requests on multipath routing subject to the constraints
imposed by QoS specifications. The service network is mod-
eled as a connected weighted, directed graph 𝐺 = (𝑉, 𝐸),
where the 𝑉 = {V

1
, V
2
, . . . , V

𝑛
} is the vertex set of 𝐺,

and the 𝐸 = {𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑚
} is a finite set of edges. We

consider a link-state routing environment, where each node
has knowledge of its neighbor links and each source node
knows (1) traffic load from node 𝑖 to node 𝑗 (𝑖 ̸= 𝑗), (2) QoS
requirements/constraints (e.g., delay constraint), (3) residual
bandwidth of each link, (4) link cost for the traffic, and (5)
time delay for the traffic to pass through each link at a certain
time period.

The link 𝑒 = (𝑖, 𝑗) ∈ 𝐸 connects a source node 𝑖 ∈ 𝑉
to a destination node 𝑗 ∈ 𝑉 with positive cost 𝑐

𝑒
, capacity

𝑏
𝑒
, and a delay function (i.e., 𝐷

𝑒
: R+ → R+). The cost

function represents the traffic-related delay of each edge and
limit to positive cost. The delay requirement specifies the
upper bound of delay tolerance, denoted as Δ

𝑤
.

In multipath routing problems, messages are routed for
a set of OD pairs 𝑊, where 𝑡

𝑤
denotes the traffic demand

volume (or bandwidth) for OD pair 𝑤. The set of all
permissible paths for the 𝑤th OD pair is denoted as 𝑃

𝑤
. Let

indicator function 𝑓
𝑤𝑝

be a nonnegative continuous variable
denoting the traffic flow allocated on path 𝑝 of request 𝑤.
Indicator function 𝑦𝑒

𝑤𝑝
is 1 if link 𝑒 belongs to path 𝑝 for

request𝑤, and 0 otherwise; that is,𝑦
𝑝𝑖
= { 1,
0,

if 𝑒𝑖∈𝑝
otherwise, where

𝑖 = 1, 2, . . . , 𝑚. The aggregate flow on link 𝑒 is denoted as 𝑔
𝑒
,

which must satisfy the capacity feasibility constraint; that is,
𝑔
𝑒
= ∑
𝑤∈𝑊

∑
𝑝∈𝑃𝑤

𝑓
𝑤𝑝
𝑦𝑒
𝑤𝑝
≤ 𝑏
𝑒
, for all 𝑒 ∈ 𝐸.

The multipath routing problem is to find multiple paths
to transmit the traffic demand for all OD pairs such that
the total routing cost is minimal and the QoS constraints
should be satisfied.Themultipath routing can bemodeled as a
combinatorial linear programming problem in the following:

objective function,

minimize ∑
𝑒∈𝐸

𝑐
𝑒
𝑔
𝑒 (7)

subject to 𝑔
𝑒
= ∑
𝑤∈𝑊

∑
𝑝∈𝑃𝑤

𝑓
𝑤𝑝
𝑦
𝑒

𝑤𝑝
∀𝑒 ∈ 𝐸 (8)

𝑔
𝑒
≤ 𝑏
𝑒
∀𝑒 ∈ 𝐸 (9)

∑
𝑒∈𝐸

𝑦
𝑒

𝑤𝑝
𝑓
𝑤𝑝
𝐷
𝑒
(𝑔
𝑒
) ≤ Δ

𝑤
∀𝑝 ∈ 𝑃

𝑤
, 𝑤 ∈ 𝑊

(10)

∑
𝑝∈𝑃𝑤

𝑓
𝑤𝑝
= 𝑡
𝑤
∀𝑤 ∈ 𝑊 (11)

𝑓
𝑤𝑝
≤ 𝑡
𝑤
𝑟
𝑤𝑝

∀𝑝 ∈ 𝑃
𝑤
, 𝑤 ∈ 𝑊 (12)

∑
𝑝∈𝑃𝑤

𝑟
𝑤𝑝
= 𝑥
𝑤
∀𝑤 ∈ 𝑊 (13)

𝑟
𝑤𝑝

binary ∀𝑝 ∈ 𝑃
𝑤
, 𝑤 ∈ 𝑊. (14)

The objective function (in (7)) is tominimize the total routing
cost in the multipath routing problem. The first constraint
(in (8)) calculates the aggregate traffic on link 𝑒. The second
constraint assures the capacity constraint on each link by (9).
The third constraint (in (10)) ensures the total delay of each
OD pair to satisfy a prespecified path-delay bound Δ

𝑤
. The

constraint in (11) enforces that traffic demand of each OD
pair should be satisfied. Equation (12) lets an auxiliary binary
variable 𝑟

𝑤𝑝
be 1 if the traffic 𝑓

𝑤𝑝
along path 𝑝 is larger than

zero, and 0 otherwise. Equation (13) sums up the used routes
and assigns the number to the 𝑤th gene 𝑥

𝑤
.

5.2. Algorithm Implementation for
Multipath Routing Problems

5.2.1. Encoding. The encoding method is the most important
steps towards solving real world problems using EAs. In this
paper, the encodingmethodmaps allmultipathODpairs into
a chromosome based on route aspect. Since there are somany
candidate paths between two nodes in the network graph,
traditional GAs may consume considerable computational
effort in searching infeasible solutions because genetic oper-
ations do not always preserve feasibility. Therefore, to reduce
the search space, this work uses the 𝐾 shortest path routing
algorithm to precalculate the first𝑅 shortest paths and record
in a routing table.

The MEGA maintains a population of chromosomes to
optimize a given objective function for the multipath routing
problem. Each chromosome can be represented by a two-
dimensional array of integers. The first-dimension genes �⃗� =
[𝑥
1
𝑥
2
⋅ ⋅ ⋅ 𝑥

𝑁
]
𝑇 represent the number of used routes for

each OD pair. The second-dimension genes record the route
number of each used path for realizing the demand of each
OD pair. Thus, if the gene value of the 𝑤th gene is 𝑥

𝑤
= 𝑘,

the vector [𝑥
𝑤1
, 𝑥
𝑤2
, . . . , 𝑥

𝑤𝑘
]
𝑇 represents 𝑘 route numbers of

subflows for OD pair 𝑤. Gene 𝑥
𝑤𝑝

is an integer in interval
[1, 𝑅] to represent a route number for the OD pair 𝑤 in its
routing table. We use an example of network topology to
illustrate the relationship between a chromosome, 2D genes,
and routing tables in Figure 2.

Figure 2(a) depicts an example of a network graph, link
parameters, and two multipath routings. Parameters along
links are triple (cost, delay, and bandwidth). The first OD
pair, that is, 𝑤

1
= (1, 3), has two routing paths 𝑝

12
=

{(1, 4), (4, 5), (5, 3)} and𝑝
11
= {(1, 2), (2, 3)} to transmit traffic

from node 1 to node 3.Thus, the first-dimension gene 𝑥
1
= 2.
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for OD pair (1, 3)

Route no. Route path
1 1-2-3
2 1-4-5-3
· · · · · ·

R 1-4-7-5-3

Routing table
for OD pair (6, 8)

Route no. Route path
1 6-7-8
2 6-4-2-5-8
3 6-4-5-8
4 6-4-7-8

(b) Representation of a chromosome(a) Network topology example with two OD pairs (c) Routing tables

Figure 2: Example of genotype coding: (a) network graphwith link parameter (cost, delay, and bandwidth), (b) representation of chromosome
by using 2D genes, and (c) two routing tables for paths for node 6 to node 8 and paths for node 1 to node 3.
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Figure 3: A randomly generated network with 14 nodes and average degree 4.

The route numbers in its routing table (in Figure 2(c))
corresponding to paths 𝑝

12
and 𝑝

11
are 2 and 1; thus, the

second-dimension genes for 𝑤
1
(in Figure 2(b)) record 𝑥

11
=

2 and 𝑥
12
= 1, respectively. In Figure 2(a), the second OD

pair, that is, 𝑤
2
= (6, 8) routes its traffic along three subflows

along paths 𝑝
21
, 𝑝
23
, and 𝑝

24
. Therefore, the first-dimension

gene is 𝑥
2
= 3 and the corresponding second-dimension

genes are 𝑥
21
= 1, 𝑥

22
= 3, and 𝑥

23
= 4, respectively.

5.2.2. Therapy Crossover for Multipath Routing. Each time
the selection operation chooses two crossover parents from
the population. The proposed mutual-evaluation approach
calculates the merit of two selected genomes by comparing
the changes in the chromosome fitness before and after
interchanging the first- and second-dimension genomes with
the othermating chromosome.Thefirst-dimension genes can
linearly combine with those in the other chromosome by
using the proposed therapy crossover (in Section 3.2.1 (4) and
(5)). The obtained results should be transformed into integer
type, and therefore, the second-dimension genes should be
modified. If the obtained result of the first-dimension gene
is larger than before, we randomly select a suitable number

of genes from the other parent to add into the second-
dimension genes in this chromosome. If the result equals to
the original value, we randomly select a small number of
genes from the other parent to replace the original genes.
Otherwise, a suitable number of genes should be randomly
selected to remove from this chromosome.

5.2.3. Mutation for Multipath Routing. Mutation operation
performs on an individual chromosome to flip one or more
genes with a small probability (typically 0.001) and ensures
that no point in the search space has a zero probability
of being searched. According to a mutation probability, the
mutation randomly selects a subset of genes and chooses new
paths from its routing table.Thus, the route numbers of these
new paths replace the original values of selected genes. The
resulting chromosome is a new multipath routing plan that
can increase population diversity.

5.3. Test Platform and Performance Metrics. In this paper, we
use the well-known network generation tool [23] to create
an asynchronous network based on theWaxman’s techniques
[24]. The network in Figure 3 illustrates a random generated



Journal of Applied Mathematics 11

Table 7: The mean experimental results for the low-rate cases (0.25Mbps) obtained by (a) MEGA and (b) TGA.

(a) MEGA

OD pairs 3 4 5 6 7 8 9 10
Case 1 116.16 160.66 193.84 234.28 267.5 298.12 334.64 368.47
Case 2 132.4 154.1 176.45 226.84 254.5 287.3 335.1 374.12
Case 3 100.84 141.1 171.5 210.56 254.67 291.6 321.64 341.6
Case 4 114.5 157.64 189.67 231.99 260.46 290.14 327.45 360.41
Case 5 125.1 170.14 203.46 248.82 176.45 308.2 343.71 386.46
Avg. 117.8 156.73 186.98 230.50 242.72 295.07 332.51 366.21

(b) TGA

OD pairs 3 4 5 6 7 8 9 10
Case 1 138.31 173.62 235.81 249.45 284.65 301.64 355.14 380.39
Case 2 154.96 184.60 193.59 236.07 282.32 321.73 363.22 392.32
Case 3 129.25 174.79 188.36 233.30 271.43 309.39 345.11 371.40
Case 4 137.98 192.39 203.39 250.22 266.99 313.95 354.95 384.30
Case 5 165.01 186.55 220.27 256.96 190.42 311.60 354.38 392.94
Avg. 145.10 182.39 208.28 245.20 259.16 311.66 354.56 384.27

Table 8: The standard deviation of results for the low-rate cases (0.25Mbps) obtained by (a) MEGA and (b) TGA.

(a) MEGA

OD pairs 3 4 5 6 7 8 9 10
Case 1 4.28 5.12 7.01 12.80 11.79 14.31 15.26 16.82
Case 2 4.79 6.63 7.98 11.82 12.92 14.50 17.06 14.94
Case 3 3.49 6.89 6.76 10.58 13.01 14.30 15.13 16.92
Case 4 4.41 4.86 6.36 10.52 12.91 12.50 15.80 17.84
Case 5 5.27 5.60 6.23 9.62 13.47 14.18 15.71 15.24
Avg. 4.45 5.82 6.87 11.07 12.82 13.96 15.79 16.35

(b) TGA

OD pairs 3 4 5 6 7 8 9 10
Case 1 7.56 7.63 7.57 15.15 14.99 16.55 17.17 18.40
Case 2 7.04 9.34 8.35 15.36 14.23 17.49 18.59 19.31
Case 3 7.14 7.69 9.28 14.81 15.77 15.55 17.78 21.26
Case 4 8.24 9.47 9.05 14.66 15.37 16.50 18.72 18.06
Case 5 6.85 10.47 11.21 14.30 14.28 17.43 19.91 16.61
Avg. 7.37 8.92 9.09 14.86 14.93 16.70 18.43 18.73

graph with 14 nodes and the average degree of each node is
four. Figure 3 only shows the cost/delay information along
one direction link (froma smaller-IDnode to a larger-IDone)
to reduce the complexity of the graph representation. All links
are assumed to have 1.5Mbps of bandwidth capacity. For each
test scenario, the OD pairs are randomly generated five times
for each scenario to decrease the selection bias. Two kinds of
transmission rates are assigned for the OD pairs: 0.25Mbps
(lowrate) and 0.5Mbps (highrate).

The performance of the proposed MEGA is evaluated
based on the following ways.

(1) The total routing cost:This cost reflects the algorithm’s
ability to construct multiple paths for all OD pairs by
using low-cost and lightly utilized links.

(2) The maximum end-to-end delay for OD pairs: It
indicates the algorithm’s ability to satisfy the delay
bound imposed by the service level agreement of
applications.

An algorithm’s effectiveness in allocating network
resources can be judged by monitoring how frequently that
algorithm fails to construct a set of acceptable OD pairs.
There are two kinds of failure. One is that the created OD
pair does not satisfy its delay bound. The other one is that
the algorithm cannot find unsaturated links to create a path
for OD pairs.

5.4. Computational Experiments for Multipath Routing Prob-
lems. The performance of the proposed MEGA is compared
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Table 9: The mean experimental results for the high-rate cases (0.5Mbps) obtained by MEGA and TGA.

Algorithm MEGA TGA
OD pairs 3 4 5 6 3 4 5 6
Case 1 116.50 159.69 193.06 231.94 124.30 166.01 204.70 248.78
Case 2 110.84 142.02 180.71 209.44 120.51 149.94 200.26 223.59
Case 3 134.10 165.12 201.36 235.76 144.18 176.07 213.18 255.57
Case 4 100.94 136.34 170.46 192.10 124.78 150.85 179.52 209.35
Case 5 121.34 158.49 187.54 224.62 134.62 172.35 204.96 228.07
Avg. 116.74 152.33 186.63 218.77 129.68 163.04 200.52 233.07

Table 10: The standard deviation of results for the high-rate cases (0.5Mbps) obtained by MEGA and TGA.

Algorithm MEGA TGA
OD pairs 3 4 5 6 3 4 5 6
Case 1 4.58 5.50 7.59 10.04 5.79 6.55 8.55 11.13
Case 2 5.14 6.49 9.12 11.24 5.71 6.62 10.39 11.90
Case 3 3.72 4.98 7.12 9.56 5.21 6.47 9.12 11.14
Case 4 4.30 6.30 8.84 10.56 5.67 7.71 9.68 10.67
Case 5 5.04 6.81 9.40 10.54 6.93 8.43 10.66 12.20
Avg. 4.56 6.02 8.41 10.39 5.86 7.16 9.68 11.41

with the TGA for two kinds of multipath routing scenarios
with respect to different transmission rates and different
number of total OD pairs in the network. In the first test
scenario, the experiments are performed for 100 independent
runs with 10 generations in the MATLAB environment.
The evolution curves of total routing costs with respect to
lowrate and highrate are compared in Figures 4(a) and 4(b),
respectively.The evolution curves in Figure 4(a) show that the
efficiency of theMEGA is better than that of the TGA in both
two transmission rates. Particulary, even though the transmit
rate increases two times than the low-rate case, the growing
ratio of the total routing cost in Figure 4(b) is still less than
that obtained by the TGA.

The second scenario simulates the stress test to measure
the robustness of these two algorithms.We increase the num-
ber of OD pairs from 3 to 10 and conduct 100 independent
trials for each test case.TheOD pairs are randomly generated
five times for each scenario to simulate the great diversity of
OD-pair selection for performance evaluation.

Tables 7 and 8 are the “mean” and “standard deviation”
experimental results obtained by the proposed MEGA and
TGA for five cases in the low-rate scenario (with 0.25Mbps
transmission rate). The mean experimental results obtained
by the proposedMEGA are better than the results of the TGA
on all the test cases.That is, theMEGA can find better routing
paths to serve all multipath transmission requirements than
TGA (in Table 7). For the standard deviations in 100 indepen-
dent runs, the proposed algorithm achieved superior results
compared with the TGA in all the test cases (in Table 8).
This finding implies that the proposed algorithm is robust in
solving multipath routing problems and can perform better
than the TGA.

In the high-rate scenario, the test network cannot afford
the data flows if the number ofODpairs is larger than 6.Thus,
the following experiments only increase the number of OD

pairs from 3 to 6 and the transmission rate is 0.5Mbps for
the high-rate cases. We simulate 100 independent trials for
each test case and depict the “mean” and “standard deviation”
of the experimental results obtained by the MEGA and TGA
in Tables 9 and 10, respectively. Experimental results indicate
that the proposed MEGA outperforms the TGA with respect
to the “mean” and “standard deviation” of routing costs for
all high-rate scenarios. Furthermore, the search ability of the
MEGA is robust in obtaining consistent results and performs
better than the TGA.

6. Conclusions and Future Works

To the best of our knowledge, the proposedMEGA is the first
mutual-evaluation approach, which calculates each genome
merit by interchange-compare-replace method. The genome
evaluation facilitates theMEGA to performan efficient search
by dynamically shifting emphasis to significant genomes in
the feasible space without abdicating any portion of the
candidate schemata.The therapy crossover is also proposed to
preserve better-performance schema patterns. Simpler than
other modified approaches, the proposed MEGA can pre-
serve high quality genomes during evolution period without
using extra analyzing techniques.

The performance of the proposed algorithm was mea-
sured using 12 benchmark functions. The performance was
compared with four existing EAs and four well-known GAs.
The experiment results show that the MEGA is able to find
near-optimal solutions, even though other algorithms expe-
rience difficulties in approaching the global optima on some
functions. The behavior of the algorithm is also consistent as
indicated by a small standard deviation among the 50 trials
for each test function. Furthermore, the MEGA can increase
the accuracy by several orders of magnitude than other
algorithms in almost all test functions.That is, theMEGA can
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Figure 4: Evolution curves of two different transmission rates (a) 0.25Mbps and (b) 0.5Mbps.

outperform the existing global optimization algorithms with
a dramatic improvement in terms of effectiveness.

Furthermore, because of the simplification property of
the mutual-evaluation approach, this study slightly modified
the encoding method of the MEGA to solve the multi-
path routing problems in multicommodity networks. The
bandwidth-delay constraints are introduced to enforce the
service quality of multimedia applications. The experimental
results show that the MEGA not only can solve QoS con-
strainedmultipath routing problems, but also can outperform
the TGA. That is, the proposed MEGA not only can reduce
the effort of explicit function analysis but also can deal with a
wide spectrum of real world problems.

The contributions of the paper are as follows. (1) We
develop a novel mutual-evaluation approach which incorpo-
rates with a GA that has never been jointly considered in
the literature. (2) We introduce a novel therapy crossover,
which not only can evolve superior genomes but also can
achieve global optima. (3)We introduce a novel chromosome
representation for the MEGA to address multipath routing
problems in a multicommodity network. (4) Experimental
results show that the proposedMEGA can achieve significant
performance gain over several well-known algorithms under
the considered scenarios. The proposed MEGA has high
exploration and exploitation abilities as a robust, statistically
sound, and quickly convergent algorithm.

We have observed that there are many researches for
routing problems. In the future, we will further compare with
more state-of-the-art methods on QoS multipath routing.
Particulary, the simplicity property of the MEGA can help to
route dynamic services across heterogeneous environments.
Therefore, developing a distributed MEGA to enhance its
scalability for highly dynamic environments is also our future
work.
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