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To achieve high accuracy in wireless positioning systems, both accurate measurements and good geometric relationship between
the mobile device and the measurement units are required. Geometric dilution of precision (GDOP) is widely used as a criterion
for selecting measurement units, since it represents the geometric effect on the relationship between measurement error and
positioning determination error. In the calculation of GDOP value, the maximum volume method does not necessarily guarantee
the selection of the optimal four measurement units with minimum GDOP.The conventional matrix inversion method for GDOP
calculation demands a large amount of operation and causes high power consumption. To select the subset of the most appropriate
location measurement units which give the minimum positioning error, we need to consider not only the GDOP effect but also the
error statistics property. In this paper, we employ the weighted GDOP (WGDOP), instead of GDOP, to select measurement units so
as to improve the accuracy of location. The handheld global positioning system (GPS) devices and mobile phones with GPS chips
can merely provide limited calculation ability and power capacity. Therefore, it is very imperative to obtain WGDOP accurately
and efficiently. This paper proposed two formations of WGDOP with less computation when four measurements are available for
location purposes. The proposed formulae can reduce the computational complexity required for computing the matrix inversion.
The simplerWGDOP formulae for both the 2D and the 3D location estimation, without inverting a matrix, can be applied not only
to GPS but also to wireless sensor networks (WSN) and cellular communication systems. Furthermore, the proposed formulae are
able to provide precise solution of WGDOP calculation without incurring any approximation error.

1. Introduction

In positioning the location estimates are determined through
the received signals transmitted by the mobile devices at a set
of base stations (BSs), satellites, or other sensors. First, the
length or direction of the radio path is determined through
signal measurements. Secondly, the MS position is derived
from radio location algorithms and known geometric rela-
tionships. Mobile positioning systems have received signifi-
cant attention, and various location technologies have been
proposed in the past few years. Among the techniques for
mobile positioning there are two major categories—handset-
based and network-based schemes. Both approaches have
their advantages and limitations. Global positioning system

(GPS) is a positioning system that can provide position,
velocity, and time information to a user. Handset-based solu-
tions generally require a handset modification to calculate
its own position when they are fully or partially equipped
with a GPS receiver. The advantages of using handset-
based methods are that they have global coverage and
usually provide much more accurate location measurements.
The drawbacks of the handset-based methods include cost,
redundant hardware, and economical integrated technology.
The reliability of GPS measurements is greatly compromised
in a building or shadowed environments, where direct line-
of-sight (LOS) propagation is not available. Without the aid
of satellite systems, network-based positioning schemes use
time and angle measurements to determine the MS location
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or to assist the process of MS location determination. Instead
of using all seven BSs, four BSs with better geometry are good
enough to provide sufficient measurements for positioning
in cellular communication networks. The network-based
location schemes are relatively less complex on hardware
when compared with the handset-based methods. They can
be employed in many situations where GPS signal cannot,
for example, indoor environment and urban canyon areas,
or when GPS-embedded handsets are not available. For
many applications in wireless sensor networks (WSN), like
environmental sensing and activities measuring, it is crucial
to know the locations of the sensor nodes in network-based
positioning; this is known as a “localization problem” [1]. An
ideal location technology should be able to provide a robust
estimate of location in all environments.

This paper considers both the network-based method
and the handset-based method, employing the concept of
geometric dilution of precision (GDOP), which was initially
developed as a criterion for selecting the optimal 3D geo-
metric configuration of satellites in GPS. The general object
of the GPS satellite selection algorithm is to minimize the
GDOP to improve the position accuracy. The smaller value
of GDOP is calculated, the better geometric configuration
we will have. The redundant measurements will bring large
amount of computation and may not provide significantly
improved location accuracy. When enough measurements
are available, the optimal measurements selected with the
minimum GDOP can prevent the poor geometry effects and
have the potential of obtaining greater location accuracy.

There have been extensive researches trying to obtain an
approximate GDOP value without executing matrix inver-
sion in the past few years. Simon and El-Sherief [2, 3] pro-
posed the employment of back-propagation neural network
(BPNN) [4] to obtain an approximation for the GDOP func-
tion.TheBPNN is employed to learn the relationship between
the entries of a measurement matrix and the eigenvalues
of its inverse. Three other input-output relationships were
proposed in [5]. We present the resilient back-propagation
(Rprop) architectures to obtain the approximate GDOP
[6]. The matrix inversion method for GDOP calculation
is born with significant computational burden. GDOP is
approximately inversely proportional to the volume of the
tetrahedron formed by the tips of four unit vectors directed
to the selected satellites in GPS [7]. The four satellites evenly
distribute with the maximum volume which brings the more
accurate location estimation. The maximum volume method
requires low computing time in selecting a subset with
the largest tetrahedron as the optimum [8]. However, it is
not suitable to use this method because it may not select
the desired satellites with the minimum GDOP. The main
disadvantage of these methods is to incur approximation
errors. To avoid these disadvantages, a simple closed-form
formula for GDOP calculation is proposed in [9].

Traditionally, the GDOP computation assumes that the
pseudorange errors are independent and identical [10].
Several methods based on GDOP have been proposed to
improve the GPS positioning accuracy [7, 9, 11]. In fact,
measurements usually have different error variances [12].
Ranging error of GPS is caused by many sources, such as

the effect of ionosphere delay, tropospheric delay, carrier-
to-noise ratio, and multipath. GDOP and the effect of these
errors can be considered simultaneously; the extension of
GDOP criteria is used for satellite selection in [13]. The
satellite signal is also approximated by combining the user
range accuracy value, carrier-to-noise ratio, elevation angle,
and the date of ephemeris. The weighted GDOP (WGDOP)
which takes these errors into account was proposed in [14].
The elevation of each satellite and signal-to-noise-ratio (SNR)
are introduced as fuzzy subset to weight GDOP and provide
the positioning solution [15]. When baro-altitude measure-
ments or a priori terrain elevation information is used, the
conventional GDOP formula cannot be applied and must be
modified [16] in order to reduce the influence of satellites
with a large error and evaluates the influence of each satellite
on the arrangement of satellites. The GDOP was focused
as a factor to determine the weight matrix and improve
precision in GPS measurements [17]. The combinations of
the GPS and Galileo satellite constellations will provide more
visible satellites with better geometric distribution, and the
availability of satellites will be significantly improved. A novel
algorithm, namely, the WGDOP minimum algorithm, was
proposed in [18] for the combined GPS-Galileo navigation
receiver. In addition to the aforementioned, several papers
which focus on WGDOP concepts have been proposed to
improve the GPS positioning accuracy [19–21]. Taking the
different variances of the satellites into account, researchers
have proposed various WGDOP measures [13–21]. Much of
the research literature needs matrix inversion to calculate
WGDOP. Though they can guarantee to achieve the optimal
subset, the computational complexity is usually too expensive
to be practical.

High accuracy in wireless positioning system requires
both the accurate measurement and a good effect of GDOP.
When the measurements have different error variances or
come from integrated positioning systems, WGDOP mini-
mum criterion is appropriate to select the appropriate mea-
surement units to diminish the positioning error.The optimal
measurements selected with theminimumWGDOP can help
reduce the adverse geometry effects. Increasing the number of
satellites will always reduce theWGDOP value, since the best
WGDOP can be obtained by computing all satellites in view.
If the number of visible satellites is not large, the all-in-view
method is a good choice to provide high accuracy positioning
[15]. In order to further improve the positioning accuracy,
the combined use of multiconstellation can be employed.
Therewill be 70∼90 navigation satellites operating at the same
timewhenGlonass andGalileo reach full operation capability
[22]. In any moment, there are more than 30 satellites in
view in the multiconstellation navigation systems. To employ
all-in-view method for positioning is very difficult for us in
the future. Due to limited resources associated with many
mobile devices and because the number of visible satellites is
very large [18], measurement unit selection techniques can be
used. If we select 4 out of 30 satellites, the number of possible
subset is 27405. The calculation of WGDOP is a time and
power consuming process, and fast calculation of WGDOP
is most anticipated.WGDOP is computed for all subsets, and
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the subset which gives the smallest WGDOP is selected for
location estimation.

The growth ofGPS embedded into currentmobile phones
continues to grow rapidly, as many mobile phones now are
already equipped with GPS inside. Despite their performance
increases, these devices still possess limited resources, such
as the number of channels, battery capacities, and process-
ing capability. Satellite selection can reduce the number of
satellites used to position and as a result reducing the amount
of calculation greatly. The number of measurements can be
restricted and the resulting saving in load on the processor
can be used to offer more spare processing time which can be
used for other user specific requirements. On the other hand,
reducing the signal-processing time of the receiver dedicated
to satellite selection implies both increasing the processing
capabilities available for other purposes and saving battery.
The conventional method for calculating WGDOP is to use
matrix inversion, which requires enormous amount of com-
putation. This can present challenges to real-time practical
applications. Therefore, it is very critical to select a subset
with the most appropriate measurement units rapidly and
reasonably before positioning.

To calculate WGDOP in the form of 2D and 3D formula-
tions effectively, the closed-form solutions for two WGDOP
formations are proposed for the case of each measurement
with a unique variance and one of the measurements with
higher location precision. The computation load of the pro-
posed formulae is greatly less than that of thematrix inversion
method. When exactly four measurements are used, the
proposed formulae provide the best computational efficiency.
The proposed formulae can also provide the exact solution to
theWGDOP calculation and do not incur any approximation
errors. The relatively simple closed-form WGDOP formulae
can be implemented in the aforementioned papers [13–
21]. The calculations of WGDOP for fast evaluation can be
applied in GPS, WSN, and cellular communication systems.
In practice, the measurement units of GPS, WSN, and
cellular communication systems are satellites, sensors, and
BSs, respectively.

The author of this paper proposed two novel architectures
and presented four original architectures based on Rprop
neural network to approximate WGDOP [23]. The disad-
vantage of Rprop-based WGDOP algorithm is the need of a
training phase with several input-output patterns. We collect
the elements of relatedmatrix and the desiredWGDOP value
to train the neural network prior to the practicaluse. After
the training, the elements of geometry matrix and weighted
matrix as input data can not only pass through the trained
Rprop but also predict the better appropriate WGDOP. From
simulation results, the proposed WGDOP formulae always
provide much better accuracy than Rprop-based WGDOP
approximation [23]. But the proposed efficient formulae for
WGDOP have been developed when there are exactly four
measurement units used.

The remainder of this paper is organized as follows:
Section 2 describes the concepts of GDOP and WGDOP.
Section 3 reviews an efficient solution for the calculation of
GDOP. The closed-form formulae for WGDOP calculations
in the case of four measurements with unequal variances

are proposed in Section 4. In Section 5, we examine the
performance of the proposed formulae through simulation
experiments. Conclusion is given in Section 6.

2. GDOP and WGDOP

GDOP is a task of choosing the appropriate measurement
units, which results in a better geometric configuration and
a more accurate position estimate. In order to achieve better
positioning accuracy, it is desirable to select the combination
ofmeasurements with GDOP as small as possible. Using a 3D
Cartesian coordinate system, the distances between satellite 𝑖
and the user can be expressed as
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vector from the satellites to the user.
The linearized pseudorange measurement equations take

the form
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is the geometry matrix.

According to the least square algorithm (LS), the solution
to (4) is given by
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Assume that the pseudorange errors are uncorrelated with
equal variances 𝜎

2, the error covariance matrix can be
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The variances are functions of the diagonal elements of
(𝐻

𝑇
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−1.TheGDOP is ameasure of accuracy for positioning
systems and depends solely on the geometry matrix𝐻
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.
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In fact, each measurement error does not have the same
variance, especially for the combination of different systems.
The covariance matrix represents the uncertainty in the
pseudorange measurements and has the following form:
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where 𝜎2
𝑖
= 1/𝑘

𝑖
, 𝑖 = 1, 2, . . . , 𝑛 are the variances of the meas-

urement errors.
With the weighting matrix defined above, the solution to

the weighted least square (WLS) can be expressed as
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Taking into account that all measurement units contain
different variances, the positioning algorithm using WLS
estimation provides higher location accuracy than the LS esti-
mation. Having considered both the geometric configuration
and the priori knowledge of error models simultaneously,
we choose WGDOP, instead of GDOP, for measurements
selection to achieve effective performance improvement.The
optimal subset is the one with the minimumWGDOP, which
is given by the trace of the inverse of the𝐻𝑇𝑊𝐻matrix

WGDOP =

√tr (𝐻𝑇𝑊𝐻)

−1
.

(11)

We can compute the WGDOP value of each subset, and
then the subsets with minimum WGDOP are the selected
measurement units. The conventional method for calcu-
lating WGDOP is to use matrix inversion for all subsets.
The method can guarantee the optimal subset; however, it
presents a heavy computational burden.

3. Calculation of GDOP for
Four Measurements

In the time of arrival (TOA) positioning methods, which
is applied to GPS, the TOA circle becomes the sphere in
space and the fourth measurement is required to solve the

receiver-clock bias for a 3D solution. The bias is the clock
synchronization error between the receiver and the satellite.
In practice, the time of user is significantly more inaccurate
than that of an atomic clock on the satellite. In order to
correct the clock bias errors present at the receiver of the users
end, the measurement from the fourth satellite is employed.
Getting information from the fourth measurement makes
it possible to solve for this fourth unknown. Even though
there are more than four satellites in view, a subset with four
satellites is sufficient providing the sufficient measurements
for navigation solution even though more than four satellites
are in view, which is called the optimum four GPS satellites
positioning [15]. The selection of four visible satellites to
provide the suitable GPS positioning accuracy is presented
in several papers [13–17]. Thus, we propose to take only four
BSs with better geometry out of seven to estimate the MS
location in cellular communication networks. For practical
real-time applications, the number of selected measurement
units should not be large. The efficient closed-form solution
with simpler calculation for a four-satellite case is proposed
in [9].

By using of the following properties:
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the GDOP can be written as [9]
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expression of 𝑎, and two multiplications can be eliminated.
The closed-form equation needs only 39 multiplications, 34
additions, 1 division, and 1 square root.
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4. Calculation of WGDOP for
Four Measurements

To further reduce the computational overhead and improve
the location performance, the selection of the optimal mea-
surement units is necessary. Since the statistics of different
location measurement units are, in general, not equal to each
other, WGDOP is appropriate to an index for the precision
of location in different networks, such as GPS, WSN, and
cellular communication systems.The steps for positioning are
listed as follows.

(1) We will first select four measurements among 𝑛

measurement units to generate the subsets; thus, the 𝑛
measurement units are classified into 𝐶(𝑛, 4) possible
subsets.

(2) WGDOP is computed for all possible subsets of four
measurement units.

(3) The subset which gives the smallest WGDOP is
selected as the optimal subset.

(4) Finally, the four measurements of this subset can be
used to find out the location solution.

The calculation of WGDOP takes considerable computing
time; it is very imperative to accelerate the computation
of WGDOP in real-time application. In this paper, we
propose the efficient closed-form solution of two WGDOP
formations, which includes the effect of GDOP and error
statistics properties simultaneously.These solutions, with the
simplified form for WGDOP calculation, can apply to all
possible subsets in 3Dand 2D scenarios and requiremuch less
computation compared to the conventional matrix inversion
method.

4.1. Type 1: FourMeasurements Have Different Error Variances

4.1.1. 3𝐷 Case. From (11) and by using the properties of the
basic algebra theory,WGDOPcan be alternatively recognized
as
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The WGDOP parameter is the square root of the sum of
diagonal terms of the matrix (𝐻𝐻

𝑇
𝑊)

−1

WGDOP

=

√tr (𝐻𝐻

𝑇
𝑊)

−1

=
√
(𝐻𝐻

𝑇
𝑊)

−1

1,1
+ (𝐻𝐻

𝑇
𝑊)

−1

2,2
+ (𝐻𝐻

𝑇
𝑊)

−1

3,3
+ (𝐻𝐻

𝑇
𝑊)

−1

4,4
.

(22)

(𝐻𝐻

𝑇
𝑊)

−1

𝑖,𝑖
is defined as the 𝑖th element on the diagonal of

matrix (𝐻𝐻

𝑇
𝑊)

−1

tr (𝐻𝐻

𝑇
𝑊)

−1

=

4

∑

𝑖=1

(𝐻𝐻

𝑇
𝑊)

−1

𝑖,𝑖

=

tr [adj (𝐻𝐻

𝑇
𝑊)]

det (𝐻𝐻

𝑇
𝑊)

=

4

∑

𝑖=1

cof
𝑖,𝑖
(𝐻𝐻

𝑇
𝑊)

det (𝐻𝐻

𝑇
𝑊)

.

(23)

The term adj(𝐻𝐻

𝑇
𝑊) is the adjoint of𝐻𝐻

𝑇
𝑊 and the cofac-

tor, and cof
𝑖,𝑖
(𝐻𝐻

𝑇
𝑊) is the determinant of the submatrix

of 𝐻𝐻

𝑇
𝑊 by deleting the 𝑖th row and the 𝑖th column. The

cofactors can be obtained as

cof
1,1

(𝐻𝐻

𝑇
𝑊)

= 𝑘

2
𝑘

3
𝑘

4
[8 + 2 (𝐵

23
𝐵

24
𝐵

34
− (𝐵

2

23
+ 𝐵

2

24
+ 𝐵

2

34
))] ,

(24a)

cof
2,2

(𝐻𝐻

𝑇
𝑊)

= 𝑘

1
𝑘

3
𝑘

4
[8 + 2 (𝐵

13
𝐵

14
𝐵

34
− (𝐵

2

13
+ 𝐵

2

14
+ 𝐵

2

34
))] ,

(24b)

cof
3,3

(𝐻𝐻

𝑇
𝑊)

= 𝑘

1
𝑘

2
𝑘

4
[8 + 2 (𝐵

12
𝐵

14
𝐵

24
− (𝐵

2

12
+ 𝐵

2

14
+ 𝐵

2

24
))] ,

(24c)

cof
4,4

(𝐻𝐻

𝑇
𝑊)

= 𝑘

1
𝑘

2
𝑘

3
[8 + 2 (𝐵

12
𝐵

13
𝐵

23
− (𝐵

2

12
+ 𝐵

2

13
+ 𝐵

2

23
))] .

(24d)

After some algebraicmanipulation, the determinant ofmatrix
𝐻𝐻

𝑇
𝑊 can be written as

det (𝐻𝐻

𝑇
𝑊) = 𝑘

1
𝑘

2
𝑘

3
𝑘

4

× {16 + 2 [𝐵

23
𝐵

24
𝐵

34
− (𝐵

2

23
+ 𝐵

2

24
+ 𝐵

2

34
)]

+ 2 [𝐵

13
𝐵

14
𝐵

34
− (𝐵

2

13
+ 𝐵

2

14
+ 𝐵

2

34
)]
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+ 2 [𝐵

12
𝐵

14
𝐵

24
− (𝐵

2

12
+ 𝐵

2

14
+ 𝐵

2

24
)]

+ 2 [𝐵

12
𝐵

13
𝐵

23
− (𝐵

2

12
+ 𝐵

2

13
+ 𝐵

2

23
)]

+ (𝐵

12
𝐵

34
+ 𝐵

13
𝐵

24
− 𝐵

14
𝐵

23
)

2

− 4𝐵

12
𝐵

34
𝐵

13
𝐵

24

+ 2 [𝐵

12
(𝐵

13
𝐵

23
+ 𝐵

14
𝐵

24
)

+𝐵

34
(𝐵

13
𝐵

14
+ 𝐵

23
𝐵

24
)] } . (25)

Defining the following variables:

𝑝 = [𝐵

23
𝐵

24
𝐵

34
− (𝐵

2

23
+ 𝐵

2

24
+ 𝐵

2

34
)] , (26a)

𝑞 = [𝐵

13
𝐵

14
𝐵

34
− (𝐵

2

13
+ 𝐵

2

14
+ 𝐵

2

34
)] , (26b)

𝑚 = [𝐵

12
𝐵

14
𝐵

24
− (𝐵

2

12
+ 𝐵

2

14
+ 𝐵

2

24
)] , (26c)

𝑛 = [𝐵

12
𝐵

13
𝐵

23
− (𝐵

2

12
+ 𝐵

2

13
+ 𝐵

2

23
)] , (26d)

then we have

WGDOP =
√

2 ⋅ [(1/𝑘

1
) ⋅ (4 + 𝑝) + (1/𝑘

2
) ⋅ (4 + 𝑞) + (1/𝑘

3
) ⋅ (4 + 𝑚) + (1/𝑘

4
) ⋅ (4 + 𝑛)]

𝑎 + 𝑐 − 16 + 2 ⋅ [(4 + 𝑝) + (4 + 𝑞) + (4 + 𝑚) + (4 + 𝑛)]

.
(27)

When four measurements have different error variances, the
closed-form solution for WGDOP is given by

WGDOP

=
√

2 ⋅ ((1/𝑘

1
) ⋅ 𝑃 + (1/𝑘

2
) ⋅ 𝑄 + (1/𝑘

3
) ⋅ 𝑀 + (1/𝑘

4
) ⋅ 𝑁)

𝑎 + 𝑐 − 16 + 2 ⋅ (𝑃 + 𝑄 + 𝑀 + 𝑁)

,

(28)

where 𝑃 = 4 + 𝑝, 𝑄 = 4 + 𝑞,𝑀 = 4 + 𝑚,𝑁 = 4 + 𝑛.
Note that 𝐵

12
𝐵

34
, 𝐵

13
𝐵

24
, 𝐵

12
𝐵

13
𝐵

23
, 𝐵

12
𝐵

14
𝐵

24
,

𝐵

13
𝐵

14
𝐵

34
, 𝐵
23
𝐵

24
𝐵

34
, 𝐵2
12
, 𝐵2
13
, 𝐵2
14
, 𝐵2
23
, 𝐵2
24
, 𝐵2
34
, (4 + 𝑝),

(4 + 𝑞), (4 +𝑚), and (4 + 𝑛) all appear twice in the express for
WGDOP; thus sixteenmultiplications and four additions can
be eliminated. The values of 1/𝑘

𝑖
, 𝑖 = 1, 2, 3, 4, are assumed

to be already known before the calculation of (28); thus they
can be treated as constants. From Table 1, the closed-form
equation needs only 42 multiplications (including the
constant multiplications by 4, 2, 2, and 2), 48 additions, 1
division, and 1 square root. Due to many parameters in the
numerator and the denominator of (27) simultaneously, the
computational complexity of the proposed criteria can be
reduced.

4.1.2. 2DCase. Fromalgebra theory, we know that solving the
four unknowns requires at least four independent equations.
When three measurements are utilized to determine the user
location, a 2D position solution is obtained. This means
that at least three measurements are required to determine
the 2D position of the users. The complexity of computing
the inverse of a 3 × 3 square matrix is very low. When
four measurements are available for the 2D scenarios, we
propose the simple closed-form formulae of the WGDOP
calculations.The geometry matrix which is composed of four
location measurement units in 2D environments is

𝐻 =

[

[

[

[

𝑒

11
𝑒

12
1

𝑒

21
𝑒

22
1

𝑒

31
𝑒

32
1

𝑒

41
𝑒

42
1

]

]

]

]

, (29)

where 𝑒

𝑖1
= (𝑥 − 𝑋

𝑖
)/𝑟

𝑖
, 𝑒

𝑖2
= (𝑦 − 𝑌

𝑖
)/𝑟

𝑖
, and 𝑟

𝑖
=

√
(𝑥 − 𝑋

𝑖
)

2
+ (𝑦 − 𝑌

𝑖
)

2, 𝑖 = 1, 2, 3, 4.
Denoting

𝐵

𝑖𝑗
= 𝑒

𝑖1
𝑒

𝑗1
+ 𝑒

𝑖2
𝑒

𝑗2
+ 1, 1 ≤ 𝑖 < 𝑗 ≤ 4, (30)

and using the fact that

𝑒

2

𝑖1
+ 𝑒

2

𝑖2
= 1, (31)

WGDOP in the 2D case can be expressed as (28). The
difference between the 2D and 3D scenarios of WGDOP
calculation is in the calculation of 𝐵

𝑖𝑗
, 1 ≤ 𝑖 < 𝑗 ≤ 4. The

computational complexity in the 2D case is 6 multiplications
and 6 additions fewer than that in the 3D case. Therefore,
the closed-form equation needs only 36 multiplications
(including the constant multiplications by 4, 2, 2, and 2), 42
additions, 1 division, and 1 square root.

4.2. Type 2: Four Measurements Have Two Types of Error Var-
iances

4.2.1. 3D Case. In the case of one measurement gives bet-
ter accuracy than the others, the closed-form solution for
WGDOP formulation is proposed here. The situation may
occur in some positioning systems. For example, the BS serv-
ing a particular MS is called the serving BS, which provides
the more accurate measurements in cellular communication
systems [24]. Assume that the measurement variances of the
serving BS and nonserving BSs are 𝜎

2

1
and 𝜎

2

2
, respectively.

Regarding the two types of the error variances, the weight
matrix should be modified as follows:

𝑊 =

[

[

[

[

1/𝜎

2

1
0 0 0

0 1/𝜎

2

2
0 0

0 0 1/𝜎

2

2
0

0 0 0 1/𝜎

2

2

]

]

]

]

=

[

[

[

[

𝜔 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

]

]

]

]

, (32)

where𝜔 is the ratio of the nonserving BS error variance to the
serving BS error variance:

𝜔 =

𝜎

2

2

𝜎

2

1

. (33)
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Table 1: The complexity of WGDOP calculation when the four
measurements have different error variances.

Multiplications Additions Division Square
root

𝐵

12
3 3 0 0

𝐵

13
3 3 0 0

𝐵

14
3 3 0 0

𝐵

23
3 3 0 0

𝐵

24
3 3 0 0

𝐵

34
3 3 0 0

𝑎
6 3 0 0

𝑐
7 3 0 0

𝑝
3 3 0 0

𝑞
2 3 0 0

𝑚
1 3 0 0

𝑛
0 3 0 0

WGDOP
(numerator) 5 7 0 0

WGDOP
(denominator) 0 5 0 0

WGDOP 0 0 1 1
Total 42 48 1 1

Table 2: The complexity of WGDOP calculation when the four
measurements have two types of error variances.

Multiplications Additions Division Square
root

𝐵

12
3 3 0 0

𝐵

13
3 3 0 0

𝐵

14
3 3 0 0

𝐵

23
3 3 0 0

𝐵

24
3 3 0 0

𝐵

34
3 3 0 0

𝑎
6 3 0 0

𝑐
7 3 0 0

𝑝
3 3 0 0

𝑞
2 3 0 0

𝑚
1 3 0 0

𝑛
0 3 0 0

WGDOP
(numerator) 2 5 0 0

WGDOP
(denominator) 0 3 0 0

WGDOP 0 0 1 1
Total 39 44 1 1

In this case, we have

𝐻𝐻

𝑇
𝑊 =

[

[

[

[

2𝜔 𝐵

12
𝐵

13
𝐵

14

𝜔𝐵

12
2 𝐵

23
𝐵

24

𝜔𝐵

13
𝐵

23
2 𝐵

34

𝜔𝐵

14
𝐵

24
𝐵

34
2

]

]

]

]

, (34)

and the cofactors can be obtained to be

cof
1,1

(𝐻𝐻

𝑇
𝑊)

= [8 + 2 (𝐵

23
𝐵

24
𝐵

34
− (𝐵

2

23
+ 𝐵

2

24
+ 𝐵

2

34
))] ,

(35a)

cof
2,2

(𝐻𝐻

𝑇
𝑊)

= 𝜔 [8 + 2 (𝐵

13
𝐵

14
𝐵

34
− (𝐵

2

13
+ 𝐵

2

14
+ 𝐵

2

34
))] ,

(35b)

cof
3,3

(𝐻𝐻

𝑇
𝑊)

= 𝜔 [8 + 2 (𝐵

12
𝐵

14
𝐵

24
− (𝐵

2

12
+ 𝐵

2

14
+ 𝐵

2

24
))] ,

(35c)

cof
4,4

(𝐻𝐻

𝑇
𝑊)

= 𝜔 [8 + 2 (𝐵

12
𝐵

13
𝐵

23
− (𝐵

2

12
+ 𝐵

2

13
+ 𝐵

2

23
))] .

(35d)

The determinants of matrix𝐻𝐻

𝑇
𝑊 are found to be

det (𝐻𝐻

𝑇
𝑊) = 𝜔 {16 + 2 [𝐵

23
𝐵

24
𝐵

34
− (𝐵

2

23
+ 𝐵

2

24
+ 𝐵

2

34
)]

+ 2 [𝐵

13
𝐵

14
𝐵

34
− (𝐵

2

13
+ 𝐵

2

14
+ 𝐵

2

34
)]

+ 2 [𝐵

12
𝐵

14
𝐵

24
− (𝐵

2

12
+ 𝐵

2

14
+ 𝐵

2

24
)]

+ 2 [𝐵

12
𝐵

13
𝐵

23
− (𝐵

2

12
+ 𝐵

2

13
+ 𝐵

2

23
)]

+ (𝐵

12
𝐵

34
+ 𝐵

13
𝐵

24
− 𝐵

14
𝐵

23
)

2

− 4𝐵

12
𝐵

34
𝐵

13
𝐵

24

+ 2 [𝐵

12
(𝐵

13
𝐵

23
+ 𝐵

14
𝐵

24
)

+𝐵

34
(𝐵

13
𝐵

14
+ 𝐵

23
𝐵

24
)]} ,

(36)

and we have

WGDOP

=
√

2 ⋅ [(1/𝜔) ⋅ (4 + 𝑝) + (4 + 𝑞) + (4 + 𝑚) + (4 + 𝑛)]

𝑎 + 𝑐 − 16 + 2 ⋅ [(4 + 𝑝) + (4 + 𝑞) + (4 + 𝑚) + (4 + 𝑛)]

.

(37)

The closed-form WGDOP for the case of exactly four mea-
surements can be expressed as

WGDOP =
√

2 ⋅ [(1/𝜔) ⋅ (4 + 𝑝) + (12 + 𝑞 + 𝑚 + 𝑛)]

𝑎 + 𝑐 − 16 + 2 ⋅ [(4 + 𝑝) + (12 + 𝑞 + 𝑚 + 𝑛)]

=
√

2 ⋅ ((1/𝜔) ⋅ 𝑃 + 𝐺)

(𝑎 + 𝑐 − 16 + 2 ⋅ (𝑃 + 𝐺))

,

(38)

where 𝐺 = 𝑄 + 𝑀 + 𝑁 = 12 + 𝑞 + 𝑚 + 𝑛.
Notice that 𝐵

12
𝐵

34
, 𝐵

13
𝐵

24
, 𝐵

12
𝐵

13
𝐵

23
, 𝐵

12
𝐵

14
𝐵

24
,

𝐵

13
𝐵

14
𝐵

34
, 𝐵
23
𝐵

24
𝐵

34
, 𝐵2
12
, 𝐵2
13
, 𝐵2
14
, 𝐵2
23
, 𝐵2
24
, 𝐵2
34
, (4 + 𝑝),

and (12 + 𝑞 + 𝑚 + 𝑛) all appear twice in the WGDOP
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Table 3: Comparison of average WGDOP residual for the proposed formulae and Rprop-based algorithm.

Proposed WGDOP formulae Rprop-based algorithm
Average WGDOP residual for Type 1 3.7101 ∗ 10

−11 0.2385
Average WGDOP residual for Type 2 3.7062 ∗ 10

−11 0.2311
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LOP (matrix inversion)
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Figure 1: CDFs of the location error for various methods when four
measurements have different error variances (Type 1).

express; thus sixteen multiplications and four additions
can be eliminated. The value 𝜔 is also treated as a constant
in the WGDOP calculation. From Table 2, this closed-
form solution only needs 39 multiplications (including the
constant multiplication by 4, 2, 2, and 2), 44 additions, 1
division, and 1 square root.

4.2.2. 2D Case. The WGDOP in the 2D case is expressed
as (38). The WGDOP calculation in the 2D case requires 6
multiplications and 6 additions fewer than that in the 3D
case.The closed-form equation needs only 33 multiplications
(including the constant multiplications by 4, 2, 2, and 2), 38
additions, 1 division, and 1 square root. An alternative closed-
form solution of theWGDOP calculation has been presented
in this paper, in which one measurement provides superior
location precision over the others.

5. Simulation Results

Time of arrival (TOA) is major time based method and
usually used in calculating themobile station (MS) location in
cellular communication systems. It is consisting of seven base
stations (BSs) in cellular communication system.The serving
BS and its six neighboring BSs are separated by 5 km, and the
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Location error (m)
CD
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Distance-weighted (matrix inversion)
Threshold (matrix inversion)
LOP (matrix inversion)
Distance-weighted (proposed WGDOP formulae)
Threshold (proposed WGDOP formulae)
LOP (proposed WGDOP formulae)

Figure 2: Comparison of CDFs of location error for various
methods when fourmeasurements have two types of error variances
(Type 2).

MS is randomly placed among the BSs [25]. The non-line-of-
sight (NLOS) propagation model is based on the uniformly
distributed noise model [24], in which the TOANLOS errors
from all the BSs are different and assumed to be uniformly
distributed over (0, 𝑈

𝑖
), for 𝑖 = 1, 2, . . . , 7 where 𝑈

𝑖
is the

upper bound. For Type 1, the variables are chosen as follows:
𝑈

1
= 200m, 𝑈

2
= 400m, 𝑈

3
= 350m, 𝑈

4
= 700m,

𝑈

5
= 300m, 𝑈

6
= 500m, and 𝑈

7
= 350m. For Type 2, the

variables are given as follows: 𝑈
1
= 200m and 𝑈

𝑖
= 500, for

𝑖 = 2, 3, . . . , 7. The diagonal elements of the weighted matrix
𝑊 are utilized with the reciprocal of the square root of an
upper bound of the NLOS errors.

In order to verify the superior properties of the proposed
formulae, we compare the results of WGDOP calculation
accuracy for the proposed formulae and matrix inversion
method. The WGDOP residual is defined as the differ-
ence between the proposed formulae and matrix inversion
method. Table 3 shows average WGDOP residual for the
proposed formulae and Rprop-based algorithm. For Type 1
and 2, the proposed formulae always provide much better
WGDOP residual than Rprop-based algorithm [23].

We can evaluate the positioning accuracy with minimum
WGDOP algorithm; MS location can be estimated by the
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Figure 3: Comparison of location error CDFs using the subset
with proposed minimum WGDOP approximation and the subset
selected four BSs randomly (Type 1).

linear lines of position algorithm (LOP) [26], distance-
weighted method, and threshold method which we have
proposed in [27]. When four measurements have different
error variances (Type 1) or fourmeasurements have two types
of error variances (Type 2), the proposed WGDOP formulae
andmatrix inversionmethod provide the nearly identical MS
location estimation, as shown in Figures 1 and 2.

For Type 1, Figure 3 shows the CDFs of the average loca-
tion error of these methods with different subset. Four ran-
domly selected BSs with poor geometry perform extremely
worse location estimation, and the location accuracy can be
strongly affected by the relative geometry between BSs and
MS. The proposed Type 2 of efficient WGDOP formulae can
give better location estimation than the subsets with four BSs
taken from seven BSs randomly regardless of the different
methods, as shown in Figure 4. The positioning accuracy
would be seriously affected by the geometric configuration of
BSs and MS. In order to eliminate the poor geometry influ-
ence and improve the positioning accuracy, the selection of
BSs withminimumWGDOP approximation can be used and
optimal geometric configuration with four BSs is obtained.

6. Conclusion

To reduce the computational overhead and improve location
performance, the selection of optimal measurement units is
necessary. The concept of GDOP is commonly used to deter-
mine the geometric effect of GPS satellite configurations.
The conventional matrix inversion method is rather time
consuming and requires a great deal of computational effort.
The four measurement units selected from the maximum
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Figure 4: CDFs of location error of the subset with proposed
minimum WGDOP formulae, and the subset selected four BSs
randomly (Type 2).

volumemethodmay not be the optimal selection. Taking into
account that the variance of each measurement variance is
not equal, we choose the WGDOP instead of GDOP as the
criteria to select the optimal measurement units. Due to the
limited power and computation capability of many mobile
devices and the great number of visible satellites, to obtain
WGDOP efficiently from rangemeasurements is very critical.
To further reduce the complexity, novel closed-form solutions
are proposed in this paper to compute WGDOP when there
are exactly four measurements available for location estima-
tion. The efficient closed-form formulae of two formations
WGDOP calculations with less effort have been proposed,
in which the priori error information of each measurement
is not the same. If exactly four measurements are used,
the proposed formulae can provide the best computational
efficiency. The proposed formulae are applicable not only
to GPS but also for the WSN and cellular communication
systems. The WGDOP calculations for fast evaluation are
able to reduce the computational load and eliminate the
poor geometry influence. The proposed efficient formulae
can provide very precise solution of WGDOP calculation
without incurring any approximation error.
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