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Human mobility modeling has increasingly drawn the attention of researchers working on wireless mobile networks such as delay
tolerant networks (DTNs) in the last few years. So far, a number of human mobility models have been proposed to reproduce
people’s social relationships, which strongly affect people’s daily life movement behaviors. However, most of them are based on the
granularity of community.This paper presents interest-oriented human contacts (IHC)mobilitymodel, which can reproduce social
relationships on a pairwise granularity. As well, IHC provides two methods to generate input parameters (interest vectors) based
on the social interaction matrix of target scenarios. By comparing synthetic data generated by IHC with three different real traces,
we validate our model as a good approximation for human mobility. Exhaustive experiments are also conducted to show that IHC
can predict well the performance of routing protocols.

1. Introduction

Wireless portable devices (e.g., laptop, PDA, and cell phone)
are often held by humans in a delay tolerant network-
ing (DTN) scenario. Understanding human mobility and
accordingly designing better routing protocols have drawn
the attention of researchers working on DTNs. Using real
trace to evaluate routing protocol performance does not
allow enough flexibility to change the mobility settings in
order to perform the analysis for a slightly different scenario
[1]. Human mobility models, however, can depict real-life
human mobility characteristics and can be used to obtain
meaningful routing protocol performance results in simu-
lations [2]. So far, a number of real-life experiments have
been conducted to observe and summarize human mobility
characteristics, including individual (e.g., spatio/temporal
preferences), encounter-based (e.g., inter-contact time and
contact duration), and social (e.g., group, community) met-
rics [3]. Although current human mobility models are good
at reproducing individual and encounter-basedmetrics, their
strategies of generating social metrics still need further

exploiting. For example, most existing models are able to
reproduce the inherent social interactions but on a rather
coarse granularity of community. Thus, the intercommunity
nodes’ social relationships and the social relationships of
nodes that do not belong to any community are ignored.
This ignorance leads to a considerable deviation of social
relationships between the synthetic scenario and the real-
life scenario. In addition, it will be unable to utilize the
intercommunity nodes’ social relationships to assist data dis-
semination when those mobility models are used to evaluate
routing protocols.

This paper will focus on the granularity issue and propose
a new mobility model that takes social relationships between
each pair of nodes into account. We call this model interest-
oriented human contacts (IHC) mobility model. The design
principle is based on two intuitionistic and empirical obser-
vations. First, people always visit several spots periodically,
and visit the more interesting spots at a higher probability.
Second, the available contacts between a pair of people are
always detected when the two people are relatively static.
By implementing these two rules rationally, IHC is able to
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reproduce social behavior among people, and characterize
pairwise social relationships quantitatively. Our model is
verified with three real traces on the metrics of inter-
contact time, contact duration and meaningful pair-wise
social relationships. Evaluation results show that the synthetic
data IHC generates match the three real traces very well. In
brief, we make the following contributions.

(i) We propose IHC, which is the first human mobility
model dedicated to node interest to the best of our
knowledge. We not only take node interest vectors as
the exclusive social relationship input but also make a
similarity analysis of node interest.

(ii) We design two methods to generate input parameters
(interest vectors) based on the social interaction
matrix of target scenarios. By using any of the two
methods, IHC is able to reproduce social relationships
on a pair-wise granularity.That is, IHC can character-
ize pair-wise social relationships quantitatively. As far
as we know, IHC is the first such model.

(iii) We show that IHC can generate synthetic datamatch-
ing very well the three real traces on the statisti-
cal properties of inter-contact time complementary
cumulative distribution function (CCDF), contact
duration CCDF, and meaningful pairwise social rela-
tionships, which undoubtedly leads to awell-matched
social community structure.

(iv) We build cases to use the model by comparing the
performance of three forwarding protocols working
on real traces and synthetic traces generated by IHC.
Simulation results indicate that IHC can predict well
the performance of the forwarding protocols.

The rest of the paper is organized as follows. Section 2
introduces current research on the field of human mobility
modeling. In Section 3, we describe IHC in detail, including
the human mobility patterns which inspire our work, the
model itself, a similarity analysis, and two methods to gen-
erate input parameters (interest vectors) based on the social
interaction matrix of target scenarios. We validate our model
by comparing synthetic data traces with three different real
traces in Section 4. The comparison shows a good matching
between IHC-generated and real traces. Section 5 shows that
IHC can predict well the performance of routing protocols
by comparing the performance of three DTN protocols with
IHC-generated and real traces. Section 6 summarizes our
conclusions and describes future work.

2. Related Work

Up to now a number of research articles on human mobility
modeling are published. Some of them are dedicated to
explore exhaustive humanmobility itself such as [1, 4]; others
are designed for assisting accurate performance evaluation of
DTN forwarding protocols in simulations, such as [2, 5]. Our
work belongs to the latter. To provide a good understanding
of mobility model framework as well as the relationships
among humanmobility characteristics, mobility models, and
routing protocols in a DTN, we draw Figure 1.

In Figure 1, each entity represents a human mobility
characteristic: a rectangular entity represents an individual
metric; an elliptical entity represents an encounter-based
metric, and a circular entity represents a social metric. A
bold line transversely divides Figure 1 into two portions. The
entities above the bold line are taken as input parameters
of mobility models, and the entities below the bold line are
considered as output metrics. On the other hand, two erect
dashed lines divided Figure 1 into three portions, namely
individual metrics module, encounter-based metrics module
and social metrics module, respectively (on order of left-to-
right). These three modules are demarcated based on the
attributes of the metrics, no matter where they are, above
or below the bold line. Based the on extensive study of
the existing work, we say that the most significant metrics
that lead to human-like “inter-contact time” and “contact
duration” distributions are the “pause time” and “location
preference and periodic re-appearance” (two individual met-
rics). Therefore, individual metrics that do not affect the
two encounter-based metrics are classified into individual
metrics module and denoted by “. . .” in Figure 1. As a work
for a model designed for assisting accurate performance
evaluation of forwarding protocols in simulations, this paper
is oblivious to such individual metrics.

Humanmobility is driven by social relationships. Figure 1
indicates this intuition by exhibiting the social metrics
module.The “inherent social interaction” in the input portion
works togetherwith several individualmetrics, such as “pause
time” and “location preference and periodic reappearance”
to generate “social metrics” in the output portion. However,
early human mobility models (such as [6, 7]) only have
the individual metrics module and encounter-based metrics
module. As far as we know, CMM [8] is the first model
that takes social relationships into consideration. Models
after CMM always include the social metrics module, with
different social based representations such as interaction
matrix [8, 9], communities [5, 8, 9], home-points distribution
[5], overlapping communities [10], and centrality [10].

Due to the lack of end-to-end paths in DTNs, routing
protocols have to utilize nodes’ each chance of contact to
forward packets (see Figure 1, “encounter-based protocol-
dependent metrics”). The nodes’ chances of contact are
unstable and hard to hold. However, in DTNs, nodes’ social
relationships are steady and reliable. Hence, social-aware
routing protocols utilize some social metrics, such as node
community [11], node centrality [12], and node interest [13]
to help with routing decisions. Among these metrics, the
community is an important conception in social network the-
ory.Therefore, most existing models reproduce the “inherent
social interactions” on the granularity of (and are limited
to) the community. Our model breaks this limitation and
reproduces social relationships on a pair-wise granularity.

We argue that a good human mobility model should,
first, be simple, second, have the ability of reproducing
crucial human mobility metrics (both encounter-based and
social), and third, predict well the performance of forwarding
protocols on real DTNs.

TLW [7] generates movement traces using amodel which
is similar to Levy Walks, except that the flight lengths and
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Figure 1: Mobility model framework.

the pause times have power-law distributions. TLWgenerates
the inter-contact time similar to real traces. However, as each
node moves independently, TLW does not capture the nodes’
social behaviors. As a subsequent work to TLW, SLAW [14]
correlates the walks of different nodes based on TLW, and
takes heterogeneously bounded mobility areas and fractal
waypoints into consideration. SLAW generates the inter-
contact time and fight lengths distribution similar to real
movements. However, there is no clear explanation about
how to characterize nodes’ social relationships. SMOOTH
[15] is a mobility model with similar principle and perfor-
mance to SLAW.

As the first mobility model that utilizes social network
theory, CMM [8] is not concerned about individual human
mobility characteristics. Besides, CMM has been proved
defective: specifically, in the majority of configurations, all
users collapse into a single location, this practically over-
throws the initial setting of the system [9]. To erase this
defect, Boldrini and Passarella [9] improve CMM by adding
the following two individual human mobility characteristics:
people tend to visit just a few locations, where they spend
the majority of their time (the same meaning as the “location
preference and periodic reappearance” in Figure 1), and
people prefer shorter paths to longer ones.They validate their
synthetic data with real traces and show a good matching of
inter-contact time and flight lengths.

HHW [10] concerns heterogeneous human popularity.
The model’s input characteristics are “location preferential”
(individual) and “overlapping communities” (social). Its

output metrics “inter-contact time” (encounter based) and
“centrality” (social) also have a good matching with real
traces.

The intuition that inspires SWIM [5] is as follows: people
go more often to places not very far from their homes and
where they can meet a lot of other people. This feature
is actually the same as “location preference and periodic
reappearance” in Figure 1, with a clear location preference
weight decided by the location’s distance and popularity.
SWIM uses a bounded power-law-distributed “pause time.”
The authors validate their synthetic data with real traces
and show that SWIM has a good matching of inter-contact
time, contact duration, number of contacts and community
structure.

Maiti et al. [1] collect numbers of humanmobility patterns
and explore dependencies between them. A framework is
also proposed to reproduce these humanmobility patterns in
the model. Thakur and Helmy [3] propose a framework for
mobilitymodel analyzing.Themodel generated by the frame-
work is validated with real traces on both encounter-based
metrics and social metrics. STEPS [16] is designed based
on a Markov chain modeling method. The human mobility
pattern it depends on is also “location preference andperiodic
reappearance.” A good matching of both encounter-based
and social metrics with real traces is shown in the literature.
SAGA [17] is dedicated to the geographic diversity of the
region of interest, which is different from all of the above-
mentioned models. As a result, SAGA is validated with real
traces on different metrics as well.
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IHC also relies on “location preference and periodic re-
appearance” but with a different modeling method from
existing models. IHC is very simple to implement and able
to reproduce statistical human mobility properties, such as
inter-contact time, contact duration, and accurate mean-
ingful social relationships on the granularity of pairwise.
It also can predict well the protocol performance on real
DTNs. Based on the analysis of human mobility patterns
and the statistical data of real traces, IHC chooses to ignore
the spatial human mobility characteristics which are non-
correlative to human contacts.The inherent social interaction
in the IHC input parameters is node interest, such that node
interest analyzing will be more facile in an IHC simulation
environment.

3. Interest-Oriented Human Contacts
Mobility Model

In this section, we propose interest-oriented human contacts
mobility model.We introduce the humanmobility character-
istics that inspire our work and describe the model in detail,
followed with a similarity analysis of node interest based on
IHC and twomethods to generate input parameters based on
the social interaction matrix of target scenarios.

3.1. Design Principle. We observe that people prefer to visit a
few locations and spend plenty of time staying at such loca-
tions. In other words, a few locations bring more attractions
to people. In this paper, such locations are called hotspots.
In real-life scenarios, hotspots are the locations related to
people’s interests, for example, the locations where we work,
study, have meals or do sports. Usually, people spend a lot of
time at some of the hotspots (such as work or study) and less
time at others (such as having lunch or doing sports).

As people spend the majority of their time at hotspots,
they spend little time on the journey. Besides, the vehicle peo-
ple choose to accomplish the journey is strongly dependent
on the distance of the next destination. For example, people
prefer to walk to an adjacent destination, ride to a farther one
and drive to a much farther one.

Further, we observe that an available contact (an available
contact is considered as a contact when one person meets
the other, their wireless devices can detect each other and
accordingly forward messages) between a pair of people
usually happens when the two people are relatively static.
Suppose that, in a college, two students with active wireless
devices are walking past each other. Due to the transmission
range of wireless devices and relative speed of the two
students, the actual contact duration is too short for wireless
devices to detect each other. Only when the two students
appear at the same spot and stay for a while, such as having
dinner in the cafeteria or reading in the library, their wireless
devices have enough time to detect each other and then
forward messages.

Now that an available contact occurs only if the two
people are relatively static, the geographical position where
the contact happens is not significant anymore if we do
not take the case of the synchronized motion (e.g., the two

people walk along with each other) of the two people into
consideration (because synchronized motion involves very
specific social relationships, e.g., a colleague relationship
and a particular schedule, which is hard to hold for a
mobilitymodel). Since temporary passing-bys (non-available
contacts) from one spot to another spot are negligible, the
specific geographical position of these two spots and distance
between themmake no sense. Under these circumstances, the
factors that impact the contactmetrics of the two people (e.g.,
A and B) in a period of time are as follows: when A arrives
at this spot; how long A will stay for (when A will leave this
spot); when B arrives at this spot, how long B will stay for. If
we extend this period of time to the overall runtime of the
social network that A and B belong to, then the encounter
based metrics of A and B (inter-contact time and contact
duration) depend on the probability that A and B visit this
spot and how long will A and B stay at this spot.

Consequently, theoretically, by rationally setting numbers
of hotspots, the probability of visiting each hotspot, and
the pause time after each arrival, it is quite promising to
generate good matching statistical characteristics and social
relationships with real traces.

3.2. Detailed Model. As an interest-oriented mobility model,
IHC builds an environment where node interests are man-
ifested as hotspots. In general, one interest stands for one
hotspot and vice versa.

Like the most existing mobility models, in IHC, the
mobility of a specific node is composed of a set of movement
epochs throughout the simulation time. At the beginning
of a movement epoch, the node chooses a destination and
moves towards it at a speed. After arrival, the node stays at
the destination spot for a time period which is known as
pause time. Till the end of the pause time, the node begins to
choose a new destination and start the nextmovement epoch.
Contacts occur when one node is within the transmission
range of another node. However, in IHC, only available
contacts are under consideration; that is, a contact is recorded
if and only if two nodes are staying at the same hotspot
simultaneously. In addition, nodes spend the majority of
their time at hotspots. That is, the destination of each epoch
can only be chosen from hotspots. Therefore, the contact
metrics of a pair of nodes in IHC are determined by their
probability to visit the same hotspot and the pause time
they stay there. In such a case, the network area, the node
transmission range and the positions of hotspots make little
sense to contact metrics in IHC, and we choose to omit
them. However, in order to ensure that the node interests are
mutually independent, the distance between any twohotspots
(although IHCdoes not care about their specific geographical
positions) needs to be larger than the node transmission
range so that nodes visiting different hotspots will not meet
each other.

Since a node has different preferences to different inter-
ests, it visits the corresponding hotspots at different prob-
abilities. Suppose that there are 𝑛 hotspots corresponding
to 𝑛 interests in the network area. These 𝑛 node interests
compose an 𝑛-dimensional interest space. Each node has an
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Figure 2 maps a network area containing three hotspots
(i.e., playground, library, and laboratory) and two nodes
(A and B) who determine each movement epoch following
IHC. Initially, each node, for example, node A, can be
anywhere in the network area. Node A’s first epoch soon
begins: it chooses its destination from all hotspots according
to its interest vector. In Figure 2, node A chooses to visit
playground (hotspot

1
), library (hotspot

2
), and laboratory

(hotspot
3
) at probabilities 𝑎

1
, 𝑎
2
, and 𝑎

3
, respectively, such

that 𝑎
1
+ 𝑎

2
+ 𝑎

3
= 1. Once the destination has been chosen,

for example, the library (hotspot
2
), node A starts moving

straightly towards it with a constant time𝑓𝑡. A constant flight
time actually indicates that the speed is proportional to the
flight length (distance between the starting point and the
destination) in IHC.This proportional relation is based on the
observation that in real-life scenarios people spend little time
on the journey by choosing different vehicles for different
distances of destinations. After reaching the destination, the
pause timewill be determined by a variable whose probability
density function (PDF) 𝑝𝑡() obeys a bounded power-law
distribution as in [5]. Now node A is reading in the library
and will stay for a time duration (pause time). Note that node
B has also been accomplishing its movement epochs. If it is
staying at the library coincidently, both node A and node
B will be able to detect this contact until one of them runs
out of the pause time and begins the next epoch. Later, the
other node will leave the library as well for the next epoch.
Both A and B keep this kind of movements till the end of the
simulation time.

It can be seen that IHC gives a clear expression on node
interest and ignores specific geographical information. Such
treatments lead to amuchmore convenient tuning up of node

interest parameters. Other models do not provide a direct
node interest tuning. For example, in SWIM, the probability
that a node visits a spot depends on not only the spot’s
popularity but also the distance between the spot and the
node’s home. Although such settings make the preference of
each node to each interest (corresponding to a spot) self-
controlled, it is not easy to change the probability that a
node visits a spot at will. Therefore, by ignoring specific
geographical information, IHC replaces the probability of
visiting a spot influenced by popularity and distance in SWIM
with a single interest value. In this way, IHC gets rid of
the inconvenience of altering a spot’s visiting probability
influenced by a home’s position. In addition, IHC keeps all
temporal metrics on contact and ignores the information
of “the geographical position of contact,” which not only
needs complicated settings but also lacks corresponding
information in real traces anddoes not affect the performance
of forwarding protocols as well. In IHC, the specific geo-
graphical position of each hotspot has no influence on either
contactmetrics or forwarding protocols’ performance as long
as the distance between any two hotspots exceeds the node
transmission range. As a conclusion, Table 1 summarizes all
parameters and their meanings in IHC.

3.3. Similarity Analysis. Thakur et al. [18] demonstrate that
people with similar behavioral principle tie together, which
means that user-location coupling can be used to identify
similarity patterns in mobile users. They make similarity
analysis for several mobility models and show that many
mobilitymodels do not explicitly capture similarity and result
in homogeneous users that are all similar to each other.Their
similarity analysis is based on spatiotemporal preferences,
preferential attachment to locations, and the frequency and
duration of visiting these locations, which are actually the
first-hand design principle of IHC.Therefore, IHC is suitable
for similarity analysis inherently.

Mei et al. [13] try to utilize the cosine similarity of node
interest profile to assist data forwarding in social-aware rout-
ing protocols because they believe that similar node interest
profiles lead to close social interactions. However, as we
have mentioned above, the mobility model they use, SWIM,
cannot be used to measure node interest either accurately
or conveniently. Additionally, whether cosine similarity of
node interest profile can represent people’s social interactions
accurately is still unclear, while for IHC, node interest is
taken as input parameters, thus making similarity analysis so
natural that we may hopefully get meaningful conclusions.

It is generally believed that a large contact duration
represents a close relationship between nodes, so social
relationships are always denoted simply by contact durations
[8, 12]. We also use this denotation in this paper.

Intuitively, in IHC, the social relationship between two
nodes ought to be related to the interests shared by the
two nodes, as only their common interests result in the
two nodes’ meeting at the corresponding hotspots. Based on
this intuition, we conduct extensive simulations to observe
what the relation between the common interests and contact
durations of the two nodes is.
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Table 1: IHC parameters.

Parameter Meaning
num The amount of nodes
st Simulation time, measured in seconds
ft Flight time, measured in seconds
pt() The PDF of pause time which is measured in seconds
n The amount of node interests
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Figure 3: Proportional relation between a node interest metric and
a social relationship metric.

In our simulations, there are only two nodes, namely,
A and B, in the network area. Without specific input social
interaction, pair-wise contacts are mutually independent.
Thus, multiple nodes do not bring new insights. Each node
has and only has 4 interests, such that node A’s interest vector
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Let 𝑐
𝑖
be the amount of A and B’s common interests, with

value of 1, 2, 3,4, respectively, and set different values of 𝑉
𝐴

and 𝑉

𝐵
, such as (0.25, 0.25, 0.25, 0.25), (0.3, 0.3, 0.3, 0.1),

(0.1, 0.2, 0.3, 0.4), or (0.05, 0.05, 0.05, 0.85). Note that even
for two specific vectors, different common interests should
be assigned in each simulation. The simulation time is set as
three days, that is, 259200 seconds. To get the expected value,
for each scenario, we average the results of contact duration
over 10000 runs using different seeds.

Excitedly, we find that there is specific relation between
“the dot product of 𝑉

𝐴
and 𝑉

𝐵
” and “the expected value of

A and B’s contact durations,” and we show the results in
Figure 3. Each black point in Figure 3 represents a simulation
scenario. The 𝑥-axis shows the dot product of 𝑉

𝐴
and 𝑉

𝐵

(𝑉
𝐴
⋅𝑉

𝐵
) and the𝑦-axis indicates the expected value of contact

duration averaged over 10000 runs. The maximum of 𝑉
𝐴
⋅ 𝑉

𝐵

is 1 when both nodes have only one, and the same interest.
Corresponding to this specific scenario, the two nodes stay

forever at the same hotspot. Thus, their contact duration is
the simulation time, 259200 s.

Figure 3 shows a proportional relation between “the dot
product of 𝑉

𝐴
and 𝑉

𝐵
” (𝑥-axis) and “the expected value of

A and B’s contact durations” (𝑦-axis). The dot product of
𝑉

𝐴
and 𝑉

𝐵
is a metric derivative from A and B’s interests

and the expected value of A and B’s contact durations is a
metric, which can represent the social relationship between
A and B. Figure 3 reveals a promising feature of IHC.That is,
IHCmay have the ability of accurately reproducing a specific
contact duration matrix, which is always regarded as a social
interaction map. IHC can generate a specific expected value
of contact duration accurately by setting appropriate values
to node interest vectors. Note that the 𝑦-axis in Figure 3
only shows the expected value of contact durations. As a
complement, the distributions of the contact durations for
different expected values are shown in Figure 4.

Figure 4 is graphed to assist understanding what distri-
bution the contact durations obey for one expected value
in Figure 3. Figure 4 is composed of eight subfigures. The
expected value of contact duration in each subfigure is
denoted by Exp. We choose Exp for eight scales to show
in Figure 4, namely, 2500, 5000, 7500, 10000, 15000, 20000,
50000, and finally a very large one, 180000. As we can see
in Figures 4(a)–4(d), for a small Exp (no larger than 10000),
the distributions are far from the Gaussian Distribution, such
that the expected value shows a considerable deviation from
a randomly chosen value. In such a case, maybe IHC cannot
reproduce a small contact duration accurately by tuning
node interest vectors. Fortunately, a small contact duration
makes nearly no sense in social network analysis. When
Exp becomes larger, for example, in Figures 4(e)–4(h), the
distributions look like a Gaussian Distribution, such that it
will be more accurate by representing contact durations with
the expected value.

3.4. Interest Vectors Generator. As shown in Table 1, we take
node interest vectors as the exclusive social relationship input
of IHC. The corresponding parameters, namely, 𝑛, 𝐻

𝑖
(𝑥, 𝑦),

and𝑋
𝑗
, can be derived based on the conclusion in Section 3.3.

That is, the expected value of A and B’s contact durations is
proportional to 𝑉

𝐴
⋅ 𝑉

𝐵
. Consider an extreme case: when two

nodes both have only one interest and their interest is the
same as follows their dot production of interest vector is 1,
and their contact duration is exactly the simulation time st
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(see Figure 2) such that the coefficient of proportionality is
1/𝑠𝑡.

Suppose the 𝑛𝑢𝑚 nodes are node1, node2, . . ., nodenum,
and their interest vectors are 𝑋

1
, 𝑋

2
, . . . , 𝑋

𝑛𝑢𝑚
, respectively.

Denote the sum of elements of vector 𝑋 by 𝑠𝑢𝑚(𝑋). Denote
the contact duration matrix of the scenario which we want to
reproduce by 𝐷, such that 𝐷 is a 𝑛𝑢𝑚 × 𝑛𝑢𝑚 matrix. Then
the contact duration between nodei and nodej is 𝐷

𝑖𝑗
. The

following equation set holds:

𝑠𝑢𝑚 (𝑋

𝑖
) = 1, 𝑖 ∈ [1, 𝑛𝑢𝑚] ;

𝑋

𝑖
⋅ 𝑋

𝑗
=

𝐷

𝑖𝑗

𝑠𝑡

, 𝑖, 𝑗 ∈ [1, 𝑛𝑢𝑚] , 𝑖 ̸= 𝑗.

(1)

The equation set has 𝑛 × 𝑛𝑢𝑚 variables, (𝑛𝑢𝑚 × (𝑛𝑢𝑚 −

1)/2 + 𝑛𝑢𝑚) equations. Obviously a properly selected 𝑛 can
make this equation set have solutions. Approximate solutions
can be derived with the LevenbergMarquardt algorithm.The
solutions include the parameter settings of 𝑛 and𝑋

𝑗
.𝐻
𝑖
(𝑥,𝑦)

can be anywhere in the network area as long as the distance
between any two hotspots is larger than 𝑟.

However, the above method of choosing amount of
interests and nodes’ interest vectors, named as method-1,
may not generate accurately small contact durations when
the simulation time is not long enough. The reason can be
deduced in Figure 3. For a small contact duration expected
value, the smaller the sample size (amount of contacts
between a pair of nodes) is, the harder the control of contact
duration value (because the distribution is far from the
Gaussian Distribution) is. To tackle this problem, we provide
another method of choosing amount of interests and nodes’
interest vectors, namely, method-2.

The detailed method-2 is as follows.

(1) Let 𝑛 = 𝑛𝑢𝑚. To simulate the small contact durations
in scenarios with a short simulation time, we assume
that the amount of node interests equals the number
of nodes. In other words, it can be regarded that each
node has a home spot which the node visits at a high
probability. Under this circumstance, a node’s interest
vector (𝑥

1
,𝑥
2
,. . .,𝑥
𝑛
) means that this node visit node1’s

home at probability 𝑥

1
, node2’s home at probability

𝑥

2
, and noden’s home at probability 𝑥

𝑛
. Therefore,

if two nodes have a large contact duration value,
one node will certainly visit the other node’s home
at high probability, and the value of the probability
is determined by the contact duration of these two
nodes in the corresponding scenario.

(2) Designate a public spot.Weuse a spot that is visited by
all nodes at a specific probability to generate all small
contact durations in the contact duration matrix of
the scenario. Now, the value of 𝑛 is actually 𝑛𝑢𝑚 + 1.
A node’s interest vector becomes (𝑝, 𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑛
),

where 𝑝 presents the probability at which the node
visits the public spot. Generally, 𝑝 holds the same
value for all nodes.

(3) Assign an initial interest vector value to each node.
Initially, we assign nodei’s interest value as (𝑝, 0,. . .,

Table 2: The three experimental data sets.

Dataset
name

Infocom 06
Trace-1

Infocom 05
Trace-2

Cambridge
Trace-3

Device iMote iMote iMote
Network type Bluetooth Bluetooth Bluetooth
Duration (days) 3 3 11
Granularity (sec) 120 120 600
Devices number 98 (78 mobile) 41 54 (36 mobile)

𝑥

𝑖
=1 − 𝑝,. . ., 0), 1 ≤ 𝑖 ≤ 𝑛. That is, initially, each node

only visits two hotspots: the public spot and its own
home.

(4) Set a threshold to the target scenario’s contact dura-
tion matrix. For the contact duration matrix, we set
a threshold 𝑇th and select all the values that are no
less than 𝑇th to reproduce in IHC. The value of 𝑇th
is chosen intuitively and empirically, assuring that
contact duration larger than 𝑇th is considerable and
meaningful to represent a close social relationship.

(5) Tune up all nodes’ interest vector value based on the
values exceeding 𝑇th in the target scenario’s contact
duration matrix. Since all contact duration values no
larger than 𝑇th are generated by the visiting of the
public spot, the remaining contact duration values
(exceeding 𝑇th) can be generated by tuning up the
probability of home spots in nodes’ interest vector
values. Generally, we deal with the nodes one by one
on the order of node ID from 1 to 𝑛𝑢𝑚. That is, for
node1, the interest value is (𝑝, 𝑥

1
= 1 − 𝑝, 0, . . ., 0).

Then, we search the node1’s list in contact duration
matrix; if nodea and node1’s contact duration 𝐶𝐷

1a
exceeds𝑇th, nodea’s interest vector will be updated as
(𝑝, 𝑥

1
= 𝐶𝐷

1a/(𝑠𝑡(1 − 𝑝)), 0, . . ., 𝑥
𝑎
=1 − 𝑝 − 𝑥

1
, . . ., 0)

and so on. Different treatments can also be conducted
as long as the contact duration values exceeding 𝑇th
are all held and for each node’s interest vector (𝑝, 𝑥

1
,

𝑥

2
, . . ., 𝑥

𝑛
), 𝑝 + ∑

𝑛

𝑖=1
𝑥

𝑖
= 1 is assured.

We can derive the interest vectors by using method-1 or
method-2 if we want to reproduce a real-life scenario using
IHC. However, in general, there are totally two cases when
we need to determine the interest vectors of IHC. In the
other case, if we want to set up just a simulation scenario, the
interest vectors can be set as we need, for example, random
values.

4. Model Verification

In order to show the accuracy of IHC in simulating real-
life scenarios, we compare IHC with three real traces whose
data is gathered from experiments done with wireless devices
carried by people. These three traces are known as Infocom
06 trace (trace-1) [19], Infocom 05 trace (trace-2) [20], and
Cambridge trace (trace-3) [21]. More details of the three real
traces are shown in Table 2.
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Figure 4: Distributions of contact durations under different expected values.

4.1. Trace Data. We illuminate how we use the trace data as
follows.

First, we only care for the data generated by mobile and
homogeneous nodes. For example, in trace-1, there are totally
98 iMotes in the experiment, but 20 of them are long range
(around 100meters) and static (deployed throughout the area
or placed in lift of the hotel). The remaining 78 iMotes are
carried by participants of the Infocom student workshop,
with transmission range around 30meters. Hence, these
78 iMotes are our research objects in this experiment. In
order to find neighbor iMotes, each iMote performs periodic
desynchronized scanning. The scanning takes approximately
5 to 10 seconds with time granularity between two consecu-
tive scanning 120 seconds. An iMote cannot respond to any

request when it is active such that the synchronization needs
to be avoided. In this experiment, a contact is defined as a
period of time where all successive scanning by one iMote
receive a positive answer by another. That is, a contact can
only be confirmed after at least two scanning. Given that
the scanning granularity is 120 s, the speed of a pedestrian
is around 1m/s, and the transmission range is around 30m,
it indicates that a moving iMote can hardly detect a contact
such that the rationality of the feature “ignoring the contacts
of moving nodes” in IHC is supported.

Second, symmetrize the contact duration matrix. In
the three experiments, due to the interference and other
limitations, non-mutual sightings are always created. As a
result, the inter-contact time and contact duration are not
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Figure 5: Reproduce Infocom 06 trace using IHC.
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Figure 6: Reproduce Infocom 05 trace using IHC.

symmetrical. We keep all inter-contact times detected by the
mobile iMotes. However, for the contact duration between a
pair of iMotes, we take the maximum of their detected results
as the value. That is, if iMote A has detected that its contact
duration with B is 𝐶𝐷

𝐴−𝐵
, while iMote B detected the value

as 𝐶𝐷
𝐵−𝐴

, we will take max(𝐶𝐷
𝐴−𝐵

, 𝐶𝐷
𝐵−𝐴

) as the contact
duration value between iMotes A and B.

Note that these two treatments are conducted for all the
three real traces.

4.2. Simulation Environment and Parameter Settings. IHC
takes parameters listed in Table 1 as input. To compare IHC
with real traces, we make the output text files containing

records on contact metrics and social relationships, includ-
ing:

(i) inter-contact time.txt: recording all inter-contact
times between any two nodes;

(ii) contact duration.txt: recording all contact durations
between any two nodes;

(iii) interactionmatrix.txt: recording all contact durations
between any two nodes in a matrix.

As we build a discrete even simulator of IHC with
VC++6.0, we are able to change the output of the simulator to
observe each event, such as a node starting moving or finish
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Figure 7: Reproduce Cambridge trace using IHC.

moving and two nodes meeting each other or departing from
each other.

Parameters of IHC are chosen and tuned up based on the
scenarioswhichwewant to simulate, for example, Infocom06
trace (trace-1). For the parameters of 𝑛𝑢𝑚 and 𝑠𝑡, we assign
them exactly the same values as trace-1, that is, 78 and 3
days (259200 seconds). 𝑓𝑡 is set to be 10 seconds based on
the intuition that people spend few time on the journey. The
pause time, which makes the best output (e.g., inter-contact
time) matching with the real traces, is a bounded power
law over the range of [120s, 4800s] with slope 6, denoted by
(slope, lower bound, upper bound) in Table 3. Among them,
the lower bound affects the head of the inter-contact time
CCDF, the upper bound affects the tail of the inter-contact
time CCDF, and the slope weakly affects the slope of inter-
contact time CCDF in a very small range.The lower bound is
determined by scanning granularity because it is the scanning
granularity that strongly affects the head of inter-contact
time CCDF of the real traces. The values of slope and the
upper bound are determined by matching between real trace
inter-contact time CCDF and simulation results.

Table 3 summarizes all parameter settings of the three
scenarios. 𝐻

𝑖
(𝑥, 𝑦) and 𝑋

𝑗
are too expatiatory to show in

Table 3 and thus omitted, since we have indicated the specific
method to get them in detail in Section 3.4.

4.3. Simulation Results. We show the simulation results of
inter-contact time and contact duration of Infocom 06 trace,
Infocom 05 trace, and Cambridge trace in Figure 5, Figure 6,
and Figure 7, respectively. Figures 5–7 validate that IHC can
generate statistical metrics that approximate real traces. For
a quantitative comparison, we calculate the Jensen-Shannon
divergence between the distributions of the real traces and
IHC traces in Table 4, as well as the corresponding results of
SWIM traces whose data can be found in [5], since SWIM is

a very outstanding work on human mobility modeling. The
results shown in Table 4 indicate that our model outperforms
SWIM in the accuracy of reproducing inter-contact time and
contact duration.

We draw meaningful social relationships in real and IHC
traces in Figures 8, 9, and 10, which are weighted undirected
graphs. A vertex in the graph (Figures 8, 9, and 10) represents
the node with the same ID in the networks. The edge
between two vertices indicates that the social relationship
(contact duration) between these two nodes exceeds a certain
threshold. For Infocom 06 trace, 𝑇th is assigned as 20000
seconds because only the top 1.665% (50 out of 3003) largest
contact durations are larger than 20000. For Infocom05 trace,
𝑇th is set to be 10000 seconds because only the top 3.9% (32
out of 820) largest contact durations are larger than 10000.
The threshold for Cambridge trace is chosen with similar
principle with the value of 50000. The weights of the edges
are calculated as the ratio of contact duration between the two
nodes to the network simulation time, retaining two decimal
places.

Figures 8, 9, and 10 visually show the social relation-
ship similarity between real traces and corresponding IHC-
generated ones. For a quantitative view, we conduct Man-
tel Test on the real and IHC-generated social interaction
matrices where the raw data Figures 8, 9, and 10 comes
from. Mantel Test measures the correlativity between two
matrices. Since Figures 5(b)–7(b) have shown a very similar
scale of social interaction matrices between real traces and
corresponding IHC-generated ones, a high correlativity can
complementarily prove that the IHC-generated social inter-
action matrices are very similar to the real ones. The Mantel
Test results are shown in Table 5.

Figures 5(b)–7(b) and Table 5 prove that IHC can accu-
rately reproduce the overall social relationships in real-
life scenarios. Further, Figures 8, 9, and 10 indicate that
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Figure 8: Comparisons between Infocom 06 trace and IHC: meaningful social relationships.
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Figure 9: Comparisons between Infocom 05 trace and IHC: meaningful social relationships.

IHC is also able to characterize pairwise social relationships
quantitatively. For example, there exist some close social rela-
tionships that cannot be detected by a community detection
algorithm (e.g., 𝑘-clique [22], 𝑘 > 2), such as the relationship
between 13 and 16 and 18 and 25 in Figure 8(a). This kind
of relationship is defined as “friendship” in [12]. IHC has the
ability of reproducing the “friendship” in the target scenario.
Further, the inter/intra-community social relationships and
pairwise social relationships belonging to no communities
that IHC generates all match real traces very well. As far as
we know, no model has such a feature. Note here that we
only compare and show pair-wise social relationships of real
traces and IHC traces, since other mobility models cannot
reproduce the social relationships on the basis of pair-wise.

5. Building Cases to Use IHC

In this section, we build cases to use our model. We compare
the performances of forwarding protocols running with real
traces and our simulated scenarios to validate that IHC can be
used to predict protocols’ performance. We use the three real
traces (Infocom 06 trace, Infocom 05 traces and Cambridge
trace) and the three corresponding synthetic traces generated
by IHC as the network environments. Our goal is to validate
that IHC is able to predict the performance of forwarding
protocols rather than evaluating which forwarding protocol
performs better. Therefore, the protocols we choose, that is,
Epidemic Forwarding [23] and Spray and Wait [24], which
are very mature and get extensively utilized in DTNs and
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Table 3: Parameter settings.

Scenario Infocom 06 Infocom 05 Cambridge
num 78 41 36
st 259200 259200 950400
ft 10 10 10
pt: (slope, lower bound, upper bound) (6, 120, 4800) (6, 120, 7200) (2.45, 600, 14400)
Interest vectors generator Method-2 Method-2 Method-1
𝑛 79 42 36
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Figure 10: Comparisons between Cambridge trace and IHC: meaningful social relationships.

Table 4: Jensen-Shannon divergence between distributions of the
real and IHC traces, comparing with the corresponding results of
SWIM traces.

Trace Infocom 06 Infocom 05 Cambridge
Intercontact time (IHC) 0.048 0.037 0.043
Intercontact time (SWIM) 0.049 0.062 0.058
Contact duration (IHC) 0.022 0.004 0.014
Contact duration (SWIM) 0.18 0.21 0.15

Table 5: Mantel Test results on the real and IHC-generated social
interaction matrices.

Scenario Infocom 06 Infocom 05 Cambridge
Correlativity 0.9496 0.9407 0.9256

BUBBLE [12], which is a sophisticated social-aware protocol
are appropriate for our goal.

As in [5, 25], we choose twometrics to evaluate the perfor-
mance of forwarding protocols. They are delivery cost (cost)
and packet delivery ratio (pdr).The former indicates the price
of forwarding a data packet successfully and accounts for the
efficiency of the protocol. The delivery cost is calculated by
the ratio of “the amount of received control packets plus the
amount of data packets’ replicas” to “the amount of received
data packets”. The packet delivery ratio, instead, is actually
the successful rate of forwarding data packets and accounts
for the effectiveness of the protocol. Packet delivery ratio is

calculated as the ratio of “amount of received data packets” to
“amount of generated data packets”.

The following settings are validated for each scenario: a
set of messages is generated with sources and destinations
chosen uniformly at random with interval of 20 minutes, as
we simulated the overall periods, that is, 3 days or 11 days,
which is significantly different from that of [5] where each
simulation runs only for 3 hours (choosing 3 hours out of 3
days or 11 days incurs too many uncertainties). However, the
interest vector setting in Section 4.2 is based on the overall
experiments duration (i.e., 3 days and 11 days). In IHC, all
movement epochs are consecutive, but the actual movement
epochs differ greatly in daytime and nighttime.Therefore, for
amoremeaningful simulation and formaking statistical anal-
ysis in separate scenario, we divide the experiment duration
into fragments equally. Concretely, the scale of the fragment is
chosen as 12 hours to capture daytime and nighttimemotions,
respectively. That is, Infocom 06 and Infocom 05 scenarios
are divided into 6 fragments and the Cambridge scenario is
divided into 22 fragments. More importantly, interest vectors
are dynamic and the values are derived using “InterestVectors
Generator” based on the current experiment fragment. To
avoid end-effects, no messages are generated in the last hour;
the time-to-live of messages is set as 1 hour.The accumulated
forwarding protocols’ results are shown in Figure 11. That is,
in each simulation in Figure 11, the statistical metrics (cost
and pdr) are continuously calculated except that interest
vectors change with the alternate fragments. Table 6 shows
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Figure 11: Performance of forwarding protocols (interest vectors change with the alternate fragments).
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Table 6: The average error percentage of all fragments in each
separate scenario.

Scenario Infocom 06 Infocom 05 Cambridge

cost (Epidemic) −0.14 −0.08 −0.08

cost (Spray &Wait) −0.11 −0.07 −0.06

cost (BUBBLE) −0.14 −0.12 −0.13

pdr (Epidemic) 0.10 0.21 0.24

pdr (Spray &Wait) 0.15 0.17 0.25

pdr (BUBBLE) 0.23 0.09 0.22

the average error percentage of all fragments in each separate
scenario. In our simulations, IHC-generated traces always
lead to lower cost and higher pdr than the corresponding
real ones.Thus in Table 6 the average error percentage of cost
are all negative and those of pdr are all positive. However,
the error percentage results in Table 6 have small absolute
value, showing that each of the three forwarding protocols
has similar performance in both real and synthetic traces
generated by IHC.

Figure 11 is composed of six subfigures, namely Figures
11(a)–11(f). Figures 11(a)-11(b), 11(c)-11(d), and 11(e)-11(f)
depict the performance of forwarding protocols in Infocom
06 trace, Infocom05 trace, andCambridge trace, respectively.
In each subfigure, we draw six pillars representing consec-
utively the performance (corresponding to the subfigure,
such as cost or pdr) of Epidemic Routing in the real trace
and synthetic trace, Spray and Wait in the real trace and
synthetic trace and BUBBLE. Figure 11 shows that the trend
of the protocols in the real traces is the same as that of the
corresponding synthetic ones. That is, the ones that perform
better in the real world do the same things in the IHC-
generated one. Figure 11 and Table 6 both indicate that IHC
can predict well the performance of all the three protocols.
As a result, IHC is a good model for protocol validation;
the performance of protocols in the real life scenarios can
be accurately predicted by running the protocols on the
synthetic traces generated by IHC.

6. Conclusions

In this paper, we propose amobility model, IHC. IHCmerges
a few human mobility characteristics and is very simple to
implement. IHC takes node interest as input to reproduce
nodes’ social relationships. Correspondingly, we explore 2
methods to generate node interest vectors based on a contact
duration matrix. Through the comparisons with real-life
human mobility metrics of inter-contact time and contact
duration, we validate that IHC can generate synthetic traces
that approximate real traces. Being different from any existing
mobility models, IHC has the ability of characterizing pair-
wise social relationships quantitatively. Further simulations
have been conducted to show that IHC can predict the
performance of forwarding protocols well.
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