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A conventional region control technique cannot meet the demands for an accurate tracking performance in view of its inability to
accommodate highly nonlinear system dynamics, imprecise hydrodynamic coefficients, and external disturbances. In this paper, a
robust technique is presented for an Autonomous Underwater Vehicle (AUV) with region tracking function. Within this control
scheme, nonlinear𝐻

∞
and region based control schemes are used. A Lyapunov-like function is presented for stability analysis of the

proposed control law. Numerical simulations are presented to demonstrate the performance of the proposed tracking control of the
AUV. It is shown that the proposed control law is robust against parameter uncertainties, external disturbances, and nonlinearities
and it leads to uniform ultimate boundedness of the region tracking error.

1. Introduction

A valuable robotic system for the ocean environment is
known as an Autonomous Underwater Vehicle (AUV). It
has been used for many years in the oil and gas industry
to obtain detailed maps of the ocean floor as well as to
supervise pipeline activities [1]. The ongoing research on
AUVs has given attention to the improvement of navigation
and tracking control schemes. The conventional control
methodologies are not the most suitable choice and they
cannot guarantee the required tracking performance since
an underwater vehicle exhibits inherent highly nonlinear
system dynamics, imprecise hydrodynamic coefficients, and
external disturbances. On the other hand, sliding mode
control, due to its robustness against modelling inaccuracies
and external disturbances, has been demonstrated to be
a very attractive approach to cope with these problems
[2–6]. However, a well-known drawback of conventional
sliding mode controllers is the chattering effect. Therefore,
to overcome the undesired effects of the control chattering,
the authors in [7, 8] proposed a saturation function rather
than a sign function. This substitution can minimize or,
when desired, even completely eliminate chattering, but the

trajectory tracking error is uniformly ultimately bounded
(UUB), which in fact means that a steady-state error will
always remain. In order to enhance the tracking performance
inside the boundary layer, some adaptive strategy should be
used for uncertainty/disturbance compensation.

Recently, a nonlinear 𝐻
∞

optimal control scheme was
adopted for an underwater robotic system as an external
tracking control loop and a disturbance observer was used
as an internal disturbance compensation loop [9, 10]. The
resultant control obtained by combining these two controls
is then derived. A brief review of 𝐻

∞
optimality control has

been presented in [11]. Moreover, the disturbance observer
[12] is chosen, so that the 𝐿

2
-gain conditions of the nonlinear

𝐻
∞

optimal control are relaxed, the magnitude of extended
disturbances is reduced, and the robustness of the resulting
control is improved without increasing the control input
beyond that of the nonlinear 𝐻

∞
optimal control alone.

By using this control, the underwater robotic system can
successfully follow the given trajectories, even when uncer-
tainties and disturbances exist. An adaptive region tracking
control was presented in [13] for an AUV where a region is
used rather than a point due to minimizing the control effort
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Figure 1: An illustration of an underwater robotic system which
performs tracking task in a spherical region.

to track the region. Note that the total potential energy of
the desired region is a summation of the potential energy
associated with each region. Inspired from [13], some related
research works such as in [14, 15] have been carried out to
ensure that the marine robotic systems can cope with the
underwater conditions and missions.

In this paper, a nonlinear𝐻
∞
optimal control with region

tracking function is proposed for an underwater vehicle. The
proposed dynamic region control, where it is formulated
in task space, aims to reduce the energy consumed by
vehicle thrusters. Within the region function formulation,
the controller activates and sends commands to the thrusters
only when the AUV is outside the desired region, and hence
it significantly reduces energy consumption. However, the
disturbances such as ocean currents may pull the underwater
vehicle out of its desired region. This is likely to occur when
the AUV navigates near to the boundary as illustrated in
Figure 1. Hence, a nonlinear𝐻

∞
optimal control is proposed

in this paper to counteract this problem. The performance
of conventional region tracking control and region function
adopted with nonlinear 𝐻

∞
optimal control law can be

observed with respect to the existence of unidirectional and
bounded ocean current. The rest of the paper is organized
as follows: Section 2 describes the kinematic and dynamic
properties of anAUV. In Section 3, the nonlinear𝐻

∞
optimal

control with region function formulation is briefly explained.
The stability analysis using a Lyapunov-like function is also
given in this section. In Section 4, numerical simulation
results are provided to demonstrate the performance of the
proposed control. Finally, the paper is concluded with some
remarks in Section 5.

2. Kinematic and Dynamic Model of an AUV

2.1. Kinematic Model. The relationship between inertial and
body-fixed vehicle velocity can be described using the Jaco-
bian matrix 𝐽(𝜂

2
) in the following form:

[

̇𝜂
1

̇𝜂
2

] = [

𝐽
1
(𝜂
2
) 0
3×3

0
3×3

𝐽
2
(𝜂
2
)

] [

V
1

V
2

] ⇐⇒ ̇𝜂 = 𝐽 (𝜂
2
) V, (1)

where 𝜂
1

= [𝑥 𝑦 𝑧]

𝑇

∈ R3 and 𝜂
2

= [𝜙 𝜃 𝜓]

𝑇

∈

R3 denote the position and the orientation of the vehicle,

respectively, expressed in the inertial fixed frame. 𝐽
1
and 𝐽
2

are the transformation matrices expressed in terms of the
Euler angles. The linear and angular velocity vectors, V

1
=

[𝑢 V 𝑤]

𝑇

∈ R3 and V
2
= [𝑝 𝑞 𝑟]

𝑇

∈ R3, respectively, are
described in terms of the body-fixed frame.

2.2. DynamicModel. Let the velocity state vector with respect
to the body-fixed frame be defined by V ∈ R6; and the
underwater vehicle dynamic equation can be expressed in
closed form as [16]

𝑀V̇ + 𝐶 (V) V + 𝑔 (𝜂) + 𝐹ext = 𝜏, (2)

where 𝑀 and 𝐶(V) represent the inertia matrix and the
Coriolis and centripetal forces matrix including the effects
of added mass and hydrodynamic damping by body motion
and 𝑔(𝜂) is the restoring force. 𝐹ext contains the effects of
external disturbances and the effects of added mass and
hydrodynamic damping by body motion in static water. The
dynamic (2) preserves the following properties [16, 17].

Property 1. The inertia matrix 𝑀 is symmetric and positive
definite such that𝑀 = 𝑀

𝑇

> 0 and 𝛾𝐼 ≤ 𝑀 ≤ Υ𝐼.

Property 2. 𝐶(V) is the skew-symmetric matrix such that
𝐶(V) = −𝐶

𝑇

(V).
In the Property 1, 𝛾 and Υ denote the minimum and

maximum eigenvalues of the inertia matrix, respectively. The
matrix 𝐼 is the identity matrix that has suitable dimension.

3. Nonlinear 𝐻
∞

Optimal Control Law with
Region Formulation

In the region-based control framework, the desired moving
target is specified by a region at the desired trajectory. A
robust nonlinear 𝐻

∞
optimal control for AUV proposed in

this paper is formulated as follows.
First, the vehicle needs to converge into a region with

specific shape. The objective function for this region is
defined by the following:

𝑓 (𝛿𝜂
𝐵
) ≤ 0, (3)

where 𝛿𝜂
𝐵
= 𝐵(𝜂 − 𝜂

𝑑
) ∈ R6 are the continuous first partial

derivatives of the dynamic region; 𝜂
𝑑
(𝑡) is the time-varying

reference point inside the geometric shape and 𝐵(𝑡) is a time-
varying and nonsingular scaling factor. It is assumed that
𝜂
𝑑
(𝑡) and 𝐵(𝑡) are bounded functions of time. To achieve

the scaling formation, that is, if the scaling factor increases,
then the size of a desired region also increases, a nonsingular
matrix is defined as follows:

𝐵 = [

𝐵
1

0

0 𝐵
2

] , (4)

where 𝐵
1
is the scaling matrix of 𝜂

1
and 𝐵

2
is the scaling

matrix of 𝜂
2
. This function is useful when the AUV needs

to adapt the moving region, depending on the situation and
environment.
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The corresponding potential energy function for the
desired region described in (3) can be specified as

𝑃 (𝛿𝜂
𝐵
) =

{

{

{

0, 𝑓 (𝛿𝜂
𝐵
) ≤ 0

𝑘
𝑝

2

𝑓
2

(𝛿𝜂
𝐵
) , 𝑓 (𝛿𝜂

𝐵
) > 0,

(5)

such that

𝑃 (𝛿𝜂
𝐵
) =

𝑘
𝑝

2

[max (0, 𝑓 (𝛿𝜂
𝐵
))]
2

, (6)

where 𝑘
𝑝
is a positive scalar. Differentiating (6) with respect

to 𝛿𝜂
𝐵
gives

(

𝜕𝑃 (𝛿𝜂
𝐵
)

𝜕𝜂
𝐵

)

𝑇

= 𝑘
𝑝
max (0, 𝑓 (𝛿𝜂

𝐵
)) (

𝜕𝑓 (𝛿𝜂
𝐵
)

𝜕𝜂
𝐵

)

𝑇

. (7)

Now, let (7) be represented as the region error 𝑒
𝐵
in the

following form:

𝑒
𝐵
= max (0, 𝑓 (𝛿𝜂

𝐵
)) (

𝜕𝑓 (𝛿𝜂
𝐵
)

𝜕𝜂
𝐵

)

𝑇

. (8)

If 𝐵 is set to an identity matrix, then a useful vector V
𝑟
is

defined as

V
𝑟
= 𝐽
−1

̇𝜂
𝑑
− 𝛼𝐽
−1

𝑒
𝐵
− 𝛽𝐽
−1

∫ 𝑒
𝐵
𝑑𝑡, (9)

where 𝛼 and 𝛽 are arbitrary positive constants. The matrix
𝐽
−1 represents the inverse of the Jacobian matrix. From
the arguments of trigonometric functions, this matrix is
bounded. Based on the structure of (8) and (9) and the
subsequent stability analysis, a filtered tracking error vector
for an underwater vehicle is defined as

𝑟 (𝑡) = V − 𝐽
−1

̇𝜂
𝑑
+ 𝛼𝐽
−1

𝑒
𝐵
+ 𝛽𝐽
−1

∫ 𝑒
𝐵
𝑑𝑡. (10)

From the definition of 𝑟 in (10), the control law for an AUV
can be proposed in the following form:

𝜏 = −𝐾V𝑟 + �̂�V̇
𝑟
+ 𝐶 (V) V

𝑟
+ 𝑔 (𝜂) , (11)

where 𝐾V = 𝐾 + (1/𝜅
2

)𝐼; 𝐾 and 𝐼 are the positive definite
matrix and identity matrix, respectively. �̂�, 𝐶(V), and 𝑔(𝜂)

are the nominal matrices and vectors of 𝑀, 𝐶(V), and 𝑔(𝜂),
respectively. The derivative of V

𝑟
in (9) is given as

V̇
𝑟
= ̇𝐽
−1

̇𝜂
𝑑
+ 𝐽
−1

̈𝜂
𝑑
− 𝛼 ̇𝐽
−1

𝑒
𝐵
− 𝛼𝐽
−1 ̇
�̃�
𝐵

− 𝛽 ̇𝐽
−1

∫ 𝑒
𝐵
𝑑𝑡 − 𝛽𝐽

−1

𝑒
𝐵
,

(12)

where ̇𝜂
𝑑
(𝑡), ̈𝜂
𝑑
(𝑡), and ̇𝐽

−1

(𝑡) are all assumed to be bounded
functions of time. Substituting (11) into (2) produces a closed-
loop dynamic equation for 𝑟(𝑡) as follows:

𝑀 ̇𝑟 + 𝐶 (V) 𝑟 + 𝐾V𝑟 − 𝜔 = 0, (13)

where 𝜔 is the extended disturbance vector which is defined
in the following form:

𝜔 = �̃�V̇
𝑟
+ 𝐶 (V) V

𝑟
+ 𝑔 (𝜂) − 𝐹ext, (14)

where ̃(⋅) = ̂
(⋅) − (⋅) denotes the parameter estimation error.

The modeling error acts as a disturbance in (14) when the
AUV is in motion. Note that 𝜅 is the 𝐿

2
gain for disturbance

attenuation satisfying the following condition:

∫

𝑇

0

𝑧
𝑇

𝑧 𝑑𝑡 = ∫

𝑇

0

𝜔
𝑇

𝜔𝑑𝑡, (15)

where 𝑧
𝑇

𝑧 is defined as the weighted sum of the quadratic
forms of the error states and the control input. Since nonlin-
ear𝐻
∞
optimal control scheme is based on feedback tracking

errors, 𝑧𝑇𝑧 can be approximated up to magnitude of these
errors.

Remark 1. Equation (13) can be represented in state space
such that the nonlinear𝐻

∞
optimality satisfies [18]

∫

𝑇

0

{𝑥
𝑇

𝑄𝑥 + 𝑢
𝑇

𝑅𝑢} 𝑑𝑡 = 𝜅
2

∫

𝑇

0

𝜔
𝑇

𝜔𝑑𝑡 (16)

with 𝛼
2

> 2𝛽. 𝑥 and 𝑢 in (16) denote the state and input
variables, respectively. Meanwhile, the matrices 𝑄 and 𝑅 are
state weighting and input weighting matrices, respectively,
and they are determined by inverse optimal problem with
respect to specific 𝐿

2
attenuation gain, 𝜅.

Theorem 2. Let the filtered tracking error vector 𝑟 be upper
bounded as the following form:

‖𝑟‖ ≤ √

Υ

𝛾

𝜅
2

√2𝑘
𝑚
𝜅
2
+ 1

‖𝜔‖
∞
, (17)

where 𝑘
𝑚
is scalar constant and ‖𝜔‖

∞
denotes an infinity norm

of𝜔 for a given time interval.Then, the control law (11) above is
continuous and the closed-loop system is uniformly ultimately
bounded (u.u.b) as defined in [11].

Proof. The following nonnegative function is introduced to
analyze the stability of the proposed control law:

𝑉 =

1

2

𝑟
𝑇

𝑀𝑟. (18)

Differentiating 𝑉 with respect to time and utilizing (10) and
(14), a closed-loop dynamic (13) yields

�̇� = −𝑟
𝑇

𝐶 (V) 𝑟 − 𝑟
𝑇

𝐾V𝑟 + 𝑟
𝑇

𝜔. (19)

Simplifying (19) leads to

�̇� = −𝑟
𝑇

𝐾V𝑟 + 𝑟
𝑇

𝜔

= −𝑟
𝑇

(𝐾 + (

1

𝜅
2
) 𝐼) 𝑟 + 𝑟

𝑇

𝜔

= −𝑟
𝑇

(𝐾 + (

1

2𝜅
2
) 𝐼) 𝑟

−

𝜅
2

2









1

𝜅
2
𝑟 − 𝜔









2

+

𝜅
2

2

‖𝜔‖
2

∞
,

(20)
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Figure 2: The desired lawnmower trajectory where “×” marks the
initial position of the AUV.

where Property 2 is used. Let 𝑘
𝑚
be the minimum diagonal

element of gain matrix𝐾 utilizing the worst case disturbance
[11] to yield the following inequality:

�̇� ≤ − (𝑘
𝑚
+

1

2𝜅
2
) ‖𝑟‖
2

+

𝜅
2

2

‖𝜔‖
2

∞
. (21)

From (21), it is necessary to choose sufficiently large value
of 𝑘
𝑚

to ensure the negative definiteness of �̇�. Therefore,
implying the results and terminology of [19], the ultimate
boundedness of ‖𝑟‖ can be obtained as in (17).

Remark 3. It is assumed that the norm of extended distur-
bance which includes tracking errors is not deviated largely,
when a control input (11) is used in (2). Thus, the control
gain can be changed according to (17), so that the satisfactory
performance of proposed control law with region function
formulation can be achieved.

4. Simulation Results

In this section, simulation studies are carried out to assess the
effectiveness of the proposed nonlinear 𝐻

∞
optimal control

law with region function formulation for an underwater
vehicle. The performance of conventional tracking control
and the proposed technique is observed concerning two
cases: the first case is the conventional region tracking
control and the second case is where the region function is
adoptedwith nonlinear𝐻

∞
optimal control law. Both control

laws are observed with respect to the existence of random
disturbances and bounded ocean current. The ODIN AUV
[20, 21] that is known as a near-spherical omnidirectional
vehicle equipped with four horizontal thrusters and four
vertical thrusters is chosen as the Autonomous Underwater
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Figure 3:Three-dimensional view for conventional region tracking
control.

Table 1: Simulation result: vehicle forces for four vertical thrusters
(N).

Set-point tracking
control

Nonlinear𝐻
∞
optimal

controller
Thrusters 1 45.20 42.20
Thrusters 2 71.38 66.80
Thrusters 3 45.38 42.78
Thrusters 4 66.96 65.69
Total input 116.97 111.30

Vehicle model in these numerical simulations. The following
inequality function is defined as

𝑓 (𝛿𝜂
𝐵
) = 𝑠
𝑥
(𝑥 − 𝑥

0
)
2

+ 𝑠
𝑦
(𝑦 − 𝑦

0
)
2

+ 𝑠
𝑧
(𝑧 − 𝑧

0
)
2

+ 𝑠
𝜙
(𝜙 − 𝜙

0
)
2

+ 𝑠
𝜃
(𝜃 − 𝜃

0
)
2

+ 𝑠
𝜓
(𝜓 − 𝜓

0
)
2

≤ 𝜅
2

𝑟
,

(22)

where the element of {𝑠
𝑥
, 𝑠
𝑦
, 𝑠
𝑧
, 𝑠
𝜙
, 𝑠
𝜃
, 𝑠
𝜓
} is the component of

the time-varying scaling matrix 𝐵 and 𝜅
𝑟
is a scalar tolerance.

In these simulations, the matrix 𝐵 is defined as the identity
matrix and 𝜅

𝑟
is set to 0.25. Note that (22) can also be

represented as the root mean square error for all axes. In
Table 1, the norm values of required forces for four vertical
thrusters are presented. The total control input is included to
signify the overall energy needed for the system tomaintain at
depth −1.2 meter. Notice that when the proposed controller is
utilized, the energy requirement is reduced as compared with
set-point tracking method.

The underwater vehicle is required to track a predefined
trajectory as illustrated in Figure 2 where the green (cross-
section) path is the horizontal basis position initialized
at the position [1.5 0 −1.2]

𝑇 m. Moreover, the vehicle is
initialized at the same position 𝜂

1
(0) = [1.5 0 −1.2]

𝑇 m
while its attitude is kept constant during simulation and the
initial values are 𝜂

2
(0) = [0 0 0]

𝑇 degrees. FromFigures 3, 4,
5, and 6, it has been shown that the proposed control scheme
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Figure 4: Planar view for conventional region tracking control.
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Figure 5: Three-dimensional view for the nonlinear 𝐻
∞

optimal
control law with region function formulation.

exhibited a more robust tracking performance than the
conventional region control, when parameter uncertainties,
current effects, and disturbances exist. In Figure 4, the acute
fluctuations in the early stages of the simulation were mainly
caused by parameter uncertainties in the restoring force
and moment. However, as long as the AUV is inside the
desired region, the control input is turned off, and when the
disturbances pull the vehicle out, the control input is applied
to navigate the AUV back into the region.

5. Conclusion

A new nonlinear 𝐻
∞

optimal control law with region
function formulation for a hovering underwater vehicle with
four horizontal and four vertical thrusters has been presented
in this paper. Two cases have been considered: the first case is
the conventional region tracking control and the second case
is where the region function is adopted with the nonlinear
𝐻
∞

optimal control law. Both control laws are observed
with respect to the existence of unidirectional and bounded
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Figure 6: Planar view for nonlinear 𝐻
∞

optimal control law with
region function formulation.

ocean currents. Although the underwater disturbances exist
during task execution, the AUV is still able to track a desired
moving region. A Lyapunov-like function has been proposed
for stability analysis. Simulation results have been presented
to demonstrate the performance of the proposed controller.

Appendix

An omnidirectional intelligent navigator (ODIN) is a near-
spherical AUV designed in the University of Hawaii. The
dynamic model of ODIN is given by [20, 21]

[𝑀RB +𝑀A] V̇ + [𝐶RB (V) + 𝐶A (V)] V + 𝐷 (V) V + 𝑔 (𝜂) = 𝜏,

(A.1)

where the subscripts RB and A represent the rigid body and
added mass terms of the relevant parameters, respectively.
The numerical values for the matrices of the vehicle dynamic
equation (A.1) are given as

𝑀RB =

[

[

[

[

[

[

[

[

𝑚

0

0

0

𝑚𝑧
𝐺

0

0

𝑚

0

−𝑚𝑧
𝐺

0

0

0

0

𝑚

0

0

0

0

−𝑚𝑧
𝐺

0

𝐼
𝑥𝑥

0

0

𝑚𝑧
𝐺

0

0

0

𝐼
𝑦𝑦

0

0

0

0

0

0

𝐼
𝑧𝑧

]

]

]

]

]

]

]

]

,

(A.2)

where 𝐼
𝑥𝑥

= 𝐼
𝑦𝑦

= 𝐼
𝑧𝑧

= 𝐼 = (8/15)𝜋𝜌V𝑟
5

ODIN are the
moments of inertia about the principle axes.
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Consider

𝑀A =

[

[

[

[

[

[

[

[

𝑋
𝑢𝑑

0

0

0

0

0

0

𝑌V𝑑
0

0

0

0

0

0

𝑍
𝑤𝑑

0

0

0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

]

]

]

]

]

]

]

]

,

𝐶RB (V) =

[

[

[

[

[

[

[

[

0

0

0

−𝑚𝑧
𝐺
𝑢
6

−𝑚𝑢
3

𝑚𝑢
2

0

0

0

𝑚𝑢
3

−𝑚𝑧
𝐺
𝑢
6

−𝑚𝑢
1

0

0

0

−𝑚 (𝑢
2
− 𝑧
𝐺
𝑢
4
)

𝑚 (𝑢
1
+ 𝑧
𝐺
𝑢
5
)

0

𝑚𝑧
𝐺
𝑢
6

−𝑚𝑢
3

𝑚(𝑢
2
− 𝑧
𝐺
𝑢
4
)

0

−𝐼𝑢
6

𝐼𝑢
5

𝑚𝑢
3

𝑚𝑧
𝐺
𝑢
6

−𝑚 (𝑢
1
+ 𝑧
𝐺
𝑢
5
)

𝐼𝑢
6

0

−𝐼𝑢
4

−𝑚𝑢
2

𝑚𝑢
1

0

−𝐼𝑢
5

𝐼𝑢
4

0

]

]

]

]

]

]

]

]

,

𝐶A (V) =

[

[

[

[

[

[

[

[

0

0

0

0

−𝑚𝑢
3

𝑚𝑢
2

0

0

0

𝑚𝑢
3

0

−𝑚𝑢
1

0

0

0

−𝑚𝑢
2

𝑚𝑢
1

0

0

−𝑚𝑢
3

𝑚𝑢
2

0

0

0

𝑚𝑢
3

0

−𝑚𝑢
1

0

0

0

−𝑚𝑢
2

𝑚𝑢
1

0

0

0

0

]

]

]

]

]

]

]

]

,

𝐷 (V) =

[

[

[

[

[

[

[

[

−𝑑
𝑡1





𝑢
1






0

0

0

0

0

0

−𝑑
𝑡1





𝑢
2






0

0

0

0

0

0

−𝑑
𝑡1





𝑢
3






0

0

0

0

0

0

−𝑑
𝑟1





𝑢
4





− 𝑑
𝑟2

0

0

0

0

0

0

−𝑑
𝑟1





𝑢
5





− 𝑑
𝑟2

0

0

0

0

0

0

−𝑑
𝑟1





𝑢
6





− 𝑑
𝑟2

]

]

]

]

]

]

]

]

,

𝑔 (𝜂) =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

(𝑚𝑔 −

4

3

𝜋𝑟
3

𝜌𝑔) sin (𝜃)

− (𝑚𝑔 −

4

3

𝜋𝑟
3

𝜌𝑔) cos (𝜃) sin (𝜙)

− (𝑚𝑔 −

4

3

𝜋𝑟
3

𝜌𝑔) cos (𝜃) cos (𝜙)

𝑧
𝐺
𝑚𝑔 cos (𝜃) sin (𝜙)
𝑧
𝐺
𝑚𝑔 sin (𝜃)

0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

.

(A.3)

Provided that 𝑟ODIN = 0.31m is the radius of ODIN, 𝑚 =

125.0 kg is the mass of ODIN, 𝑧
𝐺

= 0.05m is the distance
of the center of gravity from the geometric center, 𝜌V =

965 kg/m3 is the average density of the ODIN AUV, 𝜌 =

1000 kg/m3 is the density of fresh water, and 𝑔 = 9.81m/s2.
The hydrodynamic derivatives are given by 𝑋

𝑢𝑑
= 𝑌V𝑑 =

𝑍
𝑤𝑑

= (2/3)𝜋𝜌𝑟
3

ODIN, the translational quadratic damping
factor 𝑑

𝑡1
= −248N(s/m)

2, the angular quadratic damping
factor 𝑑

𝑟1
= −280Ns2/m, and the angular linear damping

factor 𝑑
𝑟2

= −230Ns2/m.
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