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For the extended mixed linear complementarity problem (EML CP), we first present the
characterization of the solution set for the EMLCP. Based on this, its global error bound is also
established undermilder conditions. The results obtained in this paper can be taken as an extension
for the classical linear complementarity problems.

1. Introduction

We consider that the extended mixed linear complementarity problem, abbreviated as
EMLCP, is to find vector (x∗;y∗) ∈ R2n such that

F(x∗) ≥ 0, G
(
x∗, y∗) ≥ 0, F(x∗)�G

(
x∗, y∗) = 0,

Ax∗ + By∗ + b ≥ 0, Cx∗ +Dy∗ + d = 0,
(1.1)

where F(x) = Mx + p, G(x) = Nx +Qy + q, M,N,Q ∈ Rm×n, p, q ∈ Rm, A, B ∈ Rs×n,C, D ∈
Rt×n, b ∈ Rs, d ∈ Rt. We assume that the solution set of the EMLCP is nonempty throughout
this paper.

The EMLCP is a direct generalization of the classical linear complementarity problem
and a special case of the generalized nonlinear complementarity problem which was
discussed in the literature ([1, 2]). The extended complementarity problem plays a significant
role in economics, engineering, and operation research, and so forth [3]. For example,
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the balance of supply and demand is central to all economic systems; mathematically,
this fundamental equation in economics is often described by a complementarity relation
between two sets of decision variables. Furthermore, the classical Walrasian law of
competitive equilibria of exchange economies can be formulated as a generalized nonlinear
complementarity problem in the price and excess demand variables [4].

Up to now, the issues of the solution set characterization and numerical methods
for the classical linear complementarity problem or the classical nonlinear complementarity
problem were fully discussed in the literature (e.g., [5–8]). On the other hand, the global
error bound is also an important tool in the theoretical analysis and numerical treatment for
variational inequalities, nonlinear complementarity problems, and other related optimization
problems [9]. The error bound estimation for the classical linear complementarity problems
(LCP)was fully analyzed (e.g., [7–12]).

Obviously, the EMLCP is an extension of the LCP, and this motivates us to extend the
solution set characterization and error bound estimation results of the LCP to the EMLCP.
To this end, we first detect the solution set characterization of the EMLCP under milder
conditions in Section 2. Based on these, we establish the global error bound estimation for the
EMLCP in Section 3. These constitute what can be taken as an extension of those for linear
complementarity problems.

We end this section with some notations used in this paper. Vectors considered in
this paper are all taken in Euclidean space equipped with the standard inner product.
The Euclidean norm of vector in the space is denoted by ‖ · ‖. We use Rn

+ to denote the
nonnegative orthant in Rn and use x+ and x− to denote the vectors composed by elements
(x+)i := max{xi, 0} and (x−)i := max{−xi, 0}, 1 ≤ i ≤ n, respectively. For simplicity, we use
(x;y) for column vector (x�, y�)�. We also use x ≥ 0 to denote a nonnegative vector x ∈ Rn if
there is no confusion.

2. The Solution Set Characterization for EMLCP

In this section, we will characterize the solution set of the EMLCP. First, we can give the
needed assumptions for our analysis.

Assumption 2.1. For the matricesM,N,Q involved in the EMLCP, we assume that the matrix(
M�N+N�M M�Q

Q�M 0

)
is positive semidefinite.

Theorem 2.2. Suppose that Assumption 2.1 holds; the following conclusions hold.

(i) If (x0;y0) is a solution of the EMLCP, then

X∗ =
{
(
x;y

) ∈ X |
{
(M, 0m×n)�(N,Q) + (N,Q)�(M, 0m×n)

}{(
x;y

) − (
x0;y0

)}
= 0 ,

{
(M, 0m×n)�q + (N,Q)�p

}�{(
x;y

) − (
x0;y0

)}
= 0

}
,

(2.1)

where X = {(x;y) ∈ R2n | Mx + p ≥ 0,Nx +Qy + q ≥ 0,Ax +By + b ≥ 0, Cx +Dy + d = 0}, and
X∗ denotes the solution set of EMLCP.
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(ii) If (x1;y1) and (x2;y2) are two solutions of the EMLCP, then

(
Mx1 + p

)�(
Nx2 +Qy2 + q

)
=
(
Mx2 + p

)�(
Nx1 +Qy1 + q

)
= 0. (2.2)

(iii) The solution set of EMLCP is convex.

Proof. (i) Set

W =
{
(
x;y

) ∈ X |
{
(M, 0)�(N,Q) + (N,Q)�(M, 0)

}{(
x;y

) − (
x0;y0

)}
= 0,

{
(M, 0)�q + (N,Q)�p

}�{(
x;y

) − (
x0;y0

)}
= 0

}
.

(2.3)

For any (x̃; ỹ) ∈ X∗, since (x0;y0) ∈ X, we have

((
x0;y0

) − (
x̃; ỹ

))�((M, 0)�(N,Q)
(
x̃; ỹ

)
+ (M, 0)�q

)

=
[(
Mx0 + p

) − (
Mx̃ + p

)]�(
Nx̃ +Qỹ + q

)

=
[(
Mx0 + p

)]�(
Nx̃ +Qỹ + q

) − (
Mx̃ + p

)�(
Nx̃ +Qỹ + q

)

=
[(
Mx0 + p

)]�(
Nx̃ +Qỹ + q

) ≥ 0.

(2.4)

Since (x̃; ỹ) ∈ X, (x0;y0) ∈ X∗, using the similar arguments to that in (2.4), we have

((
x̃; ỹ

) − (
x0;y0

))�((M, 0)�(N,Q)
(
x0;y0

)
+ (M, 0)�q

)
≥ 0. (2.5)

Combining (2.4) with (2.5), one has

((
x̃; ỹ

) − (
x0;y0

))�(M, 0)�(N,Q)
((
x̃; ỹ

) − (
x0;y0

)) ≤ 0. (2.6)

By (2.6), we have

((
x̃; ỹ

) − (
x0;y0

))�((M, 0)�(N,Q) + (N,Q)�(M, 0)
)((

x̃; ỹ
) − (

x0;y0
)) ≤ 0. (2.7)

By Assumption 2.1, one has

((
x̃; ỹ

) − (
x0;y0

))�((M, 0)�(N,Q) + (N,Q)�(M, 0)
)((

x̃; ỹ
) − (

x0;y0
))

=
((
x̃; ỹ

) − (
x0;y0

))�
(
M�N +N�M M�Q

Q�M 0

)
((
x̃; ỹ

) − (
x0;y0

)) ≥ 0.
(2.8)
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Combining (2.7) with (2.8), we have

((
x̃; ỹ

) − (
x0;y0

))�((M, 0)�(N,Q) + (N,Q)�(M, 0)
)((

x̃; ỹ
) − (

x0;y0
))

= 0. (2.9)

That is,

(
(M, 0)�(N,Q) + (N,Q)�(M, 0)

)((
x̃; ỹ

) − (
x0;y0

))
= 0. (2.10)

Using (x0;y0) ∈ X, (x̃; ỹ) ∈ X∗ again, we have

((
x0;y0

) − (
x̃; ỹ

))�((N,Q)�(M, 0)
(
x̃; ỹ

)
+ (N,Q)�p

)

=
[(
Nx0 +Qy0 + q

) − (
Nx̃ +Qỹ + q

)]�(
Mx̃ + p

)

=
(
Nx0 +Qy0 + q

)�(
Mx̃ + p

) − (
Nx̃ +Qỹ + q

)�(
Mx̃ + p

)

=
(
Nx0 +Qy0 + q

)�(
Mx̃ + p

) ≥ 0.

(2.11)

Using (x̃; ỹ) ∈ X, (x0;y0) ∈ X∗ again, using the similar arguments to that in (2.11), we have

((
x̃; ỹ

) − (
x0;y0

))�((N,Q)�(M, 0)
(
x0;y0

)
+ (N,Q)�p

)
≥ 0. (2.12)

From (2.9), (2.4), and (2.11), one has

((
x0;y0

) − (
x̃; ỹ

))�{((M, 0)�(N,Q) + (N,Q)�(M, 0)
)(

x0;y0
)
+ (M, 0)�q + (N,Q)�p

}

=
((
x0;y0

) − (
x̃; ỹ

))�((M, 0)�(N,Q) + (N,Q)�(M, 0)
)((

x0;y0
) − (

x̃; ỹ
))

+
((
x0;y0

) − (
x̃; ỹ

))�{((M, 0)�(N,Q) + (N,Q)�(M, 0)
)(

x̃; ỹ
)

+(M, 0)�q + (N,Q)�p
}

=
((
x0;y0

) − (
x̃; ỹ

))�{(M, 0)�(N,Q)
(
x̃; ỹ

)
+ (M, 0)�q

}

+
((
x0;y0

) − (
x̃; ỹ

))�{(N,Q)�(M, 0)
(
x̃; ỹ

)
+ (N,Q)�p

}
≥ 0.

(2.13)

Combining (2.5) with (2.12) yields

((
x̃; ỹ

) − (
x0;y0

))�(((M, 0)�(N,Q) + (N,Q)�(M, 0)
)(

x0;y0
)
+ (M, 0)�q + (N,Q)�p

)
≥ 0.

(2.14)
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Combining this with (2.13) yields

((
x̃; ỹ

) − (
x0;y0

))�(((M, 0)�(N,Q) + (N,Q)�(M, 0)
)(

x0;y0
)
+ (M, 0)�q + (N,Q)�p

)
= 0.
(2.15)

From (2.10) and (2.15), one has
(
(M, 0)�q + (N,Q)�p

)�((
x̃; ỹ

) − (
x0;y0

))
= 0. (2.16)

By (2.10) and (2.16), we obtain that (x̃; ỹ) ∈ W follows.
On the other hand, for any (x̂; ŷ) ∈ W , then (x̂; ŷ) ∈ X, and

(
(M, 0)�(N,Q) + (N,Q)�(M, 0)

)((
x̂; ŷ

) − (
x0;y0

))
= 0,

(
(M, 0)�q + (N,Q)�p

)((
x̂; ŷ

) − (
x0;y0

))
= 0,

(2.17)

and one has

0 =
((
x̂; ŷ

) − (
x0;y0

))�[((M, 0)�(N,Q) + (N,Q)�(M, 0)
)(

x0;y0
)

+(M, 0)�q + (N,Q)�p
]

=
((
x̂; ŷ

) − (
x0;y0

))�((M, 0)�(N,Q)
(
x0;y0

)
+ (M, 0)�q

)

+
((
x̂; ŷ

) − (
x0;y0

))�((N,Q)�(M, 0)
(
x0;y0

)
+ (N,Q)�p

)

=
[(
Mx̂ + p

) − (
Mx0 + p

)]�(
Nx0 +Qy0 + q

)

+
[(
Nx̂ +Qŷ + q

) − (
Nx0 +Qy0

)
+ q )

]�(
Mx0 + p

)

=
(
Mx̂ + p

)�(
Nx0 +Qy0 + q

)
+
(
Nx̂ +Qŷ + q

)�(
Mx0 + p

)
.

(2.18)

Using (2.18), one has

0 =
((
x̂; ŷ

) − (
x0;y0

))�((M, 0)�(N,Q) + (N,Q)�(M, 0)
)((

x̂; ŷ
) − (

x0;y0
))

= 2
((
x̂; ŷ

) − (
x0;y0

))�(M, 0)�(N,Q)
((
x̂; ŷ

) − (
x0;y0

))

= 2
[(
Mx̂ + p

) − (
Mx0 + p

)]�[(
Nx̂ +Qŷ + q

) − (
Nx0 +Qy0 + q

)]

= 2
[(
Mx̂ + p

)�(
Nx̂ +Qŷ + q

) − (
Mx̂ + p

)�(
Nx0 +Qy0 + q

)

−(Mx0 + p
)�(

Nx̂ +Qŷ + q
)
+
(
Mx0 + p

)�(
Nx0 +Qy0 + q

)]

= 2
(
Mx̂ + p

)�(
Nx̂ +Qŷ + q

)
.

(2.19)

Thus, we have that (x̂; ŷ) ∈ X∗.
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(ii) Since (x1;y1) and (x2;y2) are two solutions of the EMLCP, by Theorem 2.2 (i), we
have

(
(M, 0)�(N,Q) + (N,Q)�(M, 0)

)((
x1;y1

) − (
x2;y2

))

=
(
(M, 0)�(N,Q) + (N,Q)�(M, 0)

)((
x1;y1

) − (
x0;y0

))

−
(
(M, 0)�(N,Q) + (N,Q)�(M, 0)

)((
x2;y2

) − (
x0;y0

))
= 0.

(2.20)

Combining this with (Mx1 + p)�(Nx1 +Qy1 + q) = (Mx2 + p)�(Nx2 +Qy2 + q) = 0, one has

0 =
((
x1;y1

) − (
x2;y2

))�((M, 0)�(N,Q) + (N,Q)�(M, 0)
)((

x1;y1
) − (

x2;y2
))

= 2
((
x1;y1

) − (
x2;y2

))�(M, 0)�(N,Q)
((
x1;y1

) − (
x2;y2

))

= 2
[(
Mx1 + p

) − (
Mx2 + p

)]�[(
Nx1 +Qy1 + q

) − (
Nx2 +Qy2 + q

)]

= − 2
[(
Mx1 + p

)�(
Nx2 +Qy2 + q

)
+
(
Mx2 + p

)�(
Nx1 +Qy1 + q

)]
.

(2.21)

On the other hand, from Mxi + p ≥ 0, Nxi +Qyi + q ≥ 0, i = 1, 2, we can deduce

(
Mx1 + p

)�(
Nx2 +Qy2 + q

) ≥ 0,
(
Mx2 + p

)�(
Nx1 +Qy1 + q

) ≥ 0. (2.22)

From (2.21) and (2.22), thus, we have that Theorem 2.2 (ii) holds.
(iii) If solution set of the EMLCP is single point set, then it is obviously convex. In

this following, we suppose that (x1;y1) and (x2;y2) are two solutions of the EMLCP. By
Theorem 2.2 (i), we have

(
(M, 0)�(N,Q) + (N,Q)�(M, 0)

)((
x1;y1

)
− (

x0;y0
))

= 0,

(
(M, 0)�(N,Q) + (N,Q)�(M, 0)

)((
x2;y2

)
− (

x0;y0
))

= 0,

(
(M, 0)�q + (N,Q)�p

)�((
x1;y1

)
− (

x0;y0
))

= 0,

(
(M, 0)�q + (N,Q)�p

)�((
x2;y2

)
− (

x0;y0
))

= 0.

(2.23)

For the vector (x;y) = τ(x1;y1) + (1 − τ)(x2;y2), for all τ ∈ [0, 1], by (2.23), we have

(
(M, 0)�(N,Q) + (N,Q)�(M, 0)

)((
x;y

) − (
x0;y0

))

=
(
(M, 0)�(N,Q) + (N,Q)�(M, 0)

)(
τ
(
x1;y1

)
− τ

(
x0;y0

))

+
(
(M, 0)�(N,Q) + (N,Q)�(M, 0)

)(
(1 − τ)

(
x2;y2

)
− (1 − τ)

(
x0;y0

))
= 0.

(2.24)
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Using the similar arguments to that in (2.24), we can also obtain

(
(M, 0)�q + (N,Q)�p

)�((
x;y

) − (
x0;y0

))
= 0. (2.25)

Combining (2.24) and (2.25) with the conclusion of Theorem 2.2 (i), we obtain the desired
result.

Corollary 2.3. Suppose that Assumption 2.1 holds. Then, the solution set for EMLCP has the
following characterization:

X∗ =
{(

x;y
) ∈ X |

(
(M, 0)�(N,Q) + (N,Q)�(M, 0)

)((
x;y

) − (
x0;y0

))
= 0,

((
x;y

) − (
x0;y0

))�[((M, 0)�(N,Q) + (N,Q)�(M, 0)
)(

x0;y0
)

+(M, 0)�q + (N,Q)�p
]
≤ 0.

}
.

(2.26)

Proof. Set

W̃ =
{(

x;y
) ∈ X |

(
(M, 0)�(N,Q) + (N,Q)�(M, 0)

)((
x;y

) − (
x0;y0

))
= 0 ,

((
x;y

) − (
x0;y0

))�[((M, 0)�(N,Q) + (N,Q)�(M, 0)
)(

x0;y0
)

+(M, 0)�q + (N,Q)�p
]
≤ 0

}
.

(2.27)

For any (x̂; ŷ) ∈ W̃ , then (x̂; ŷ) ∈ X, combining this with (x0;y0) ∈ X∗. Using the similar
arguments to that in (2.5) and (2.12), we have

((
x̂; ŷ

) − (
x0;y0

))�[((M, 0)�(N,Q) + (N,Q)�(M, 0)
)(

x0;y0
)
+ (M, 0)�q + (N,Q)�p

]
≥ 0.

(2.28)

Combining this with (x̂; ŷ) ∈ W̃ , one has

((
x̂; ŷ

) − (
x0;y0

))�[((M, 0)�(N,Q) + (N,Q)�(M, 0)
)(

x0;y0
)
+ (M, 0)�q + (N,Q)�p

]
= 0.

(2.29)

From ((M, 0)�(N,Q) + (N,Q)�(M, 0))((x̂; ŷ) − (x0;y0)) = 0, we have

(
(M, 0)�q + (N,Q)�p

)�((
x̂; ŷ

) − (
x0;y0

))
= 0. (2.30)

Thus, by Theorem 2.2 (i), one has (x̂; ŷ) ∈ X∗.
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On the other hand, for any (x̂; ŷ) ∈ X∗, by Theorem 2.2 (i), we have (x̂; ŷ) ∈ X,
((M, 0)�(N,Q) + (N,Q)�(M, 0))((x̂; ŷ) − (x0;y0)) = 0, and ((M, 0)�q + (N,Q)�p)�((x̂; ŷ) −
(x0;y0)) = 0, that is,

((
x̂; ŷ

) − (
x0;y0

))�[((M, 0)�(N,Q) + (N,Q)�(M, 0)
)(

x0;y0
)
+ (M, 0)�q + (N,Q)�p

]
= 0.

(2.31)

Thus, (x̂; ŷ) ∈ W̃ .

Using the following definition developed from EMLCP, we can further detect the
solution structure of the EMLCP.

Definition 2.4. A solution (x;y) of the EMLCP is said to be nondegenerate if it satisfies

(
Mx + p

)
+
(
Nx +Qy + q

)
> 0. (2.32)

Theorem 2.5. Suppose that Assumption 2.1 holds, and the EMLCP has a nondegenerate solution,
say (x0;y0). Then, the following conclusions hold.

(i) The solution set of EMLCP

X∗ =
{(

x;y
) ∈ X | ((x;y) − (

x0;y0
))�[((M, 0)�(N,Q) + (N,Q)�(M, 0)

)(
x0;y0

)

+(M, 0)�q + (N,Q)�p
]
≤ 0

}
.

(2.33)

(ii) If the matrices Mα and Qα are the full-column rank, where α = {i | (Mx0 + p)i > 0, i =
1, 2, . . . , m}, α = {i | i = 1, 2, . . . , m, i /∈ α}, then (x0;y0) is the unique nondegenerate
solution of EMLCP.

Proof. (i) Set

W=
{(

x;y
) ∈ X | ((x;y) − (

x0;y0
))�[((M, 0)�(N,Q) + (N,Q)�(M, 0)

)(
x0;y0

)

+(M, 0)�q + (N,Q)�p
]
≤ 0

}
.

(2.34)

From Corollary 2.3, one has X∗ ⊆ W . In this following, we will show that W ⊆ X∗. For any
(x;y) ∈ W , then (x;y) ∈ X, combining this with (x0;y0) ∈ X∗. Using the similar arguments
to that in (2.14), we have

((
x;y

) − (
x0;y0

))�[((M, 0)�(N,Q) + (N,Q)�(M, 0)
)(

x0;y0
)
+ (M, 0)�q + (N,Q)�p

]
≥ 0.

(2.35)
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Combining this with (x;y) ∈ W , one has

0 =
((
x;y

) − (
x0;y0

))�[((M, 0)�(N,Q) + (N,Q)�(M, 0)
)(

x0;y0
)
+ (M, 0)�q + (N,Q)�p

]

=
((
x;y

) − (
x0;y0

))�[(M, 0)�(N,Q)
(
x0;y0

)
+ (M, 0)�q

]

+
((
x;y

) − (
x0;y0

))�[(N,Q)�(M, 0)
(
x0;y0

)
+ (N,Q)�p

]

=
[(
Mx + p

) − (
Mx0 + p

)]�(
Nx0 +Qy0 + q

)

+
[(
Nx +Qy + q

) − (
Nx0 +Qy0 + q

)]�(
Mx0 + p

)

=
(
Mx + p

)�(
Nx0 +Qy0 + q

)
+
(
Nx +Qy + q

)�(
Mx0 + p

)
.

(2.36)

Combining Mx + p ≥ 0,Nx +Qy + q ≥ 0 with (2.36), one has

(
Mx + p

)�(
Nx0 +Qy0 + q

)
=
(
Mx0 + p

)�(
Nx +Qy + q

)
= 0. (2.37)

Since (x0;y0) is a nondegenerate solution, combining this with (2.37), we have (Mx +
p)�(Nx +Qy + q) = 0. That is, (x;y) ∈ X∗.

(ii) Let (x̂; ŷ) be any nondegenerate solution. Since (x0;y0) is a nondegenerate
solution, then we have

(
Mx0 + p

)�(
Nx0 +Qy0 + q

)
= 0, (2.38)

(
Mx0 + p

)
+
(
Nx0 +Qy0 + q

)
> 0. (2.39)

Combining (2.38) with (2.39), we have

(
Nx0 +Qy0 + q

)
i = 0, ∀i ∈ α. (2.40)

If i /∈ α, then (Nx0 +Qy0 + q)i > 0 by (2.39). By (2.38) again, we can deduce that

(
Mx0 + p

)
i = 0, ∀i /∈ α. (2.41)

On the other hand, for the (x0;y0) and (x̂; ŷ) which are solutions of EMLCP, and combining
Theorem 2.2 (ii), we have (Mx̂+p)�(Nx0+Qy0+q) = 0. Using (Nx0+Qy0+q)i > 0, for all i /∈
α, we can deduce that

(
Mx̂ + p

)
i = 0, ∀i /∈ α. (2.42)

Combining Theorem 2.2 (ii) again, we also have

((
Mx0 + p

))�(
Nx̂ +Qŷ + q

)
= 0. (2.43)
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For any i ∈ α, that is, (Mx0 + p)i > 0, and combining (2.43), we obtain

(
Nx̂ +Qŷ + q

)
i = 0, ∀i ∈ α. (2.44)

Combining this with the fact that (Mx̂ + p) + (Nx̂ +Qŷ + q) > 0, we can deduce that

(
Mx̂ + p

)
i > 0, ∀i ∈ α. (2.45)

From (2.41) and (2.42), we obtain

Mα(x̂ − x0) = 0. (2.46)

Thus, x̂ = x0 by the full-column rank assumption onMα. Using x̂ = x0, combining (2.40)with
(2.44), we can deduce that

Qαŷ = −Nαx̂ − q = −Nαx0 − q = Qαy0. (2.47)

That is, ŷ = y0 by the full-column rank assumption on Qα. Thus, the desired result follows.

The solution set characterization obtained in Theorem 2.2 (i) coincides with that of
Lemma 2.1 in [7], and the solution set characterization obtained in Theorem 2.5 (i) coincides
with that of Lemma 2.2 in [8] for the linear complementarity problem.

3. Global Error Bound for the EMLCP

In this following, we will present a global error bound for the EMLCP based on the results
obtained in Corollary 2.3 and Theorem 2.5 (i). Firstly, we can give the needed error bound for
a polyhedral cone from [13] and following technical lemmas to reach our claims.

Lemma 3.1. For polyhedral cone P = {x ∈ Rn | D1x = d1, B1x ≤ b1} with D1 ∈ Rl×n, B1 ∈ Rm×n,
d1 ∈ Rl and b1 ∈ Rm, there exists a constant c1 > 0 such that

dist(x, P) ≤ c1[‖D1x − d1‖ + ‖(B1x − b1)+‖] ∀x ∈ Rn; (3.1)

Lemma 3.2. Suppose that (x0;y0) is a solution of EMLCP, and let

ω =
[(

(M, 0)�(N,Q) + (N,Q)�(M, 0)
)(

x0;y0
)
+ (M, 0)�q + (N,Q)�p

]
, (3.2)

then, there exists a constant τ > 0, such that for any (x;y) ∈ R2n, one has

[
ω�((x;y

) − (
x0;y0

))]

−

≤ τ
(∥∥(Mx + p

)
−
∥∥ +

∥∥(Nx +Qy + q
)
−
∥∥ +

∥∥(Ax + By + b
)
−
∥∥ +

∥∥Cx +Dy + d
∥∥).

(3.3)
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Proof. Similar to the proof of (2.14), we can obtain

ω�((x;y
) − (

x0;y0
)) ≥ 0, ∀(x;y) ∈ X. (3.4)

We consider the following linear programming problems

min ω�(x;y
)

s.t. Mx + p ≥ 0,

Nx +Qy + q ≥ 0,

Ax + By + b ≥ 0,

Cx +Dy + d = 0.

(3.5)

From the assumption, we know that (x0, y0) is an optimal point of the linear programming
problem. Thus, there exist optimal Lagrange multipliers λ1, λ2 ∈ Rm

+ , λ3 ∈ Rs
+, and λ4 ∈ Rt

such that

ω = (M, 0)�λ1 + (N,Q)�λ2 + (A,B)�λ3 + (C,D)�λ4,

Mx0 + p ≥ 0, Nx0 +Qy0 + q ≥ 0,

Ax0 + By0 + b ≥ 0, Cx0 +Dy0 + d = 0,

(
(M, 0)

(
x0;y0

)
+ p

)�
λ1 = 0,

(
Nx0 +Qy0 + q

)�
λ2 = 0,

(
Ax0 + By0 + b

)�
λ3 = 0.

(3.6)

From (3.6), we can easily deduce that

ω�(x0;y0
)
=
{
(M, 0)�λ1 + (N,Q)�λ2 + (A,B)�λ3 + (C,D)�λ4

}�(
x0;y0

)

= λ�1 (M, 0)
(
x0;y0

)
+ λ�2 (N,Q)

(
x0;y0

)

+ λ�3 (A,B)
(
x0;y0

)
+ λ�4 (C,D)

(
x0;y0

)

= − λ�1p − λ�2q − λ�3b − λ�4d.

(3.7)

Thus, for any (x;y) ∈ R2n, from the first equation in (3.6), we have
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[
ω�((x;y

) − (
x0;y0

))]

−
=
{
λ�1

(
(M, 0)

(
x;y

)
+ p

)
+ λ�2

(
(N,Q)

(
x;y

)
+ q

)

+λ�3
(
(A,B)

(
x;y

)
+ b

)
+ λ�4

(
(C,D)

(
x;y

)
+ d

)}

−

≤
{
λ�1

(
(M, 0)

(
x;y

)
+ p

)}

−
+
{
λ�2

(
(N,Q)

(
x;y

)
+ q

)}

−

+
{
λ�3

(
(A,B)

(
x;y

)
+ b

)}

−
+
{
λ�4

(
(C,D)

(
x;y

)
+ d

)}

−

≤ λ�1
{
(M, 0)

(
x;y

)
+ p

}
− + λ�2

{
(N,Q)

(
x;y

)
+ q

}
−

+ λ�3
{
(A,B)

(
x;y

)
+ b

}
−

+ {λ4}�−
{
(C,D)

(
x;y

)
+ d

}
+ + {λ4}�+

{
(C,D)

(
x;y

)
+ d

}
−

≤ ‖λ1‖
∥
∥{(M, 0)

(
x;y

)
+ p

}
−
∥
∥ + ‖λ2‖

∥
∥{(N,Q)

(
x;y

)
+ q

}
−
∥
∥

+ ‖λ3‖
∥∥{(A,B)

(
x;y

)
+ b

}
−
∥∥ + ν

∥∥(C,D)
(
x;y

)
+ d

∥∥,

(3.8)

Where ν ≥ 0 is a constant. Let τ = max{‖λ1‖, ‖λ2‖, ‖λ3‖, ν}, then the desired result follows.

Now, we are at the position to state our results.

Theorem 3.3. Suppose that Assumption 2.1 holds. Then, there exists a constant η > 0 such that for
any (x;y) ∈ R2n, there exists (x∗;y∗) ∈ X∗ such that

∥∥(x;y
) − (

x∗;y∗)∥∥ ≤ η
{
s
(
x, y

)
+ s

(
x, y

)1/2}
, (3.9)

where

s
(
x, y

)
=
∥∥(Mx + p

)
−
∥∥ +

∥∥(Nx +Qy + q
)
−
∥∥

+
∥∥(Ax + By + b

)
−
∥∥ +

∥∥Cx +Dy + d
∥∥ +

[(
Mx + p

)�(
Nx +Qy + q

)]

+
.

(3.10)

Proof. Using Corollary 2.3 and Lemma 3.1, there exists a constant μ1 > 0, for any (x;y) ∈ R2n,
and there exists (x∗;y∗) ∈ X∗ such that

∥∥(x;y
) − (

x∗;y∗)∥∥ ≤ μ1

{∥∥(Mx + p
)
−
∥∥ +

∥∥(Nx +Qy + q
)
−
∥∥

+
∥∥(Ax + By + b

)
−
∥∥ +

∥∥Cx +Dy + d
∥∥
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+
∥
∥
∥
∥

[((
(M, 0)�(N,Q) + (N,Q)�(M, 0)

)(
x0;y0

)

+ (M, 0)�q + (N,Q)�p
)�((

x;y
) − (

x0;y0
))
]

+

∥
∥
∥
∥

+
∥
∥
∥
(
(M, 0)�(N,Q) + (N,Q)�(M, 0)

)((
x;y

) − (
x0;y0

))∥∥
∥
}
,

(3.11)

Where (x0;y0) is a solution of EMLCP. Now, we consider the right-hand-side of expression
(3.11).

Firstly, by Assumption 2.1, we obtain that

H
(
x, y

)
=
(
Mx + p

)�(
Nx +Qy + q

)
(3.12)

is a convex function. For any (x;y) ∈ R2n, we have

H
(
x, y

) −H
(
x0;y0

) ≥
[(

(M, 0)�(N,Q) + (N,Q)�(M, 0)
)(

x0;y0
)

+ (M, 0)�q + (N,Q)�p
]�((

x;y
) − (

x0;y0
))
.

(3.13)

Combining this withH(x0;y0) = 0, we can deduce that

{[(
(M, 0)�(N,Q) + (N,Q)�(M, 0)

)(
x0;y0

)
+ (M, 0)�q + (N,Q)�p

]�((
x;y

) − (
x0;y0

))
}

+

≤
[(
Mx + p

)�(
Nx +Qy + q

)]

+
.

(3.14)

Secondly, we consider the last item in (3.11). By Assumption 2.1, there exists a constant
μ2 > 0 such that for any (x;y) ∈ R2n,

∥∥∥
(
(M, 0)�(N,Q) + (N,Q)�(M, 0)

)((
x;y

) − (
x0;y0

))∥∥∥
2

≤ μ2
((
x;y

) − (
x0;y0

))�((M, 0)�(N,Q) + (N,Q)�(M, 0)
)((

x;y
) − (

x0;y0
))

= 2μ2

{(
Mx + p

)�(
Nx +Qy + q

) − (
Mx0 + p

)�(
Nx0 +Qy0 + q

)
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−
[(

(M, 0)�(N,Q) + (N,Q)�(M, 0)
)(

x0;y0
)
+ (M, 0)�q + (N,Q)�p

]�

× ((
x;y

) − (
x0;y0

))}

≤μ2

[(
Mx + p

)�(
Nx +Qy + q

)]

+
+ 2μ2

{[(
(M, 0)�(N,Q) + (N,Q)�(M, 0)

)(
x0;y0

)

+ (M, 0)�q+(N,Q)�p
]�((

x;y
) − (

x0;y0
))
}

−

≤ 2μ2

[(
Mx + p

)�(
Nx +Qy + q

)]

+
+ 2μ2τ

(∥∥(Mx + p
)
−
∥
∥ +

∥
∥(Nx +Qy + q

)
−
∥
∥

+
∥
∥(Ax + By + b

)
−
∥
∥ +

∥
∥Cx +Dy + d

∥
∥),

(3.15)

where the first equality is based on the Taylor expansion of functionH(x, y) on (x0;y0) point,
the second inequality follows from the fact that (x0;y0) is a solution of EMLCP and the fact
that a + b ≤ a+ + b+ for any a, b ∈ R, and the last inequality is based on Lemma 3.2. By
(3.11)–(3.15), we have that (3.9) holds.

The error bound obtained in Theorem 3.3 coincides with that of Theorem 2.4 in [11]
for the linear complementarity problem, and it is also an extension of Theorem 2.7 in [7] and
Corollary 2 in [14].

Theorem 3.4. Suppose that the assumption of Theorem 2.5 holds. Then, there exists a constant η1 > 0,
such that for any (x;y) ∈ R2n, there exists a solution (x∗;y∗) ∈ X∗ such that

∥∥(x;y
) − (

x∗;y∗)∥∥ ≤ η1s
(
x, y

)
, (3.16)

where s(x, y) is defined in Theorem 3.3.

Proof. From Theorem 2.5, using the proof technique is similar to that of Theorem 3.3. For any
(x;y) ∈ R2n, there exist (x∗;y∗) ∈ X∗ and a constant μ4 > 0 such that

∥∥(x;y
) − (

x∗;y∗)∥∥ ≤ μ4

{∥∥(Mx + p
)
−
∥∥ +

∥∥(Nx +Qy + q
)
−
∥∥

+
∥∥(Ax + By + b

)
−
∥∥ +

∥∥Cx +Dy + d
∥∥

+
∥∥∥∥

[((
(M, 0)�(N,Q) + (N,Q)�(M, 0)

)(
x0;y0

)

+ (M, 0)�q + (N,Q)�p
)�((

x;y
) − (

x0;y0
))
]

+

∥∥∥∥

}
.

(3.17)

Combining this with (3.14), we can deduce that (3.16) holds.
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4. Conclusion

In this paper, we presented the solution Characterization, and also established global error
bounds on the extended mixed linear complementarity problems which are the extensions of
those for the classical linear complementarity problems. Surely, we may use the error bound
estimation to establish quick convergence rate of the noninterior path following method for
solving the EMLCP just as was done in [14], and this is a topic for future research.

Acknowledgments

This work was supported by the Natural Science Foundation of China (Grant no.
11171180,11101303), Specialized Research Fund for the Doctoral Program of Chinese
Higher Education (20113705110002), and Shandong Provincial Natural Science Foundation
(ZR2010AL005, ZR2011FL017).

References

[1] R. W. Cottle, J.-S. Pang, and R. E. Stone, The Linear Complementarity Problem, Academic Press, New
York, NY, USA, 1992.

[2] F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequality and Complementarity Problems,
Springer, New York, NY, USA, 2003.

[3] M. C. Ferris and J. S. Pang, “Engineering and economic applications of complementarity problems,”
Society for Industrial and Applied Mathematics, vol. 39, no. 4, pp. 669–713, 1997.

[4] L. Walras, Elements of Pure Economics, George Allen and Unwin, London, UK, 1954.
[5] S. Karamardian, “Generalized complementarity problem,” Journal of Optimization Theory and Appli-

cations, vol. 8, pp. 161–168, 1971.
[6] G. J. Habetler and A. L. Price, “Existence theory for generalized nonlinear complementarity

problems,” Journal of Optimization Theory and Applications, vol. 7, pp. 223–239, 1971.
[7] O. L. Mangasarian and T. H. Shiau, “Error bounds for monotone linear complementarity problems,”

Mathematical Programming, vol. 36, no. 1, pp. 81–89, 1986.
[8] O. L. Mangasarian, “Error bounds for nondegenerate monotone linear complementarity problems,”

Mathematical Programming, vol. 48, no. 3, pp. 437–445, 1990.
[9] J.-S. Pang, “Error bounds in mathematical programming,”Mathematical Programming, vol. 79, no. 1–3,

pp. 299–332, 1997.
[10] Z.-Q. Luo, O. L. Mangasarian, J. Ren, and M. V. Solodov, “New error bounds for the linear

complementarity problem,”Mathematics of Operations Research, vol. 19, no. 4, pp. 880–892, 1994.
[11] O. L.Mangasarian and J. Ren, “New improved error bounds for the linear complementarity problem,”

Mathematical Programming, vol. 66, no. 2, pp. 241–255, 1994.
[12] R. Mathias and J.-S. Pang, “Error bounds for the linear complementarity problem with a P-matrix,”

Linear Algebra and its Applications, vol. 132, pp. 123–136, 1990.
[13] A. J. Hoffman, “On approximate solutions of systems of linear inequalities,” Journal of Research of the

National Bureau of Standards, vol. 49, pp. 263–265, 1952.
[14] J. Zhang and N. Xiu, “Global s-type error bound for the extended linear complementarity problem

and applications,” Mathematical Programming B, vol. 88, no. 2, pp. 391–410, 2000.


