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In this paper, the structural characteristic of urban multimodal transport system is fully analyzed
and then a two-tier network structure is proposed to describe such a system, in which the first-
tier network is used to depict the traveller’s mode choice behaviour and the second-tier network
is used to depict the vehicle routing when a certain mode has been selected. Subsequently, the
generalized travel cost is formulated considering the properties of both traveller and transport
mode. A new link impedance function is proposed, in which the interferences between different
vehicle flows are taken into account. Simultaneously, the bi-equilibrium patterns for multimodal
transport network are proposed by extending Wardrop principle. Correspondingly, a bi-level
programming model is then presented to describe the bi-equilibrium based assignment for multi-
class multimodal transport network. The solution algorithm is also given. Finally, a numerical
example is provided to illustrate the model and algorithm.

1. Introduction

With the rapid development of economy, the transportation infrastructures have been
improved significantly in the most cities of China, especially in some metropolitan cities
like Beijing and Shanghai, where the integrated urban transportation systems have been
established gradually. Synchronously, the modal share for passenger travel has been
dramatically changed. Table 1 lists statistics of the trip intensity and mode split of Beijing
in 1986, 2000, 2005, and 2010, respectively [1].

It shows that Beijing’s transportation development mode is a typical multimodal
transportation system. The system consists of different transportation subsystems or subnets
for passenger cars, buses, trains, bicycles, and so forth, in which the multimodal traffic
flows are interdependent and interactive. Obviously, the equilibriums between the various
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Table 1: Trip intensity and mode split characteristics of Beijing by year.

Year Total trips/day Average trip distance (km) Mode split (%)
Bus Subway Taxi Car Bicycle

1986 1.61 — 29.31 0.36 5.24 65.09
2000 2.77 8.0 27.33 9.03 23.96 39.68
2005 2.64 9.3 26.60 5.70 7.60 29.80 30.30
2010 2.82 10.6 28.20 11.50 6.70 34.20 16.40

subsystems and within each subsystem are much more complicated than that for a pure
private vehicle system. Thus, the following critical issues should be carefully considered for
resolving the multimodal network equilibrium problem.

(i) The multimodal transportation network is a superposition or compound of various
physical subnets for different transportation modes.

(ii) The performance of each mode depends on both self-demand and the demands in
other modes, which means that there are interactions between different modes.

(iii) The traffic flow pattern in a multimodal network involves traveler’s combined
choice behaviors in which the travelers not only choose trip modes through the
whole multimodal network but also select routes within each subnet.

(iv) The criteria of mode choice and route choice during a trip are usually different.
In the mode choice stage, the travelers’ decisions are generally influenced by a
combination of travel time, potential expense, and other factors. Once the trip
mode has been selected, the travelers only care about how to minimize their travel
time through route choice within the specific subnet. Therefore, different types
of travelers have different psychological preferences for mode choice while the
characteristics of travelers have no impact on their route choices.

(v) There are feedbacks between these two choices. Firstly, the traveler’s mode choice
results in the total demands for different transportation modes, which determines
the traffic flows through the multimodal network. Secondly, the traffic assignment
patterns corresponding to the route choice within subnets determine the travel time
in the respective modes, which conversely affect the mode choice.

The user equilibrium (UE) assignment problem for the private vehicle traffic network
has been formulated by Beckmann et al. [2], Sheffi [3], Patriksson [4], and so forth. For
multimodal networks, the earlier models [5–9] were developed for modal choice using logit
type functions to split travel demand for each travel mode. However, these models cannot
reflect a multimodal network’s configuration and how the traffic flows are distributed in
the network [10]. In order to overcome this, the combined or integrated models have been
developed [11–13], in which modal split and flow assignment are incorporated together.
Based on the assumption that travel cost structures are either separable or symmetric, the
above models were formulated as convex optimization programs. However, the assumption
for the cost structure may be not realistic in certain situations [14, 15]. In order to model
the asymmetric interactions, some general combined travel demandmodels were formulated
as a variational inequality problem [10, 16–20] and a fixed point problem [21]. Although
the above studies have combined the traveler’s modal choice and traffic flow assignment,
they usually focus on user equilibrium for path flow assignment within single mode traffic
network. However, the multimodal equilibrium issue associated with mode split has rarely
been explored, and few studies investigate the relationship between these two equilibriums.



Journal of Applied Mathematics 3

From the viewpoint of economics, the transportation service can be measured by
the generalized travel cost in addition to the expense charged. The generalized cost is not
fixed given a specific trip but is dependent on travel demand. If many individuals choose
to use a certain mode, it will get congested and its travel time will increase. In response,
some travelers may take alternative modes. Consequently, the alternative modes can also be
congested, which will push travelers back to the original mode. Therefore, the UE principle in
a multimodal system includes two categorizes. One is the user equilibrium between different
modes, and the other is the traditional user equilibrium among different routes in respective
subnets. The first equilibrium derives from the monotonically increasing of the generalized
cost of eachmodewith travel demandwhile the later one derives from travel time in a specific
subnet also with the monotonically increasing nature of the link impedance functions. There
exists a two-way influence between the two types of equilibriums. If the travel demands of
transportation modes are all given, the demands will be assigned in each subnet based on
traditional user equilibrium, under which the travel time of various transportation modes
will be obtained. Subsequently, such travel times will lead to the changes in the generalized
costs of different modes, and then the travelers will reselect transportationmodes. Eventually,
both user equilibrium between different modes and user equilibrium between different
routes in each mode are achieved.

The generalized travel cost is associated with the properties of transportation mode,
such as travel time, travel expense, and convenience. Meanwhile, the traveler’s psychological
preference is another important factor leading to different mode-choice behaviors. Different
types of travelers may perceive different values of the properties stated above. For example,
the high-income travelers will concern more about the factor of time while the low-income
travelers will care more about the factor of expense. To account for multiple user classes
that can be distinguished by the value of travel time, the multiclass, multicriteria traffic
network equilibrium models were developed, in which each class of travelers perceives
the travel disutility associated with a route as a subjective weighting for travel time and
travel cost [22]. The models allow both travel time and travel cost of a link to depend
on the entire link load pattern, rather than on the particular link flow only [23–25]. The
multiclass, multicriteria models were further applied for dynamic traffic assignment [26] and
multimodal network issues, such as using aggregate hierarchical logit structures for mode
choice [17, 27] and extending the fixed point theory to the multimodal network equilibrium
model [21]. However, the previous studies considered the factors of travel time and expense
in the link impedance function, and the same criteria are adopted for the travelers’ mode
choice and route choice. So, the travelers have different preferences not only in the stage of
mode choice but also for route choice. In fact, the influence factors of traveler’s mode choice
in the multimodal network and route choice in a single modal network are different. The
generalized travel cost involving travel time, expense, or other factors should be addressed
as user preference or multiclass problems in the stage of mode choice. Once travelers decide
which mode they would take, travel time is the only factor for their route choices unless
there is an imposed charge for selecting the shortest travel time, for example, toll for urban
freeways. Such a special issue in the multimodal transportation system is beyond the scope
of this study. Nevertheless, few studies clearly indicate the criteria difference between mode
choice and route choice, neither is the issue formalised in previous multimodal network
models.

In addition, the structure of multimodal system is generally more complicated than
that of private car roadway system. Hierarchical structure is an efficient way to model
the multimodal system with multiple subnet levels. Mainguenaud [28] presented a data
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model to manage multimodal networks with a Geographical Information System (GIS),
which allows definition of a node and link as an abstraction of a subnet. Jing et al. [29]
proposed the Hierarchical Encoded Path View (HEPV)model that partitions large graph into
smaller subgraphs and organizes them in a hierarchical fashion. Van Nes [30] introduced
a strategy for hierarchical multimodal network levels utilizing specific journey functions
according to travel distance as well as quality in terms of travel speed and comfort. Jung
and Pramanik [31] developed a graph model, called hierarchical multilevel graph, for very
large topographical road maps. This graph model provides a tool to structure and abstract
a topographic road map in a hierarchical fashion. These studies mainly focused on topology
of multimodal transportation network and discussed how to deal with the problem of a very
large volume of data, but the travelers’ choice behaviors in the multimodal network were
rarely investigated. Not until recent years, researchers have started to integrate traveler’s
mode choice and route choice with complex network structure in the multimodal network
models. Lo et al. [32] transformed a multimodal network to a so-called State Augmented
Multimodal (SAM) network, by which the network equilibrium problem can be resolved
directly. Wu and Lam [33] used a multilayer network to represent the multimodal network
with combined modes that can facilitate generating feasible routes. Garcı́a and Marı́n [34]
explored the network equilibrium model in the space of hyperroute flows, which contributes
to considering asymmetric costs and modeling multimodal network in a more flexible way.
Si et al. [35–37] presented an augmented network model for urban transit system. The route
choice in the augmented transit network was defined according to the passengers’ behaviors,
and the corresponding network equilibriummodel with an improved shortest path algorithm
was developed for the urban transit assignment problem.

The objective of this study is to address the aforementioned concerns of the urban
multimodal network equilibrium issue, including (1) assigning traffic based on both user
equilibrium between different modes and user equilibrium between different routes; (2)
adopting different criteria for travelers’ mode choice and route choice behaviors, namely,
using multiclass-related general travel cost in the stage of mode choice and traditional link
impedance for route choice within each single mode subnet; (3) constructing a hierarchical
network to describe the multimodal transportation system, in which the first-tier network
is used to depict the travelers’ mode choice behaviors and the second-tier network is
used to describe travelers’ route choice behaviors within the single mode subnets. In this
paper, the biequilibrium patterns for multimodal transportation network are proposed
by extending Wardrop principle. Correspondingly, a bilevel programming model with its
solution algorithm is applied for the biequilibrium traffic assignment in the multimodal
transportation network. Finally, a numerical example is provided to illustrate the model and
algorithm.

2. Hierarchical Network for Multimodal Transportation System

In this paper, the multimodal transportation system is expressed asG = (N,A,K), whereA is
the set of roads,N is the set of nodes that usually represent the intersections or zones, andK is
the set of transportation modes. Clearly, there areK subnets in the multimodal transportation
system, and each subnet, represented byGk = (Ak,Nk), corresponds to transport mode k(k ∈
K).

Figure 1 illustrates a physical network example for the proposed multimodal network
system, which consists of one O-D pair (r-s), nine nodes, twelve roads, and three transporta-
tion modes (car, bus, and bike). It shows that the different modes have different network
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Figure 1: The multimodal transportation system.
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Figure 2: The subnets for different modes.

structures. Figure 2 shows the subnets for different modes separately, in which the traveler
can choose the different routes from node 1 to node 9.

Generally, the traveler during a trip from origin to destination should make two
successive decisions in the multimodal system. The first one is the mode choice in the whole
network, and the second is the route choice in the corresponding subnet once a mode is
selected. At the first stage, the multimodal system can be represented as a simple network
by the different connections, as shown in Figure 3.

According to the structural features of urban multimodal transportation system
demonstrated above, a hierarchical network model can be used to describe such a system.
In the model, each node is described by two variables (n, k), where n(n ∈ N) denotes the
location in the physical network and k(k ∈ K) denotes the transportation mode. Note that the
notations of origin and destination nodes require special attention. An origin node is denoted
as single variable r and a destination is denoted as s, where r and s designate their physical
locations. The set of links connecting the different nodes is divided into two categories.
One category includes loading link and unloading link, the end of which is either origin or
destination; the other category only includes in-vehicle link that indicates connectivity in each
subnet. Both categories are all described by two variables (a, k), where a(a ∈ A) denotes the
physical road and k(k ∈ K) denotes the transportation mode. The hierarchical multimodal
transport system is described in Figure 4.

In such a hierarchical network, the origin is connected with different subnets by the
loading links. Similarly, the destination is connected with different subnets by the unloading
links. If all travelers are assumed to complete their trips through only one mode, it implies
that there should be no connectivity between subnets in the hierarchical network. Based on
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Figure 3: The simplified multimodal transport network.
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Figure 4: The hierarchical network for multimodal transport system.

the hierarchical network, the multimodal transportation system can be used as a generalized
network for traffic assignment or network analysis.

3. Travel Costs Based on Traveler’s Characteristics

In this paper, all travelers are divided into I classes by socioeconomic attributes, assuming
that the mode-choice decision is homogeneous within each class, but differs among classes.
Moreover, the travel time of each mode depends on the travel demands for the mode, and
the potential expense of each mode is included in the generalized travel cost for different
travelers. The generalized travel costs of different modes for different traveler classes can be
expressed as follows:

ci,kw = αiμk
w(q) + βiτkw, ∀w, k, i, (3.1)
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where ci,kw is the generalized cost of mode k for class i between O-D pair w; μk
w(q) represents

the equilibrium travel time for transportation mode k between O-D pairw, which is decided
by the travel demands (represented by q); τkw denotes the potential expense of transportation
mode k between O-D pair w; αi and βi are parameters related to socioeconomic attributes of
class i.

Similar to the general traffic network, the travel time of class i on route r in subnet k
between the O-D pair w, denoted by ti,kw,r , can be obtained by the travel time on the link, that
can be expressed as follows:

ti,kw,r =
∑

a

ti,ka δk,w
a,r , ∀w, k, i, r, (3.2)

where ti,ka denotes the travel time of class i selecting mode k on road a; δk,w
a,r is route and

road incidence variable in the subnet k between O-D pair w; if road a is on the route r, then
δk,w
a,r = 1, otherwise, δk,w

a,r = 0.
Generally, no matter what class of travelers, as long as the transportation mode is

selected, the travel time in the corresponding subnet is not relevant to the personal properties.
In other words, the travel time on the road network is only related to the characteristics of
transportation modes, but not related to the traveler’s personal properties. Let tkw,r and tka
denote the travel time of mode k on route r between the O-D pair w and the travel time of
transportation mode k on road a, respectively. Then,

ti,kw,r = t
j,k
w,r = · · · = tkw,r , ∀w, k, r, ∀i /= j, (3.3a)

ti,ka = t
j,k
a = · · · = tka, ∀k, a, ∀i /= j. (3.3b)

Obviously, (3.2) can be rewritten as

tkw,r =
∑

a

tkaδ
k,w
a,r , ∀w, k, r. (3.4)

In the traffic network, the link impedance function mainly describes the relationship
between travel time and link flow. It should be noted that the interferences among different
modes will occur in the multimodal traffic network if there are no physical barriers between
different flows on the road. Therefore, the link impedance function in the multimodal traffic
network is very different from that in a single-mode traffic network. The travel time of
different modes is decided by not only the road flow of its own mode but also the road flows
of the other modes. Accordingly, the link impedance function in multimodal traffic network
can be formulated as

tka = f
(
t
k(0)
a , v1

a, . . . , v
k
a, C

k
a

)
, ∀k, a, (3.5)

where t
k(0)
a is the free-flow travel time of mode k on road a; Ck

a is the practical capacity on
road a; vk

a is the vehicle flow of mode k on road a. Generally, tk(0)a and Ck
a can be assumed as

constants.
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In the multimodal traffic network, the link flow is defined as the number of vehicles
including cars, buses, and bikes that have traveled over the road sections during a time
unit, which is a congregative result by all travelers’ mode choice and route choice behaviors.
Therefore, the number of travelers can be looked upon as a variable in the link impedance
function, by which the link flows and corresponding travel time can be calculated.
Accordingly, the road flow can be represented by the travel demand as follows:

vk
a = xk

a ·
(
Uk

Ak

)
, ∀k, a, (3.6)

where xk
a is the travel demand of mode k on road a; Uk is the PCU conversion coefficient of

mode k;Ak is the occupancy rate of mode k, which indicates the average number of travelers
within each vehicle of mode k.

As stated above, the road flows of different modes on road a can be expressed by the
travel demand of corresponding mode on road a. Consequently, (3.5) can be rewritten as
follows:

tka = f̂ k
a

(
x1
a, . . . , x

k
a

)
, ∀k, a. (3.7)

4. Conservations of Demand in Multimodal Transportation Network

Assuming that the total demands of different travelers between each O-D pair are given and
fixed, for a certain class, the sum of demands of different modes equals the total demand
between O-D pair, which can be represented as

∑

k

qi,kw = qiw, ∀w, i, (4.1)

where qiw is the total demand of class i between O-D pair w; qi,kw is the demand of class i
selecting mode k between O-D pair w.

Secondly, for a certain class selecting a certain mode, the sum of demands on different
routes in each subnet equals the demand of the corresponding mode between O-D pair, that
is:

∑

r

hi,k
w,r = qi,kw , ∀w, k, i, (4.2)

where hi,k
w,r is the demand of class i on the route r in subnet k between O-D pair w.

Obviously, the following formulation can be obtained according to (4.2):

∑

i

∑

r

hi,k
w,r =

∑

i

qi,kw , ∀w, k. (4.3)
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Let qkw and hk
w,r denote the total demand of mode k between O-D pair w and the

demand on the route r in subnet k between O-D pair w, respectively. Then the following
two equations can be obtained easily:

∑

i

qi,kw = qkw, ∀w, k, (4.4)

∑

i

hi,k
w,r = hk

w,r , ∀w, k, r. (4.5)

Then, (4.3) can be rewritten as

∑

r

hk
w,r =

∑

i

qi,kw = qkw, ∀w, k. (4.6)

In addition, for class i in subnet k between O-D pair w, the demand on road a can be
represented by the demand on the routes passing though the road, that is:

xi,k
a =

∑

w

∑

r

hi,k
w,rδ

k,w
a,r , ∀a, i, k, (4.7)

where xi,k
a is the demand of class i selecting mode k on road a.

Similarly, the following formulation can be obtained according to (4.7):

∑

i

xi,k
a =

∑

i

∑

w

∑

r

hi,k
w,rδ

k,w
a,r =

∑

w

∑

r

∑

i

hi,k
w,rδ

k,w
a,r , ∀a, i, k. (4.8)

Thus, the total demand of mode k on road a is the sum of demand of different classes
selecting mode k on road a, that is:

xk
a =

∑

i

xi,k
a , ∀a, k. (4.9)

The following formulation can be gotten easily according to (4.5) and (4.9):

xk
a =

∑

w

∑

r

hk
w,rδ

k,w
a,r , ∀a, k. (4.10)

5. Biequilibrium Model for Multimodal Transport Network

Equilibrium is a central concept in numerous disciplines from economics and regional
science to operational research/management science [38]. The example in transportation
science is the famousWardrop equilibrium. In the conventional equilibrium of transportation,
the single-mode traffic network with purely automobile flow is considered, and only the
motorists’ route choices are examined, while the traveler’s mode and route combined choices
and the resulting complicated equilibrium in the multimodal traffic network have not been
explored substantially.
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As aforementioned, the UE principle in multimodal transportation system can
be divided into two categories in order to be consistent with the travelers’ combined
choice behaviors. One category of equilibrium exists between different modes, where the
generalized travel cost for a certain class selecting a certain mode is the same and the
minimum generalized travel costs of unselected transportation modes must not be less than
the minimum cost between O-D pair. The other category is the traditional equilibrium among
different routes in each single-mode subnet between O-D pair. The biequilibriums in the
multimodal transportation system can be described as

ci,kw

{
= ηi

w,

≥ ηi
w,

if
qi,kw ≥ 0,

qi,kw = 0,
∀w, k, i, (5.1)

tkw,r

{
= μk

w,

≥ μk
w,

if
hk
w,r ≥ 0,

hk
w,r = 0,

∀w, k, r, (5.2)

where ηi
w and μk

w are the generalized travel cost for class i and the travel time for mode k
between O-D pair w at equilibrium.

In this paper, the following bilevel programming model is proposed to describe the
combined equilibrium assignment through the multimodal transportation network.

The upper-level problem is to find q̃ ∈ Ω = {q | ∑k q
i,k
w = qiw, q

i,k
w ≥ 0, ∀w, i, k} such

that

∑

w

∑

i

∑

k

{
αi · μk

w(q̃) + βi · τkw
}
×
(
qi,kw − q̃ i,k

w

)
≥ 0, (5.3)

where q is the vector of qi,kw ; the function μk
w(q) is decided by the following lower-level

problem.
The lower-level problem is to find

x̃(q) ∈ Ψ =

{
x |

∑

r

hk
w,r =

∑

i

qi,kw , xk
a =

∑

w

∑

r

hk
w,rδ

k,w
a,r , h

k
w,r ≥ 0, ∀w, k, r, a

}
(5.4)

such that

∑

a

∑

k

f̂ k
a {x̃(q)} ×

(
xk
a − x̃k

a(q)
)
≥ 0, (5.5)

where x is the vector of xk
a.

It can been seen that the variational inequality (VI) model for upper-level problem
is to find equilibrium demand of class i selecting mode k between O-D pair w, that is, q̃i,kw ,
to meet the first equilibrium principle in (5.1). The travelers’ generalized costs are partially
decided by the equilibrium flow patterns and the corresponding travel time through the
different subnets. The relationship between them is described by the lower-level VI model
with parameters in (5.5). The lower-level problem represents the equilibrium assignment
reflecting travelers’ route choice behaviors within each subnet, and the goal is to find the
equilibrium flows and corresponding travel time under the condition that the demands
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of different classes and selected different modes are all given. The variables q and x can
be regarded as decision variables for the bilevel problem. The biequilibrium for the urban
multimodal network can be achieved by solving the bilevel problem.

The equivalence between the solution to the previous model and the equilibrium
conditions for multimodal transportation network is given as follows.

Assuming that q̃ ∈ Ω is a solution to VI problem in (5.3), then q̃ is bound to meet the
following conditions:

q̃i,kw
(
ci,kw − ηi

w

)
= 0, ∀w, k, i, (5.6a)

ci,kw − ηi
w ≥ 0, ∀w, k, i, (5.6b)

where ηi
w is the dual multiplier of the constraint condition (4.1).

Similarly, assuming that x̃ ∈ Ψ is a solution to VI problem in (5.5), then x̃ is bound to
meet the following conditions:

hk
w,r

(
tkw,r − μk

w

)
= 0, ∀w, k, r, (5.7a)

tkw,r − μk
w ≥ 0, ∀w, k, r, (5.7b)

where μk
w is the dual multiplier of the constraint condition in (4.6).

Obviously, the first equilibrium condition in (5.1) can be gotten from (5.6a) and (5.6b),
and the second equilibrium condition in (5.2) can be gotten by (5.7a) and (5.7b).

6. Solution Algorithm

Due to the intrinsic complexity of model formulation, the bilevel programming problem has
been recognized as one of themost difficult, yet challenging, problems for global optimality in
transportation system. In the past decades, researchers [35, 36, 39–42] developed alternative
solution algorithms for this problem. The sensitivity analysis-based method proposed by
Tobin and Friesz [43] is used to solve the bilevel programming model proposed in this paper.

It is necessary to derive the derivatives of the decision variables with respect to the
parameters for the lower-level problem in the sensitivity analysis approach. In our proposed
problem, we need to calculate the derivatives of the optimal dual multiplier of the constraint
condition in (4.6), that is, the equilibrium of O-D travel time (represented by µ), with respect
to the travel demand (represented by q). By assuming that the initial q(0) is given and
other conditions are fixed, the equilibrium O-D travel time matrix for a multimodal traffic
network, µ̃(q(0)) can be obtained by solving the lower level of themodel. Through conducting
a sensitivity analysis of VI model in (5.5) (see appendix), the approximate differential
coefficient, ∇qµ, can be obtained. Then the response function can be approximated by the
Taylor expansions. That is,

µ(q) ≈ µ̃
(
q(0)

)
+
(∇qµ

)T(q − q(0)
)
. (6.1)

By substituting (6.1) into the upper-level problem, the whole optimization model can
be simplified as one-level optimization problem. The solution of this one-level optimization
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will then be input into the lower level of the model to run the next iteration. By repeating
the iteration process, it is possible to obtain an optimum solution for the above bilevel
programming model. This process can be summarized as the following steps.

Step 1. Set the initial value q(0), and set the number of iterations to i = 1.

Step 2. Find the solution of the lower-level model, µ̃(i).

Step 3. Find the linear equation of the matrix, µ(q), through sensitivity analysis and Taylor
expansion.

Step 4. Put the linear equation of the matrix into the upper-level model to update the value
of q(i) by solving upper-level problem.

Step 5. Examine the convergence. If q(i) ≈ q(i−1) or i = N, then iteration stops, where N is the
maximum number of iterations. Otherwise, set i = i + 1 and start a new iteration.

Note that both Steps 2 and 4 solve different VI models. The approach most commonly
used to solve VI model is the popularly known “diagonalization” method, which mimics the
Jacobi (resp., Gauss-Seidel) decomposition approach used for solving systems of equations
[44]. The idea behind the method is to fix flows for all but one group of variables
and to iteratively solve a sequence of separable subproblems which can be described as
mathematical programs. As for VI model in (5.3), the vector function μk

w(q) is “diagonalized”
by the current solution in nth iteration, yielding a symmetric assignment problem, which can
be represented by the following mathematical program:

minZ(q)
q∈Ω

=
∑

w

∑

k

∑

i

∫qi,kw

0
ci,kw

(
q1,1
w(n−1), . . . , q

1,k
w(n−1), . . . , q

i,1
w(n−1), . . . , ω

)
dω. (6.2)

Similarly, as for VI model in (5.5), the vector function f̂ k
a (x) is “diagonalized” at the current

solution, yielding the following mathematical program:

minF(x)
x∈Ψ

=
∑

a

∑

k

∫xk
a

0
f̂ k
a

(
x1
a(n−1), x

2
a(n−1), . . . , ω

)
dω. (6.3)

The Frank-Wolfe method or MSA method can be employed to solve the diagonalization
problem (6.2) and (6.3). Due to the limited space, the detailed process MSA method for (6.3)
is given as follows here.

Step 1. Initialization: set xk
a = 0 and compute t

k(0)
a for any k and a. Find the shortest route in

subnet k between O-D pairw. Then perform all-or-nothing assignment to load qkw for subnet
k and obtain x

k(1)
a for any k and a. Set iteration n = 1.

Step 2. Compute tk(n)a based on x
k(n)
a .

Step 3. Find the shortest route in subnet k between O-D pair w. Perform all-or-nothing
assignment to load qkw and obtain y

k(n)
a for any k and a.
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Step 4. Compute

x
k(n+1)
a = x

k(n)
a +

1
n

(
y
k(n)
a − x

k(n)
a

)
, ∀k, a. (6.4)

Step 5. Convergence test: if a convergence criterion is met, stop. The current solutions,
{xk(n+1)

a }, are the sets of equilibrium solutions; otherwise, set n = n + 1 and go to Step 2.

7. Numerical Example

A simple numerical example is used to illustrate the effectiveness of the proposed model
and algorithm. The multimodal transportation system and the corresponding hierarchical
network structure are, respectively, given by Figures 1 and 4.

The following impedance functions are used in this example [18, 19]:

tka = t
k(0)
a

∏

m

[
1 + γ

(
Um · xm

a

Am · Cm
a

)λ
]
, ∀k, a. (7.1)

The relevant data of different roads are given in Table 2, where the PCU conversion
coefficient, the average occupancy rate, and potential expense, which are pertinent to
different modes, are illustrated in Table 3.

The values of γ = 0.15, λ = 4 are set for the parameters in (7.1). In this example, the
travelers are divided into two classes: (i) for the first class, α1 = 2.5 and β1 = 0.5 indicate that
this class is sensitive to the travel time; (ii) for the second class, α2 = 1.5 and β2 = 0.5 indicate
that this class is sensitive to the potential expense. The demands of these two classes are all
assumed as 5000/Ph−1.

The convergences of the diagonalization method for the lower-level problem and the
upper-level problem are, respectively, analyzed using the gap measure proposed by Boyce et
al. [45]. The gaps at iteration n for the assignment models can be defined as

gap(n) = −
∑

a

∑

k

t
k(n)
a ·

(
y
k(n)
a − x

k(n)
a

)
,

gap(n) = −
∑

w

∑

i

∑

k

c
i,k(n)
w ·

(
v
i,k(n)
w − q

i,k(n)
w

)
,

(7.2)

where yk(n)
a is the auxiliary flow of mode k on link a at iteration n given by an all-or-nothing

assignment based on link travel time, tk(n)a , and v
i,k(n)
w is the auxiliary demand of class i

selecting mode k between O-D pair w at iteration n given by an all-or-nothing assignment
based on the generalized costs, ci,k(n)w .

Figure 5 shows the gaps against the iteration number for the lower-level problem and
upper-level problem, respectively. It can be seen that the solution algorithm has a good
convergence especially for the upper-level problem. It can be explained that the network
structure of the traveler’s mode choice in the upper-level problem is simpler than that of the
traveler’s route choice in the lower-level problem.
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Table 2: The relevant data of different roads.

Road t
1(0)
a /(h) t

2(0)
a /(h) t

3(0)
a /(h) C1

a/(Ph
−1) C2

a/(Ph
−1) C3

a/(Ph
−1)

(1,2) 0.111 0.178 0.361 1000 1000 600
(2,3) 0.128 — 0.378 700 — 400
(1,4) 0.100 0.167 0.350 1500 1500 800
(2,5) 0.106 0.172 0.356 700 700 400
(3,6) 0.089 — 0.339 700 — 400
(4,5) — 0.144 0.328 — 1000 600
(5,6) — — 0.344 — — 600
(4,7) 0.133 0.200 0.383 900 900 500
(5,8) 0.111 0.178 0.361 700 700 400
(6,9) 0.144 — 0.394 700 — 400
(7,8) 0.094 0.161 0.344 900 900 500
(8,9) 0.100 0.167 0.350 900 900 500

Table 3: The relevant data of different modes.

Mode Uk Ak τkw
Car 1 4 10
Bus 1.5 20 4
Bike 0.25 1 0

Table 4 shows the equilibrium results of mode demand and the corresponding
generalized costs of different classes. Table 5 shows the equilibrium results of road demand
and the corresponding travel time of different modes.

Next, we analyze the impacts of the pertinent parameters in this example on the modal
share and the performance of thewhole network. Here, the shares of differentmodes, denoted
by Pk

w, can be computed by

Pk
w =

qkw∑
i q

i
w

, ∀w, k. (7.3)

The total travel time of the network, denoted by T , is used to represent the performance
of the whole network, that is:

T =
∑

a

∑

k

Uk · xk
a

Ak
· tka. (7.4)

Figures 6(a)–6(d), respectively, show the changes in modal share and the total travel
time of the whole network with the changes of the parameters (α1, α2), which indicate the
travelers’ sensitivity to the factor of travel time (or congestion). It shows that the share of
bike and the total travel time of whole network will decrease while the shares of bus and car
will increase symmetrically with the increasing of α1 or α2. The travelers who select the bike
mode with longer travel time will shift into the car or bus mode when such travelers become
more sensitive to travel time.

Figures 7(a)–7(d), respectively, display the changes in modal share and the total travel
time with the changes of the parameters (β1, β2), which indicate the travelers’ sensitivity to
the potential travel expense. It can be found that the share of bike and the total travel time



Journal of Applied Mathematics 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Iterations

0E+00
5E+03
1E+04

1.5E+04
2E+04

2.5E+04
3E+04

3.5E+04
4E+04

4.5E+04

G
ap

 v
al

ue

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Iterations

0E+00
5E+03
1E+04

1.5E+04
2E+04

2.5E+04
3E+04

3.5E+04
4E+04

4.5E+04

G
ap

 v
al

ue

(b)

Figure 5: The convergences of the algorithms for upper problem (a) and lower problem (b).

Table 4: The equilibrium results of demand and the corresponding costs of different classes.

Mode 1 (car) Mode 2 (bus) Mode 3 (bike)
Class 1 Class 2 Class 1 Class 2 Class 1 Class 2

Demand/Ph−1 609 284 1809 1684 2582 3032
Generalized cost/h 21.0199 13.0646 21.0195 13.0635 21.0196 13.0644

Table 5: The equilibrium results of road demands and its travel time of different modes.

Roads x1
a/(Ph

−1) x2
a/(Ph

−1) x3
a/(Ph

−1) t1a/(h) t2a/(h) t3a/(h)
(1,2) 166.72 0 2148.55 0.1147 0.1835 0.3960
(2,3) 0 — 900.00 0.1284 — 0.3835
(1,4) 726.28 3493.00 3465.45 0.1070 0.1783 0.4225
(2,5) 166.72 0 1248.55 0.1075 0.1754 0.3754
(3,6) 0 — 900.00 0.0893 — 0.3440
(4,5) — 3443.00 1940.48 — 0.1476 0.3489
(5,6) — — 1572.41 — — 0.3540
(4,7) 726.28 50.00 1524.97 0.1356 0.2034 0.4028
(5,8) 166.72 3443.00 1616.62 0.1175 0.1880 0.4183
(6,9) 0 — 2472.41 0.1858 — 0.7331
(7,8) 726.28 50.00 1524.97 0.0961 0.1639 0.3619
(8,9) 893.00 3493.00 3141.59 0.1321 0.2202 0.6725
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Figure 6: The changes of shares of different modes and the total travel time with the changes of (α1, α2).

will increase while the shares of bus and car will decrease with the increment of β1 or β2. The
travelers who select the bus or car mode will shift into the bike mode without any potential
expense when such travelers become more sensitive to the potential expense. The previous
results imply that the performance of the whole network in terms of total travel time would
be better when the travelers are more sensitive to the travel time and less sensitive to potential
expense.

The shares of various modes and the total travel time can be dramatically changed
with the changes of (α1, α2) or (β1, β2) in a certain range. However, these values will not
change significantly when these parameters reach a certain value. When the travelers are
all excessive time-sensitive or cost-sensitive, the other factor can affect their mode choice
behaviors to a very small extent. For example, when the travelers are very sensitive to the
potential expense, they would not consider the factor of travel time. In such a condition,
most of the travelers would choose bike as their traffic tools since they do not bear any costs.
As the speed of bike is slowest, the total cost of network will reach the maximum. On the
contrary, when the traveler is very sensitive to the travel time, they will not consider the
factor of money. Therefore, the travelers always tend to choose the mode with the shortest
travel time (such as car). Simultaneously, the travel time of such mode will become longer



Journal of Applied Mathematics 17

0
10
20
30
40
50
60
70
80
90

100

1.5
2.5

3.5
4.5 0

1
2

3
4

5
0.5

The value of β 1 The value of β
2

Sh
ar

e 
of

 c
ar

(%
)

(a) Share of car

0
10
20
30
40
50
60
70
80
90

100

1.5
2.5

3.5
4.5

0.5

0
1

2
3

4 5

The value of β 1 The value of β
2

Sh
ar

e 
of

 b
us

(%
)

(b) Share of bus

0
10
20
30
40
50
60
70
80
90

100

1.5
2.5

3.5
4.5

0.5

0
1

2
3

4
5

The value of β 1 The value of β
2

Sh
ar

e 
of

 b
ik

e
(%

)

(c) Share of bike

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000

1.5 2.5
3.5

4.5

0.5

0
1

2
3

4
5

The value of β 1 The value of β
2

T
he

 to
ta

l t
ra

ve
l c

os
t/

h

(d) The total travel time

Figure 7: The changes of shares of different modes and the total travel time with the changes of (β1, β2).

and longer with its increasing demand. The equilibrium between different modes will be
achieved ultimately, and the shares and the total travel time of the whole network will not be
changed at such equilibrium.

Assuming that the total number of travelers between O-D remains unchanged (take
the value of 10000 persons each hour), Figures 8(a) and 8(b), respectively, show the change
trends of the shares and the total travel time with the proportion of class I which is sensitive
to the travel time. It can be shown that the share of bike mode will decrease and the share
of car will go up slightly, while the share of bus remained unchanged. Meanwhile, the total
travel time of whole network will increase with the increment of the proportion of class I.
The results also imply that in the multiclass multimodal transportation network, the more
travelers who focus on the factor of travel time, the lower the total travel time of network is.

8. Conclusions

This paper presents a biequilibrium traffic assignment model for multimodal transportation
networks using the bilevel programming method. The model development is based on
several important concepts that are not explored by the previous studies.
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Figure 8: The changes of shares of different modes and the total travel time with the proportions of class 1.

First, a two-tier hierarchical multimodal network is proposed for the model, in which
the first-tier network is used for mode choice and the second-tier network is used to for route
choice in the single mode subnets.

Second, the model distinguishes the criteria between mode choice and route choice.
The mode choice behavior is based on the multiclass generalized travel cost while the route
choice behavior is based on the travel time only. The generalized cost functions of different
modes and the link impendence functions are formulated while the interferences between
different modes are considered. The approach can better reflect traveler’s preference and
decision-making process in a multimodal transportation system.

Third, the biequilibrium pattern of traffic assignment is firstly proposed for
multimodal traffic network modeling. Its major advantage is integrating the separated two
steps of mode split and traffic assignment in the traditional transportation planning method
into a unified process.

The solution algorithm for the bilevel programming model is illustrated by a simple
numerical example. The sensitivity analysis shows that as travelers are more sensitive to
travel time, they are more likely to choose the mode with less travel time, which will mitigate
the congestion of whole network. In contrast, as travelers are more sensitive to travel expense,
they are more likely to choose the mode without expense, such as bike, which will aggravate
the congestion of whole network. As for the travelers who are more sensitive to travel time,
the changes of their choice behaviors will impact on the performance of whole network
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significantly. Additionally, with the increment of the proportion of traveler class that is more
sensitive to travel time, the network congestion will be mitigated gradually.

It should be noted that there are some limitations in this paper. For example, all
travelers are assumed to complete their trips through only one mode; in other words, they
are assumed not to change modes during their journey. Such reasonable assumption will
preclude the possibility of park-and-ride or similar mode-change mechanisms. In addition,
the case of fixed demand is considered, while the case of elastic demand or demand
uncertainty is not taken into account. So, the promising future work would be extension to
reliability analysis for these situations.

Appendix

Sensitivity Analysis of VI Model (5.5)

Assume that the solutions to x̃(q(0)) and µ(q(0)) of the variational inequality problem in
(5.5) at q = q(0) have been obtained and that f̂ k

a (x) is strongly monotone in x, so that the
solutions are unique. According to Tobin and Friesz [43], the necessary conditions excluding
the nonbinding constraints for solution at q = q(0) for VI problem in (5.5) can be expressed as
follows:

∑

a

f̂k
a (x̃) · δk,w

a,r − μ̃k
w = 0, ∀w, k, r,

∑

r

h̃k
w,r −

∑

i

qi,kw = 0, ∀w, k.
(A.1)

Let y = [h,µ]T , where h is the vector of hk
w,r . Let Jy and Jq denote the Jacobian matrixes

of (A.1)with respect to y and q at the point q = q(0), respectively:

Jy =
[∇ht ΛT

Λ 0

]
, (A.2)

where t is the vector of tkw,r , and Λ is the O-D and path incidence matrix. Suppose

[
Jy
]−1 =

[
B11 B12

B21 B22

]
. (A.3)

The following results can be obtained:

B22 =
[
Λ · ∇ht−1 ·ΛT

]−1
,

B12 = ∇ht−1 ·ΛT · B22 = ∇ht−1 ·ΛT
[
Λ · ∇ht−1 ·ΛT

]−1
,

B21 = − B22 ·Λ · ∇ht−1 = −
[
Λ · ∇ht−1 ·ΛT

]−1 ·Λ · ∇ht−1,

B11 = ∇ht−1 ·
[
I +ΛT · B21

]
= ∇ht−1 ·

{
I −ΛT ·

[
Λ · ∇ht−1 ·ΛT

]−1 ·Λ · ∇ht−1
}
,

(A.4)
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where I is unit matrix:

Jq =
[∇qt
−I

]
. (A.5)

From theorems in Tobin and Friesz [43], the following result can be obtained:

[∇qh
∇qµ

]
=
[
Jy
]−1 · [−Jq

]
=
[
B11 B12

B21 B22

][−∇qt
I

]
. (A.6)

Thus, the approximate differential coefficient, ∇qµ, can be obtained:

∇qµ = −B21 · ∇qt + B22 =
[
Λ · ∇ht−1 ·ΛT

]−1 ·Λ · ∇ht−1 · ∇qt +
[
Λ · ∇ht−1 ·ΛT

]−1
. (A.7)
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