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We first establish some existence results concerning approximate coincidence point properties
and approximate fixed point properties for various types of nonlinear contractive maps in
the setting of cone metric spaces and general metric spaces. From these results, we present
some new coincidence point and fixed point theorems which generalize Berinde-Berinde’s fixed
point theorem, Mizoguchi-Takahashi’s fixed point theorem, and some well-known results in the
literature.

1. Introduction

Let (X, d) be a metric space. For each x ∈ X and A ⊆ X, let d(x,A) = infy∈Ad(x, y). Denote
by N(X) the class of all nonempty subsets of X, C(X) the collection of all nonempty closed
subsets of X, and CB(X) the family of all nonempty closed and bounded subsets of X. A
function H : CB(X) × CB(X) → [0,∞) defined by

H(A,B) = max

{
sup
x∈B

d(x,A), sup
x∈A

d(x, B)

}
(1.1)

is said to be the Hausdorff metric on CB(X) induced by the metric d on X. Let T : X → N(X)
be a multivalued map. A point x in X is a fixed point of T if x ∈ Tx. The set of fixed points
of T is denoted by F(T). Let g : X → X be a single-valued self-map and T : X → N(X) be
a multivalued map. A point x in X is said to be a coincidence point (see, for instance, [1, 2])
of g and T if gx ∈ Tx. The set of coincidence point of g and T is denoted by COP(g, T).
Throughout this paper, we denote by N and R the sets of positive integers and real numbers,
respectively.
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Let f be a real-valued function defined on R. For c ∈ R, we recall that

lim sup
x→ c

f(x) = inf
ε>0

sup
0<|x−c|<ε

f(x),

lim sup
x→ c+

f(x) = inf
ε>0

sup
0<x−c<ε

f(x).
(1.2)

Definition 1.1 (see [2–9]). A function ϕ : [0,∞) → [0, 1) is said to be an MT-function (or
R-function) if

lim sup
s→ t+

ϕ(s) < 1, ∀t ∈ [0,∞). (1.3)

It is obvious that if ϕ : [0,∞) → [0, 1) is a nondecreasing function or a nonincreasing
function, then ϕ is an MT-function. So the set of MT-functions is a rich class.

Very recently, Du [7] first proved some characterizations of MT-functions.

Theorem D (see [7]). Let ϕ : [0,∞) → [0, 1) be a function. Then, the following statements are
equivalent.

(a) ϕ is an MT-function.

(b) For each t ∈ [0,∞), there exist r(1)t ∈ [0, 1) and ε
(1)
t > 0 such that ϕ(s) ≤ r

(1)
t for all

s ∈ (t, t + ε
(1)
t ).

(c) For each t ∈ [0,∞), there exist r(2)t ∈ [0, 1) and ε
(2)
t > 0 such that ϕ(s) ≤ r

(2)
t for all

s ∈ [t, t + ε
(2)
t ].

(d) For each t ∈ [0,∞), there exist r(3)t ∈ [0, 1) and ε
(3)
t > 0 such that ϕ(s) ≤ r

(3)
t for all

s ∈ (t, t + ε
(3)
t ].

(e) For each t ∈ [0,∞), there exist r(4)t ∈ [0, 1) and ε
(4)
t > 0 such that ϕ(s) ≤ r

(4)
t for all

s ∈ [t, t + ε
(4)
t ).

(f) For any nonincreasing sequence {xn}n∈N
in [0,∞), we have 0 ≤ supn∈N

ϕ(xn) < 1.

(g) ϕ is a function of contractive factor [5]; that is, for any strictly decreasing sequence {xn}n∈N

in [0,∞), we have 0 ≤ supn∈N
ϕ(xn) < 1.

It is worth to mention that there exist functions which are not MT-functions. For
example, let ϕ : [0,∞) → [0, 1) be defined by

ϕ(t) :=

⎧⎪⎨
⎪⎩

sin t
t

, if t ∈
(
0,

π

2

]
,

0, otherwise.
(1.4)

Since lim sups→ 0+ϕ(s) = 1, ϕ is not an MT-function.
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Let g : X → X be a single-valued self-map. Recall that a multivalued map T : X →
N(X) is called

(1) a multivalued k-contraction [1, 10, 11], if there exists a number 0 < k < 1 such that

H
(
Tx, Ty

)
≤ kd

(
x, y
)
, ∀x, y ∈ X, (1.5)

(2) a multivalued (θ, L)-almost contraction [1, 12], if there exist two constants θ ∈ (0, 1)
and L ≥ 0 such that

H
(
Tx, Ty

)
≤ θd

(
x, y
)
+ Ld

(
y, Tx

)
, ∀x, y ∈ X, (1.6)

(3) a generalized multivalued almost contraction [1, 12], if there exists an MT-function ϕ
and L ≥ 0 such that

H
(
Tx, Ty

)
≤ ϕ
(
d
(
x, y
))
d
(
x, y
)
+ Ld

(
y, Tx

)
, ∀x, y ∈ X, (1.7)

(4) a multivalued almost g-contraction [1, 12, 13], if there exist two constants θ ∈ (0, 1)
and L ≥ 0 such that

H
(
Tx, Ty

)
≤ θd

(
gx, gy

)
+ Ld

(
gy, Tx

)
, ∀x, y ∈ X, (1.8)

(5) a generalized multivalued almost g-contraction [1], if there exists an MT-function ϕ
and L ≥ 0 such that

H
(
Tx, Ty

)
≤ ϕ
(
d
(
gx, gy

))
d
(
gx, gy

)
+ Ld

(
gy, Tx

)
, ∀x, y ∈ X, (1.9)

In 1989, Mizoguchi and Takahashi [14] proved the following fixed point theorem
which is a generalization of Nadler’s fixed point theorem [10] and the celebrated Banach
contraction principle (see, e.g., [11]). It is worth to mention that Mizoguchi-Takahashi’s fixed
point theorem gave a partial answer of Problem 9 in Reich [15] and it’s primitive proof is
difficult. Recently, Suzuki [16] presented a very simple proof of Mizoguchi-Takahashi’s fixed
point theorem.

Theorem MT (Mizoguchi and Takahashi). Let (X, d) be a complete metric space, T : X →
CB(X) be a multivalued map, and ϕ : [0,∞) → [0, 1) be aMT-function. Assume that

H
(
Tx, Ty

)
≤ ϕ
(
d
(
x, y
))
d
(
x, y
)
, ∀x, y ∈ X, (1.10)

Then, F(T)/= ∅.
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Since then a number of generalizations in various different directions of Mizoguchi-
Takahashi’s fixed point theorem have been investigated by several authors in the past. In
2007, M. Berinde and V. Berinde [12] proved the following interesting fixed point theorem to
generalize Mizoguchi-Takahashi’s fixed point theorem.

TheoremBB (M. Berinde and V. Berinde). Let (X, d) be a complete metric space, T : X → CB(X)
be a multivalued map, ϕ : [0,∞) → [0, 1) be aMT-function, and L ≥ 0. Assume that

H
(
Tx, Ty

)
≤ ϕ
(
d
(
x, y
))
d
(
x, y
)
+ Ld

(
y, Tx

)
, ∀x, y ∈ X, (1.11)

that is, T is a generalized multivalued almost contraction. Then, F(T)/= ∅.

In [3], the author established some new fixed point theorems for nonlinear multi-
valued contractive maps by using τ0-metrics (see [3, Def. 1.2]), τ0-metrics (see [3, Def.
1.3]), and MT-functions. Applying those results, the author gave the generalizations of
Berinde-Berinde‘s fixed point theorem, Mizoguchi-Takahashi’s fixed point theorem, Nadler’s
fixed point theorem, and Banach contraction principle, Kannan’s fixed point theorems, and
Chatterjea’s fixed point theorems for nonlinear multivalued contractive maps in complete
metric spaces; for more detail, one can refer to [3].

Very recently, Du [17] first introduced the concepts of TVS-cone metric and TVS-cone
metric space to improve and extend the concept of cone metric space in the sense of Huang
and Zhang [18].

Definition 1.2 (see [17]). LetX be a nonempty set and Y a locally convex Hausdorff t.v.s. with
its zero vector θ,K a proper, closed, convex, and pointed cone in Y , and �K a partial ordering
with respect to K defined by

x�Ky ⇐⇒ y − x ∈ K. (1.12)

A vector-valued function p : X × X → Y is said to be a TVS-cone metric, if the following
conditions hold:

(C1) θ�Kp(x, y) for all x, y ∈ X and p(x, y) = θ if and only if x = y,

(C2) p(x, y) = p(y, x) for all x, y ∈ X,

(C3) p(x, z)�Kp(x, y) + p(y, z) for all x, y, z ∈ X.

The pair (X, p) is then called a TVS-cone metric space.

In this paper, we first establish some existence results concerning approximate coin-
cidence point property and approximate fixed point property for various types of nonlinear
contractive maps in the setting of cone metric spaces and general metric spaces. From these
results, we present some new coincidence point and fixed point theorems which generalize
Berinde-Berinde’s fixed point theorem and Mizoguchi-Takahashi’s fixed point theorem. Our
results generalize and improve some recent results in [1–6, 10–19] and references therein.
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2. Preliminaries

Let E be a topological vector space (t.v.s. for short)with its zero vector θE. A nonempty subset
K of E is called a convex cone if K +K ⊆ K and λK ⊆ K for λ ≥ 0. A convex cone K is said to
be pointed if K ∩ (−K) = {θE}. For a given proper, pointed, and convex cone K in E, we can
define a partial ordering �K with respect to K by

x�K y ⇐⇒ y − x ∈ K. (2.1)

x≺K y will stand for x�K y and x /=y, while x�K y will stand for y − x ∈ intK, where int K
denotes the interior of K.

In the following, unless otherwise specified, we always assume that Y is a locally
convex Hausdorff t.v.s. with its zero vector θ, K is a proper, closed, convex, and pointed
cone in Y with intK/= ∅, �K is a partial ordering with respect to K and e ∈ intK is fixed.

Recall that the nonlinear scalarization function ξe : Y → R is defined by

ξe
(
y
)
= inf

{
r ∈ R : y ∈ re −K

}
, ∀y ∈ Y. (2.2)

Theorem 2.1 (see [6, 17, 20, 21]). For each r ∈ R and y ∈ Y , the following statements are satisfied:

(i) ξe(y) ≤ r ⇔ y ∈ re −K,

(ii) ξe(y) > r ⇔ y /∈ re −K,

(iii) ξe(y) ≥ r ⇔ y /∈ re − intK,

(iv) ξe(y) < r ⇔ y ∈ re − intK,

(v) ξe(·) is positively homogeneous and continuous on Y ,

(vi) if y1 ∈ y2 +K (i.e., y2 �Ky1), then ξe(y2) ≤ ξe(y1),

(vii) ξe(y1 + y2) ≤ ξe(y1) + ξe(y2) for all y1, y2 ∈ Y .

Clearly, ξe(θ) = 0. Notice that the reverse statement of (vi) in Theorem 2.1 (i.e., ξe(y2) ≤
ξe(y1) ⇒ y1 ∈ y2 + K) does not hold in general. We illustrate the truth with the following simple
example.

Example A. Let Y = R
2, K = R

2
+ = {(x, y) ∈ R

2 : x, y ≥ 0}, and e = (1, 1). Then K is a proper,
closed, convex, and pointed cone in Y with intK = {(x, y) ∈ R

2 : x, y > 0}/= ∅ and e ∈ intK.
For r = 1, it is easy to see that y1 = (10,−30) /∈ re − intK, and y2 = (0, 0) ∈ re − intK. By
applying (iii) and (iv) of Theorem 2.1, we have ξe(y2) < 1 ≤ ξe(y1) while y1 /∈ y2 +K.

Definition 2.2 (see [17]). Let (X, p) be a TVS-cone metric space, x ∈ X, and {xn}n∈N
a sequence

in X.

(i) {xn} is said to TVS-cone converge to x if, for every c ∈ Y with θ�Kc, there exists a
natural number N0 such that p(xn, x)�Kc for all n ≥ N0. We denote this by cone-
limn→∞xn = x or xn

cone→ x as n → ∞ and call x the TVS-cone limit of {xn}.
(ii) {xn} is said to be a TVS-cone Cauchy sequence if, for every c ∈ Y with θ�Kc, there is

a natural number N0 such that p(xn, xm)�Kc for all n,m ≥ N0.

(iii) (X, p) is said to be TVS-cone complete if every TVS-cone Cauchy sequence in X is
TVS-cone convergent in X.
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In [17], the author proved the following important results.

Theorem 2.3 (see [17]). Let (X, p) be a TVS-cone metric spaces. Then, dp : X×X → [0,∞) defined
by dp := ξe ◦ p is a metric.

Example B. Let X = [0, 1], Y = R
2, K = R

2
+ = {(x, y) ∈ R

2 : x, y ≥ 0}, e = (1, 1), and θ = (0, 0).
Define p : X ×X → Y by

p
(
x, y
)
=
(∣∣x − y

∣∣, 8∣∣x − y
∣∣). (2.3)

Then, (X, p) is a TVS-cone complete metric space and

dp

(
x, y
)
= ξe
(
p
(
x, y
))

= inf
{
r ∈ R : p

(
x, y
)
∈ re −K

}
= 8
∣∣x − y

∣∣. (2.4)

So dp is a metric on X and (X, dp) is a complete metric space.

Theorem 2.4 (see [17]). Let (X, p) be a TVS-cone metric space, x ∈ X, and {xn}n∈N
a sequence in

X. Then, the following statements hold.

(a) If {xn} TVS-cone converges to x (i.e., xn
cone−−−−→ x as n → ∞), then dp(xn, x) → 0 as

n → ∞ (i.e., xn

dp−−→ x as n → ∞).

(b) If {xn} is a TVS-cone Cauchy sequence in (X, p), then {xn} is a Cauchy sequence (in usual
sense) in (X, dp).

Definition 2.5 (see [1, 22]). Let (X, d) be a metric space. A multivalued map T : X → N(X) is
said to have an approximate fixed point property provided

inf
x∈X

d(x, Tx) = 0, (2.5)

or, equivalently, for any ε > 0, there exists z ∈ X such that

d(z, Tz) ≤ ε, (2.6)

or, equivalently, for any ε > 0, there exists xε ∈ X such that

T(xε) ∩ B(xε, ε)/= ∅, (2.7)

where B(x, r) denotes a closed ball of radius r centered at x.
It is known that every generalized multivalued almost contraction in a metric space

(X, d) has the approximate fixed point property (see [1, Lemma 2.2]).

Remark 2.6. It is obvious thatF(T)/= ∅ implies that T has the approximate fixed point property.
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Definition 2.7 (see [1]). Let (X, d) be a metric space, g : X → X a single-valued self-map,
and T : X → N(X) a multivalued map. The maps g and T are said to have an approximate
coincidence point property provided

inf
x∈X

d
(
gx, Tx

)
= 0, (2.8)

or, equivalently, for any ε > 0, there exists z ∈ X such that

d
(
gz, Tz

)
≤ ε. (2.9)

It is known that every generalized multivalued almost g-contraction in a metric space
(X, d) has the approximate coincidence point property provided each Tx is g-invariant (i.e.,
g(Tx) ⊆ Tx) for each x ∈ X (see [1, Theorem 2.7]).

3. Main Results

For any locally convex Hausdorff t.v.s. Y with its zero vector θ, let τ denote the topology of
Y and let Uτ be the base at θ consisting of all absolutely convex neighborhood of θ. Let

L = {
 : 
 is a Minkowski functional of U for U ∈ Uτ}. (3.1)

Then, L is a family of seminorms on Y . For each 
 ∈ L, put

V (
) =
{
y ∈ Y : 


(
y
)
< 1
}

(3.2)

and denote

UL = {U : U = r1V (
1) ∩ r2V (
2) ∩ · · · ∩ rnV (
n) ,

rk > 0, 
k ∈ L, 1 ≤ k ≤ n, n ∈ N}.
(3.3)

Then, UL is a base at θ and the topology ΓL generated by UL is the weakest topology for Y
such that all seminorms in L are continuous and τ = ΓL. Moreover, given any neighborhood
Oθ of θ, there existsU ∈ UL such that θ ∈ U ⊂ Oθ; for more detail, we refer the reader to ([23,
Theorem 12.4 in II.12, Page 113]).

The following lemmas are very crucial to our main results.

Lemma 3.1. LetOθ be a neighborhood of θ,ω ∈ K, and {αn} ⊂ [0,∞)with limn→∞αn = 0. Suppose
that U ∈ UL satisfies θ ∈ U ⊂ Oθ, then there exists n0 ∈ N, such that ±αnω ∈ U for all n ≥ n0.

Proof . Clearly, if ω = θ, then ±αnω = θ ∈ U for all n ∈ N, and we are done. Suppose ω ∈
K \ {θ}. Since U ∈ UL,

U = r1V (
1) ∩ r2V (
2) ∩ · · · ∩ rsV (
s), (3.4)
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for some ri > 0, 
i ∈ L and 1 ≤ i ≤ s. Let

δ = min{ri : 1 ≤ i ≤ s} > 0,

ρ = max{
i(ω) : 1 ≤ i ≤ s}.
(3.5)

We need consider two possible cases.

Case 1. If ρ = 0, since each 
i is a seminorm, we have 
i(ω) = 0 and


i(±αnω) = αn
i(ω) = 0 < ri (3.6)

for all 1 ≤ i ≤ s and all n ∈ N.

Case 2. If ρ > 0, since limn→∞αn = 0, there exists n0 ∈ N such that αn < δ/ρ for all n ≥ n0. So,
for each i ∈ {1, 2, . . . , s} and any n ≥ n0, we obtain


i(±αnω) = αn
i(ω)

<
δ

ρ

i(ω)

≤ δ

≤ ri.

(3.7)

Hence, by Cases 1 and 2, we get that, for any n ≥ n0, ±αnω ∈ riV (
i) for all 1 ≤ i ≤ s.
Therefore, ±αnω ∈ U for all n ≥ n0.

Lemma 3.2 (see [24, Lemma 2.5]). Let E be a t.v.s., K a convex cone with intK/= ∅ in E, and
a, b, c ∈ E. Then, the following statements hold.

(a) intK +K ⊆ intK.

(b) If a�Kb and b�Kc, then a�Kc.

In this section, we first establish an existence theorem related to approximate
coincidence point property for maps in TVS-cone complete metric space which is one of the
main results of this paper. It will have many applications to study metric fixed point theory.

It is worth observing that the following existence theorem does not require the TVS-
cone completeness assumption on TVS-cone metric space (X, p).

Theorem 3.3. Let (X, p) be a TVS-cone metric space, T : X → N(X) a multivalued map, h : X →
X a self-map, and dp := ξe ◦ p. Suppose that

(D1) there exists anMT-function μ : [0,∞) → [0, 1) such that, for each x ∈ X, if y ∈ Tx with
y /=x then there exists z ∈ Ty such that

p
(
hy, hz

)
�K μ

(
dp

(
hx, hy

))
p
(
hx, hy

)
, (3.8)

(D2) Tx is h-invariant (i.e., h(Tx) ⊆ Tx) for each x ∈ X.

Then, the following statements hold.
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(a) h and T have the dp-approximate coincidence point property onX (i.e., infx∈Xdp(hx, Tx) =
0).

(b) There exists a sequence {zn} in (X, p) such that {zn} is a TVS-cone Cauchy sequence and
limn→∞dp(zn, zn+1) = infx∈Xdp(hx, Tx) = 0.

Proof. By Theorem 2.3, we know that dp is a metric on X. Let x1 ∈ X and x2 ∈ Tx1. If x1 = x2,
then, by (D2), we have hx1 ∈ Tx1. Since

inf
x∈X

dp(hx, Tx) ≤ dp(hx1, Tx1) = 0, (3.9)

we have infx∈X dp(hx, Tx) = 0. Let zn = hx1 for all n ∈ N. Then, {zn} ⊂ X is a TVS-cone
Cauchy sequence and limn→∞dp(zn, zn+1) = 0 = infx∈X dp(hx, Tx). Hence, all conclusions are
proved in the case of x1 = x2. If x2 /=x1 or p(x1, x2)/= θ, then, by (D1), there exists x3 ∈ Tx2

such that

p(hx2, hx3)�K μ
(
dp(hx1, hx2)

)
p(hx1, hx2). (3.10)

If x2 = x3, then the conclusions also hold by following a similar argument as above. If x3 /=x2,
then there exists x4 ∈ Tx3 such that

p(hx3, hx4)�K μ
(
dp(hx2, hx3)

)
p(hx2, hx3). (3.11)

By induction, we can obtain a sequence {xn} in X satisfying the following: for each n ∈ N,

xn+1 ∈ Txn,

p(hxn+1, hxn+2)�K μ
(
dp(hxn, hxn+1)

)
p(hxn, hxn+1).

(3.12)

Applying (v) and (vi) of Theorem 2.1, the inequality (3.12) implies

dp(hxn+1, hxn+2) = ξe
(
p(hxn+1, hxn+2)

)
≤ ξe
(
μ
(
dp(hxn, hxn+1)

)
p(hxn, hxn+1)

)
≤ μ
(
dp(hxn, hxn+1)

)
ξe
(
p(hxn, hxn+1)

)
= μ
(
dp(hxn, hxn+1)

)
dp(hxn, hxn+1).

(3.13)

Since μ(t) < 1 for all t ∈ [0,∞), the sequence {dp(hxn, hxn+1)}n∈N
is strictly decreasing in

[0,∞). Since μ is an MT-function, by (g) of Theorem D,

0 ≤ sup
n∈N

μ
(
dp(hxn, hxn+1)

)
< 1. (3.14)

Let λ := supn∈N
μ(dp(hxn, hxn+1)). So λ ∈ [0, 1). From (3.12), we get

p(hxn+1, hxn+2)�K μ
(
dp(hxn, hxn+1)

)
p(hxn, hxn+1)�K λp(hxn, hxn+1). (3.15)
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It follows from (3.15) that

p(hxn+1, hxn+2)�K λp(hxn, hxn+1) �K · · ·�K λnp(hx1, hx2) for each n ∈ N. (3.16)

Let zn := hxn, n ∈ N. Applying (v) and (vi) of Theorem 2.1, the inequality (3.16) implies

dp(zn+1, zn+2) ≤ λndp(z1, z2) for each n ∈ N. (3.17)

Since λ ∈ [0, 1), by (3.17), we have limn→∞dp(zn, zn+1) = 0. By (3.12) and (D2), we obtain
zn+1 = hxn+1 ∈ Txn, n ∈ N. It implies that

inf
x∈X

dp(hx, Tx) ≤ dp(hxn, Txn) ≤ dp(zn, zn+1), ∀n ∈ N. (3.18)

Since dp(zn, zn+1) → 0 as n → ∞, it follows from (3.18) that infx∈Xdp(hx, Tx) = 0 and the
conclusion (a) is proved.

To see (b), it suffices to prove that {zn} is a TVS-cone Cauchy sequence in (X, p). For
m,n ∈ N withm > n, it follows from (3.16) that

p(zn, zm)�K

m−1∑
j=n

p
(
zj , zj+1

)
�K

λn−1

1 − λ
p(z1, z2). (3.19)

Given c ∈ Y with θ�K c (i.e, c ∈ intK = int(intK)), there exists a neighborhoodNθ of θ such
that c +Nθ ⊆ intK. Therefore, there exists Uc ∈ UL withUc ⊆ Nθ such that

c +Uc ⊆ c +Nθ ⊆ intK. (3.20)

Let ω = p(z1, z2) and αn = λn−1/(1 − λ), n ∈ N. Since λ ∈ [0, 1), we have {αn} ⊂ [0,∞) and
limn→∞αn = 0. Applying Lemma 3.1, there exists n0 ∈ N, such that −αnω ∈ Uc for all n ≥ n0.
So, by (3.20), we obtain

c − αnω ∈ c +Uc ⊆ intK (3.21)

or

αnω�Kc (3.22)

for all n ≥ n0. Form,n ∈ N withm > n ≥ n0, since p(zn, zm)�K αnω from (3.19) and αnω�K c,
it follows from Lemma 3.2 that

p(zm, zn)�Kc. (3.23)

Hence, we prove that {zn} is a TVS-cone Cauchy sequence in (X, p). The proof is complet-
ed.
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Theorem 3.4. Let (X, p) be a TVS-cone metric space, T : X → N(X) a multivalued map, and
dp := ξe ◦ p. Suppose that

(D3) there exists anMT-function μ : [0,∞) → [0, 1) such that, for each x ∈ X, if y ∈ Tx with
y /=x, then there exists z ∈ Ty such that

p
(
y, z
)

�Kμ
(
dp

(
x, y
))
p
(
x, y
)
. (3.24)

Then, there exists a nonempty proper subset V of X, such that infx∈Xdp(x, Tx) = infx∈V dp(x, Tx) =
0 (i.e., T has the dp-approximate fixed point property on V and X.)

Proof. Let h ≡ id be the identity map on X. Then, the conditions (D1) and (D2) as in
Theorem 3.3 hold. Following the same argument as in the proof of Theorem 3.3, we obtain
two sequences {xn} and {zn} in X such that

(i) xn+1 ∈ Txn, zn = hxn and zn+1 ∈ Txn for each n ∈ N,

(ii) limn→∞dp(zn, zn+1) = 0.

Since h ≡ id, {xn} and {zn} are identical, we have limn→∞dp(xn, xn+1) = 0. Put V =
{xn}n∈N

⊂ X. Since

inf
x∈X

dp(x, Tx) ≤ inf
x∈V

dp(x, Tx) ≤ dp(xn, Txn) ≤ dp(xn, xn+1), ∀n ∈ N, (3.25)

we obtain infx∈X dp(x, Tx) = infx∈V dp(x, Tx) = 0. Hence, T has the dp-approximate fixed point
property on V and X.

New, we establish the following approximate coincidence point property for maps in
general metric spaces by applying Theorem 3.3.

Theorem 3.5. Let (X, d) be a metric space, T : X → N(X) a multivalued map, and h : X → X a
self-map. Suppose that

(A1) there exists anMT-function μ : [0,∞) → [0, 1) such that, for each x ∈ X, if y ∈ Tx with
y /=x, then there exists z ∈ Ty such that

d
(
hy, hz

)
≤ μ
(
d
(
hx, hy

))
d
(
hx, hy

)
, (3.26)

(A2) Tx is h-invariant (i.e., h(Tx) ⊆ Tx) for each x ∈ X.

Then, h and T have the approximate coincidence point property on X.

Proof . In Theorem 3.3, let Y = R, K = [0,∞) ⊂ R, and e = 1. Therefore, the conclusion is
immediate from Theorem 3.3.

The following approximate fixed point property for maps is immediate from
Theorem 3.4.
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Theorem 3.6. Let (X, d) be a metric space and T : X → N(X) a multivalued map. Suppose that

(A3) there exists anMT-function μ : [0,∞) → [0, 1) such that, for each x ∈ X, if y ∈ Tx with
y /=x, then there exists z ∈ Ty such that

d
(
y, z
)
≤ μ
(
d
(
x, y
))
d
(
x, y
)
. (3.27)

Then, T has the approximate fixed point property on X.

Theorem 3.7. In Theorem 3.6, if the condition (A3) is replaced by (A3)H, where

(A3)H there exists anMT-function μ : [0,∞) → [0, 1) such that, for each x ∈ X,

d
(
y, Ty

)
≤ μ
(
d
(
x, y
))
d
(
x, y
)
, ∀y ∈ Tx, (3.28)

then, T has the approximate fixed point property on X.

Proof. Define τ : [0,∞) → [0, 1) by τ(t) = (1 + μ(t))/2. Then, by [3, Lemma 2.1], τ is also an
MT-function. For each x ∈ X, let y ∈ Tx with y /=x. Then, d(x, y) > 0. By (A3)H , we have

d
(
y, Ty

)
< τ
(
d
(
x, y
))
d
(
x, y
)
. (3.29)

It follows that there exists z ∈ Ty such that

d
(
y, z
)
< τ
(
d
(
x, y
))
d
(
x, y
)
, (3.30)

which shows that (A3) holds. Therefore, the conclusion follows from Theorem 3.6.

Theorem 3.8. Theorems 3.6 and 3.7 are equivalent.

Proof. We have shown that Theorem 3.6 implies Theorem 3.7. So it suffices to prove that
Theorem 3.7 implies Theorem 3.6. If (A3) holds, then it is easy to verify that (A3)H also holds.
Hence, Theorem 3.7 implies Theorem 3.6 and we get the desired result.

Remark 3.9 (see [1, Lemma 2.2]). Is a special cases of Theorems 3.6 and 3.7.
Let (X, p) be a TVS-cone metric space. By Theorem 2.3, we know that dp := ξe ◦ p is a

metric onX. So we can obtain the topology Γdp onX induced by dp and hence define dp-open
subsets, dp-closed subsets, and dp-compact subsets of X.

Here, we denote Cdp(X) by the collection of all nonempty dp-closed subsets of X.

Theorem 3.10. Let (X, p) be a TVS-cone complete metric space, T : X → Cdp(X) a multivalued
map, h : X → X a self-map, and dp := ξe ◦ p. Suppose that the conditions (D1) and (D2) as in
Theorem 3.3 hold and further assume one of the following conditions hold:

(L1) (X, dp) is dp-compact and the function f : X → [0,∞) defined by f(x) = dp(hx, Tx) is
l.s.c.,

(L2) G = {(hx, y) ∈ X ×X : x ∈ X, y ∈ Tx} is a dp-closed subset of X ×X.

Then, the following statements hold.
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(a) There exists a nonempty subsetM of X, such that (M, dp) is a complete metric space.

(b) COP(h, T)/= ∅.

Proof. Following the same argument as in the proof of Theorem 3.3, one can obtain that there
exist two sequences {xn} and {zn} in X such that for any n ∈ N, zn = hxn, zn+1 ∈ Txn, {zn}
is a TVS-cone Cauchy sequence in (X, p) and limn→∞dp(zn, zn+1) = infx∈Xdp(hx, Tx) = 0. By
the TVS-cone completeness of (X, p), there exists v ∈ X, such that {zn} TVS-cone converges
to v. On the other hand, applying Theorem 2.4, we obtain that {zn} is a Cauchy sequence in

(X, dp) and dp(zn, v) → 0 or zn
dp−−→ v as n → ∞. Let M = {zn}n∈N

∪ {v}. Then (M, dp) is a
complete metric space and the conclusion (a) holds.

Now, we verify the conclusion (b). Suppose that (L1) holds. Then the infimum
infx∈X f(x) is attained. Since infx∈X f(x) = infx∈X dp(hx, Tx) = 0, there exists ζ ∈ X such
that

dp(hζ, Tζ) := f(ζ) = inf
x∈X

f(x) = 0. (3.31)

Since Tζ is a dp-closed subset of X, it implies from (3.31) that hζ ∈ Tζ. Hence, ζ ∈ COP(h, T).
Suppose that (L2) holds. For any n ∈ N, since zn+1 ∈ Txn, we know (zn, zn+1) ∈ G. Since

G is dp-closed in X ×X and zn
dp−−→ v as n → ∞, we have (v, v) ∈ G. Hence, there exists a ∈ X

such that v = ha and v ∈ Ta, which say that a ∈ COP(h, T). The proof is completed.

Theorem 3.11. Let (X, p) be a TVS-cone complete metric space, T : X → Cdp(X) a multivalued
map, and dp := ξe ◦ p. Suppose that the condition (D3) as in Theorem 3.4 holds and further assume
one of the following conditions hold:

(H1) T is dp-closed; that is, GrT := {(x, y) ∈ X × X : y ∈ Tx}, the graph of T , is a dp-closed
subset of X ×X,

(H2) the function f : X → [0,∞) defined by f(x) = dp(x, Tx) is l.s.c.,

(H3) inf{dp(x, z) + dp(x, Tx) : x ∈ X} > 0 for every z /∈ F(T).

Then, there exists a nonempty subsetW of X, such that

(a) (W,dp) is a complete metric space,

(b) F(T) ∩W /= ∅.

Proof. Following a similar argument as in the proof of Theorem 3.3, we can obtain a sequence
{xn} in X such that, for any n ∈ N,

(i) xn+1 ∈ Txn,

(ii) p(xn+1, xn+2)�K γp(xn, xn+1), where γ := supn∈N
μ(dp(xn, xn+1)) ∈ [0, 1),

(iii) p(xn, xm)�K ( γn−1/(1 − γ)) p(x1, x2), for m,n ∈ N withm > n.

(iv) {xn} is a TVS-cone Cauchy sequence in (X, p).
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Applying Theorem 2.1, the inequality (iii) implies that, for m,n ∈ N with m > n, we
have

dp(xn, xm) = ξe
(
p(xn, xm)

)
≤ ξe

(
γn−1

1 − γ
p(x1, x2)

)

=
γn−1

1 − γ
dp(x1, x2).

(3.32)

Since limn→∞γ
n−1/(1−γ) = 0, it follows from (3.32) that {xn} is a Cauchy sequence in (X, dp).

By the TVS-cone completeness of (X, p) and (iv), there exists v ∈ X, such that {xn} TVS-cone

converges to v. Applying Theorem 2.4, we have dp(xn, v) → 0 or xn
dp−−→ v as n → ∞. Let

W = {xn}n∈N
∪ {v}. Then, (W,dp) is a complete metric space and the conclusion (a) holds.

Finally, in order to complete the proof, it suffices to show that v ∈ F(T). Suppose that
(H1) holds. Since xn+1 ∈ Txn, we have (xn, xn+1) ∈ GrT for each n ∈ N. By (H1) and xn

dp−−→ v
as n → ∞, we get v ∈ F(T).

If (H2) holds, by the lower semicontinuity of f and (i), we obtain

dp(v, Tv) = f(v)

≤ lim inf
n→∞

f(xn)

≤ lim inf
n→∞

dp(xn, Txn)

≤ lim
n→∞

dp(xn, xn+1) = 0,

(3.33)

which implies dp(v, Tv) = 0. Since Tv is a dp-closed subset of X, v ∈ F(T).

Let (H3) holds. Suppose v /∈ F(T). Since dp is a metric on X and xm

dp−−→ v as m → ∞,
by (3.32), we get

dp(xn, v) ≤
γn−1

1 − γ
dp(x1, x2) for any n ∈ N. (3.34)

From (3.32) and (3.34), we have

0 < inf
x∈X

{
dp(x, v) + dp(x, Tx)

}
≤ inf

n∈N

{
dp(xn, v) + dp(xn, Txn)

}
≤ inf

n∈N

{
dp(xn, v) + dp(xn, xn+1)

}

≤ lim
n→∞

2γn−1

1 − γ
dp(x1, x2)

= 0,

(3.35)

which leads a contradiction. Therefore, v ∈ F(T). The proof is completed.
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The following result is immediate from Theorem 3.10.

Theorem 3.12. Let (X, d) be a complete metric space, T : X → C(X) a multivalued map, and
h : X → X a self-map. Suppose that the conditions (A1) and (A2) as in Theorem 3.5 hold and further
assume one of the following conditions hold:

(i) (X, d) is compact and the function f : X → [0,∞) defined by f(x) = d(hx, Tx) is l.s.c.;

(ii) {(hx, y) ∈ X ×X : x ∈ X, y ∈ Tx} is a closed subset of X ×X.

Then, COP(h, T)/= ∅.

Theorem 3.13. Let (X, d) be a complete metric space and T : X → C(X) a multivalued map.
Suppose that the condition (A3) or (A3)H holds and further assume one of the following conditions
hold:

(h1) T is closed,

(h2) the function f : X → [0,∞) defined by f(x) = d(x, Tx) is l.s.c.,

(h3) inf{d(x, z) + d(x, Tx) : x ∈ X} > 0 for every z /∈ F(T),
(h4) for each sequence {xn} in X with xn+1 ∈ Txn, n ∈ N and limn→∞xn = v, we have

limn→∞H(Txn, Tv) = 0.

Then, F(T)/= ∅.

Proof. The conclusion is immediate from Theorem 3.11 if Y = R, K = [0,∞) ⊂ R, e = 1, and
one of conditions (h1), (h2), and (h3) holds. Suppose that (h4) holds. Following a similar
argument as in the proof of Theorem 3.3, we can construct a Cauchy sequence {xn} in (X, d)
such that xn+1 ∈ Txn, n ∈ N, and {xn} converge to some point v ∈ X. Since the function

x �→ d(x, Tv) is continuous, xn+1 ∈ Txn and xn
d−→ v as n → ∞, by (h4), we get

d(v, Tv) = lim
n→∞

d(xn+1, Tv) ≤ lim
n→∞

H(Txn, Tv) = 0, (3.36)

which implies v ∈ F(T). The proof is completed.

Remark 3.14.

(a) Let A and B be two topological vector spaces and T : A → 2B a multivalued map.
Recall that T is u.s.c. if and only if for any open set V in B, T+(V ) := {x ∈ A : T(x) ⊆
V } is open inA. It is known that if T is u.s.c. with closed values, then T is closed (see
[25]). Hence, Theorem 3.13 is true if (X, ‖ · ‖) is a Banach space and T : X → C(X)
is u.s.c.;

(b) let G be a nonempty subset of a metric space (X, d) and T : X → C(X) u.s.c. Then,
the function φ : G → [0,∞) defined by φ(x) = d(x, Tx) is l.s.c.; for detail, see [26,
Lemma 2] or [27, Lemma 3.1];

(c) it is known that any single-valued map of Kannan’s type or Chatterjea’s type
satisfies (h3); for more detail, one can see [28, Corollary 3] or [3, Remark 3.1].

Applying Theorem 3.13, we can prove the following generalization of Berinde-
Berinde’s fixed point theorem [12].
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Theorem 3.15. Let (X, d) be a complete metric space, T : X → CB(X) a multivalued map, and
G : X → [0,∞) a function. Suppose that there exists anMT-function μ : [0,∞) → [0, 1) such that

H
(
Tx, Ty

)
≤ μ
(
d
(
x, y
))
d
(
x, y
)
+G
(
y
)
d
(
y, Tx

)
, ∀x, y ∈ X. (3.37)

Then, F(T)/= ∅.

Proof. Let x ∈ X. If y ∈ Tx, then d(y, Tx) = 0. So (3.37) implies the inequality

d
(
y, Ty

)
≤ μ
(
d
(
x, y
))
d
(
x, y
)
, ∀y ∈ Tx. (3.38)

Hence, the condition (A3)H of Theorem 3.13 holds. Let {xn} in X with xn+1 ∈ Txn, n ∈ N, and
limn→∞xn = v. By (3.37), we obtain

lim
n→∞

H(Txn, Tv) ≤ lim
n→∞

{
ϕ(d(xn, v))d(xn, v) +G(v)d(v, xn+1)

}
= 0, (3.39)

which says that the condition (h4) of Theorem 3.13 also holds. Therefore, the conclusion
follows from Theorem 3.13.

Remark 3.16.

(a) Theorems 3.11, 3.13, and 3.15 all generalize Berinde-Berinde’s fixed point theorem
[12].

(b) In Theorem 3.15, if G(x) = 0 for all x ∈ X, then we can obtain Mizoguchi-
Takahashi’s fixed point theorem [14].

(c) In Theorem 3.15, if G(x) = 0 for all x ∈ X, and μ : [0,∞) → [0, 1) is defined by
μ(t) = γ for some γ ∈ [0, 1), then we can obtain Nadler’s fixed point theorem [10].

(d) [1, Theorem 2.6] is a special case of Theorem 3.15.

(e) Notice that, in [1, Theorem 2.6], the authors showed that a generalized multivalued
almost contraction T in a metric space (X, d) has F(T)/= ∅ provided either (X, d)
is compact and the function f(x) = d(x, Tx) is l.s.c. or T is closed and compact.
But reviewing Theorem 3.15, we know that the conditions in [1, Theorem 2.6] are
redundant.
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