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The authors have obtained the following results: (1) the definition of uniformly closed countable
family of nonlinear mappings, (2) strong convergence theorem by the monotone hybrid algorithm
for two countable families of hemirelatively nonexpansive mappings in a Banach space with new
method of proof, (3) two examples of uniformly closed countable families of nonlinear mappings
and applications, (4) an example which is hemirelatively nonexpansive mapping but not weak
relatively nonexpansive mapping, and (5) an example which is weak relatively nonexpansive
mapping but not relatively nonexpansive mapping. Therefore, the results of this paper improve
and extend the results of Plubtieng and Ungchittrakool (2010) and many others.

1. Introduction and Preliminaries

Let E be a Banach space with the dual E∗. We denote by J the normalized duality mapping
from E to 2E

∗
defined by

Jx =
{
f ∈ E∗ :

〈
x, f

〉
= ‖x‖2 = ∥∥f∥∥2

}
, (1.1)

where 〈·, ·〉 denotes the generalized duality pairing. It is well known that the normalized
duality J has the following properties: (1) if E is smooth, then J is single valued; (2) if E
is strictly convex, then J is one-to-one (i.e., Jx ∩ Jy = ∅ for all x/=y); (3) if E is reflexive,
then J is surjective; (4) if E has Frchet differentiable norm, then J is uniformly norm-to-norm
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continuous; (5) if E is uniformly smooth, then J is uniformly norm-to-norm continuous on
each bounded subset of E; (7) if E is a Hilbert space, then J is the identity operator.

As we all know that if C is a nonempty closed convex subset of a Hilbert space H
and PC : H → C is the metric projection of H onto C, then PC is nonexpansive. This fact
actually characterizes Hilbert spaces, and, consequently, it is not available in more general
Banach spaces. In this connection, Alber [1] has recently introduced a generalized projection
operator ΠC in a Banach space E which is an analogue of the metric projection in Hilbert
spaces.

Let E be a smooth Banach space. Consider the function defined by

φ
(
x, y

)
= ‖x‖2 − 2

〈
x, Jy

〉
+
∥∥y∥∥2 for x, y ∈ E. (1.2)

Observe that, in a Hilbert spaceH , (1.2) reduces to φ(x, y) = ‖x − y‖2, x, y ∈ H .
The generalized projection ΠC : E → C is a map that assigns to an arbitrary point

x ∈ E the minimum point of the functional φ(x, y), that is, ΠCx = x, where x is the solution
to the minimization problem

φ(x, x) = min
y∈C

φ
(
y, x

)
, (1.3)

existence and uniqueness of the operator ΠC follow from the properties of the functional
φ(x, y) and strict monotonicity of the mapping J (see, e.g., [1, 2]). In Hilbert space,ΠC = PC.
It is obvious from the definition of function φ that

(∥∥y∥∥ − ‖x‖)2 ≤ φ
(
y, x

) ≤ (∥∥y∥∥ + ‖x‖)2 ∀x, y ∈ E. (1.4)

IfE is a reflexive strictly convex and smooth Banach space, then for x, y ∈ E, φ(x, y) = 0
if and only if x = y. It is sufficient to show that if φ(x, y) = 0, then x = y. From (1.4), we have
‖x‖ = ‖y‖. This implies that 〈x, Jy〉 = ‖x‖2 = ‖Jy‖2. From the definitions of j, we have
Jx = Jy. That is, x = y; see [3, 4] for more details.

Let C be a closed convex subset of E, and let T be a mapping from C into itself with
nonempty set of fixed points. We denote by F(T) the set of fixed points of T . T is called hemi-
relatively nonexpansive if φ(p, Tx) ≤ φ(p, x) for all x ∈ C and p ∈ F(T).

A point p in C is said to be an asymptotic fixed point of T if C contains a sequence {xn}
which converges weakly to p such that the strong limn→∞(Txn−xn) = 0. The set of asymptotic
fixed points of T will be denoted by F̂(T). A hemi-relatively nonexpansive mapping T from
C into itself is called relatively nonexpansive if F̂(T) = F(T) (see, [5]).

A point p inC is said to be a strong asymptotic fixed point of T if C contains a sequence
{xn} which converges strongly to p such that the strong limn→∞(Txn − xn) = 0. The set of
strong asymptotic fixed points of T will be denoted by F̃(T). A hemi-relatively nonexpansive
mapping T from C into itself is called weak relatively nonexpansive if F̃(T) = F(T) (see, [6]).

The following conclusions are obvious: (1) relatively nonexpansive mapping must be
weak relatively nonexpansive mapping; (2) weak relatively nonexpansive mapping must be
hemi-relatively nonexpansive mapping.

In this paper, we will give two examples to show that the inverses of above two
conclusions are not hold.
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In an infinite-dimensional Hilbert space, Mann’s iterative algorithm has only weak
convergence, in general, even for nonexpansive mappings. Hence in order to have strong
convergence, in recent years, the hybrid iteration methods for approximating fixed points of
nonlinear mappings has been introduced and studied by various authors.

In 2003, Nakajo and Takahashi [7] proposed the following modification of Mann
iteration method for a single nonexpansive mapping T in a Hilbert spaceH :

x0 ∈ C chosen only arbitrarily,

yn = αnxn + (1 − αn)Txn,

Cn =
{
z ∈ C :

∥∥yn − z
∥∥ ≤ ‖xn − z‖},

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qn(x0),

(1.5)

where C is a closed convex subset of H , and PK denotes the metric projection from H onto a
closed convex subset K of H . They proved that if the sequence {αn} is bounded above from
one, then the sequence {xn} generated by (1.5) converges strongly to PF(T)(x0), where F(T)
denote the fixed points set of T .

The ideas to generalize the process (1.5) from Hilbert space to Banach space have
recently been made. By using available properties on uniformly convex and uniformly
smooth Banach space, Matsushita and Takahashi [8] presented their ideas as the following
method for a single relatively nonexpansive mapping T in a Banach space E:

x0 ∈ C chosen only arbitrarily,

yn = J−1(αnJx0 + (1 − αn)JTxn),

Cn =
{
z ∈ C : φ

(
z, yn

) ≤ φ(z, xn)
}
,

Qn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qn(x0),

(1.6)

where J is the duality mapping on E, and ΠK(·) is the generalized projection from E onto a
nonempty closed convex subset K. They proved the following convergence theorem.

TheoremMT. Let E be a uniformly convex and uniformly smooth Banach space, let C be a nonempty
closed convex subset of E, let T be a relatively nonexpansive mapping fromC into itself, and let {αn} be
a sequence of real numbers such that 0 ≤ αn < 1 and lim supn→∞αn < 1. Suppose that {xn} is given
by (1.6), where J is the duality mapping on E. If F(T) is nonempty, then {xn} converges strongly to
ΠF(T)x0, whereΠF(T)(·) is the generalized projection from C onto F(T).

Recently, Plubtieng and Ungchittrakool [9] here proposed the following hybrid itera-
tion method for a countable family of relatively nonexpansive mappings in a Banach space
and proved the convergence theorem.
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Theorem PU. Let E be a uniformly smooth and uniformly convex Banach space and let Ĉ and C
be two nonempty closed convex subsets of E such that Ĉ ⊂ C. Let {Tn} be a sequence of relatively
nonexpansive mappings from C into E such that

⋂∞
n=1 F(Tn) is nonempty, and let {xn} be a sequence

defined as follows:

x0 ∈ Ĉ,

C1 = C,

x1 = ΠC1x0,

yn = J−1(αnJxn + (1 − αn)JTnxn),

Cn+1 =
{
z ∈ Cn : φ

(
z, yn

) ≤ φ(z, xn)
}
, n ≥ 1,

xn+1 = ΠCn+1x0,

(1.7)

where αn ∈ [0, 1] satisfies either

(a) 0 ≤ αn < 1 for all n ≥ 1 and lim supn→∞αn < 1 or

(b) lim infn→∞αn(1 − αn) > 0.

Suppose that for any bounded subset B ofC there exists an increasing, continuous and convex function
hB from R+ into R+ such that hB(0) = 0, and

lim
l,k→∞

sup{hB(‖Tlz − Tkz‖) : z ∈ B} = 0. (1.8)

Let T be a mapping from C into E defined by Tx = limn→∞Tnx for all x ∈ C and suppose that

F(T) =
∞⋂
n=1

F(Tn) =
∞⋂
n=1

F̂(Tn) = F̂(T). (1.9)

Then {xn}, {Tnxn}, and {yn} converge strongly toΠF(T)x0.

In this paper, the authors have obtained the following results: (1) the definition of
uniformly closed countable family of nonlinear mappings, (2) strong convergence theorem
by the monotone hybrid algorithm for a countable family of hemi-relatively nonexpansive
mappings in a Banach spacewith newmethod of proof, (3) two examples of uniformly closed
countable families of nonlinear mappings and applications, (4) an example which is hemi-
relatively nonexpansive mapping but not weak relatively nonexpansive mapping, and (5)
an example which is weak relatively nonexpansive mapping but not relatively nonexpansive
mapping. Therefore, the results of this paper improve and extend the results of Plubtieng and
Ungchittrakool [9] and many others.

We need the following definitions and lemmas.

Lemma 1.1 (Kamimura and Takahashi [10]). Let E be a uniformly convex and smooth Banach
space, and let {xn} and {yn} be two sequences of E. If φ(xn, yn) → 0 and either {xn} or {yn} is
bounded, then xn − yn → 0.
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Lemma 1.2 (Alber [1]). Let C be a nonempty closed convex subset of a smooth Banach space E and
x ∈ E. Then, x0 = ΠCx if and only if

〈
x0 − y, Jx − Jx0

〉 ≥ 0 for y ∈ C. (1.10)

Lemma 1.3 (Alber [1]). Let E be a reflexive, strictly convex, and smooth Banach space, let C be a
nonempty closed convex subset of E, and let x ∈ E. Then

φ
(
y,ΠCx

)
+ φ(ΠCx, x) ≤ φ

(
y, x

) ∀y ∈ C. (1.11)

The following lemma is not hard to prove.

Lemma 1.4. Let E be a strictly convex and smooth Banach space, let C be a closed convex subset of
E, and let T be a hemi-relatively nonexpansive mapping from C into itself. Then F(T) is closed and
convex.

In this paper, we present the definition of uniformly closed for a sequence of mappings
as follows.

Definition 1.5. Let E be a Banach space, C be a closed convex subset of E, let {Tn}∞n=1 be a
sequence of mappings of C into E such that

⋂∞
n=1 F(Tn) is nonempty. We say that {Tn}∞n=1 is

uniformly closed if p ∈ ⋂∞
n=1 F(Tn) whenever {xn} ⊂ C converges strongly to p and ‖xn −

Tnxn‖ → 0 as n → ∞.

Lemma 1.6 (see [11, 12]). Let E be a p-uniformly convex Banach space with p ≥ 2. Then, for all
x, y ∈ E, j(x) ∈ Jp(x), and j(y) ∈ Jp(y),

〈
x − y, j(x) − j

(
y
)〉 ≥ cp

cp−2p

∥∥x − y
∥∥p, (1.12)

where Jp is the generalized duality mapping from E into E∗, and 1/c is the p-uniformly convexity
constant of E.

2. Main Results

Definition 2.1. Let E be a Banach space, let C be a nonempty closed convex subset of E, and
let {Tn}∞n=1 : C → E, {Sn}∞n=1 : C → E be two sequences of mappings. If for any convergence
sequence {xn} ⊂ C, the following holds:

lim
n→+∞

‖Tnxn − Snxn‖ = 0. (2.1)

Then {Tn} and {Sn} are said to satisfy the only asymptotically condition.

Theorem 2.2. Let E be a uniformly convex and uniformly smooth Banach space, let C be a nonempty
closed convex subset of E, let {Tn}∞n=1 : C → E, {Sn}∞n=1 : C → E be two uniformly closed
sequences of hemi-relatively nonexpansive mappings satisfying the asymptotically condition such that
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F1 =
⋂∞

n=1 F(Tn)/= ∅, F2 =
⋂∞

n=1 F(Sn)/= ∅, and F = F1
⋂
F2 /= ∅. Assume that {αn}∞n=0, {βn}∞n=0,

{γn}∞n=0 and {δn}∞n=0 are four sequences in [0, 1] such that αn + βn + γn + δn = 1, limn→∞αn = 0 and
0 < γ ≤ γn ≤ 1, δn → 0 for some constant γ ∈ (0, 1). Define a sequence {xn} in C by the following
algorithm:

x0 ∈ C arbitrarily,

yn = J−1
(
αnJx0 + βnJxn + γnJTnxn + δnJSnxn

)
, n ≥ 1,

Cn =
{
z ∈ Cn−1 : φ

(
z, yn

) ≤ (1 − αn)φ(z, xn) + αnφ(z, x0)
}
, n ≥ 1,

C0 = C,

xn+1 = ΠCnx0, n ≥ 0.

(2.2)

Then {xn} converges strongly to q = ΠFx0.

Proof . We first show that Cn is closed and convex for all n ≥ 0. From the definitions of Cn, it
is obvious that Cn is closed for all n ≥ 0. Next, we prove that Cn is convex for all n ≥ 0. Since

φ
(
z, yn

) ≤ (1 − αn)φ(z, xn) + αnφ(z, x0) (2.3)

is equivalent to

2
〈
z, (1 − αn)Jxn + αnJx0 − Jyn

〉 ≤ (1 − αn)‖xn‖2 + αn‖x0‖2 −
∥∥yn

∥∥2, (2.4)

it is easy to get that Cn is convex for all n ≥ 0.
Next, we show that F ⊂ Cn for all n ≥ 1. Indeed, for each p ∈ F, we have

φ
(
p, yn

)
= φ
(
p, J−1

(
αnJx0 + βnJxn + γnJTnxn + δnJSnxn

))

=
∥∥p∥∥2 − 2

〈
p,
(
αnJx0 + βnJxn + γnJTnxn + δnJSnxn

)〉

+
∥∥αnJx0 + βnJxn + γnJTnxn + δnJSnxn

∥∥2

≤ ∥∥p∥∥2 − 2αn

〈
p, Jx0

〉 − 2βn
〈
p, Jxn

〉 − 2γn
〈
p, JTnxn

〉 − 2δn
〈
p, JSnxn

〉

+ αn‖x0‖2 + βn‖xn‖ + γn‖Tnxn‖2 + δn‖Snxn‖2

≤ αnφ
(
p, x0

)
+ βnφ

(
p, xn

)
+ γnφ

(
p, Tnxn

)
+ δnφ

(
p, Snxn

)

≤ αnφ
(
p, x0

)
+ (1 − αn)φ

(
p, xn

)
.

(2.5)

So, p ∈ Cn, which implies that F ⊂ Cn for all n ≥ 1.
Since xn+1 = ΠCnx0 and Cn ⊂ Cn−1, then we get the following:

φ(xn, x0) ≤ φ(xn+1, x0), ∀n ≥ 0. (2.6)
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Therefore, {φ(xn, x0)} is nondecreasing. On the other hand, by Lemma 1.3, we have

φ(xn, x0) = φ(ΠCn−1x0, x0) ≤ φ
(
p, x0

) − φ
(
p, xn

) ≤ φ
(
p, x0

)
, (2.7)

for all p ∈ F(T) ⊂ Cn−1 and for all n ≥ 1. Therefore, φ(xn, x0) is also bounded. This together
with (3.1) implies that the limit of {φ(xn, x0)} exists. Put the following:

lim
n→∞

φ(xn, x0) = d. (2.8)

From Lemma 1.3, we have, for any positive integer m, that

φ(xn+m, xn+1) = φ(xn+m,ΠCnx0) ≤ φ(xn+m, x0) − φ(ΠCnx0, x0)

= φ(xn+m, x0) − φ(xn+1, x0),
(2.9)

for all n ≥ 0. This together with (3.6) implies that

lim
n→∞

φ(xn+m, xn+1) = 0 (2.10)

is, uniformly for allm, holds. By using Lemma 1.1, we get that

lim
n→∞

‖xn+m − xn+1‖ = 0 (2.11)

is, uniformly for all m, holds. Then {xn} is a Cauchy sequence; therefore, there exists a point
p ∈ C such that xn → p.

Since xn+1 = ΠCnx0 ∈ Cn, from the definition of Cn, we have the following:

φ
(
xn+1, yn

) ≤ (1 − αn)φ(xn+1, xn) + αnφ(xn+1, x0). (2.12)

This together with (2.10) and limn→∞αn = 0 implies that

lim
n→∞

φ
(
xn+1, yn

)
= 0. (2.13)

Therefore, by using Lemma 1.1, we obtain the following:

lim
n→∞

∥∥xn+1 − yn

∥∥ = 0. (2.14)

Since J is uniformly norm-to-norm continuous on bounded sets, then we have the following:

lim
n→∞

∥∥Jxn+1 − Jyn

∥∥ = lim
n→∞

‖Jxn+1 − Jxn‖ = 0. (2.15)
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Noticing that

∥∥Jxn+1 − Jyn

∥∥ =
∥∥Jxn+1 −

(
αnJx0 + βnJxn + γnJTnxn + δnJSnxn

)∥∥

=
∥∥αn(Jxn+1 − Jx0) + βn(Jxn+1 − Jxn) + γn(Jxn+1 − JTnxn) + δn(Jxn+1 − JTnxn)

∥∥

≥ γn‖Jxn+1 − JTnxn‖ − δn‖Jxn+1 − JSnxn‖
− αn‖Jxn+1 − Jx0‖ − βn‖Jxn+1 − Jxn‖,

(2.16)

which leads to

γn‖Jxn+1 − JTnxn‖ ≤ ∥∥Jxn+1 − Jyn

∥∥ + αn‖Jx0 − Jxn+1‖
+ βn‖Jxn+1 − Jxn‖ + δn‖Jxn+1 − JSnxn‖.

(2.17)

From (2.15) and limn→∞αn = 0, limn→∞δn = 0, 0 < γ ≤ γn ≤ 1 we obtain that

lim
n→∞

‖Jxn+1 − JTnxn‖ = 0. (2.18)

Since J−1 is also uniformly norm-to-norm continuous on bounded sets, then we obtain that

lim
n→∞

‖xn+1 − Tnxn‖ = 0. (2.19)

This together with (2.11) implies that

lim
n→∞

‖xn − Tnxn‖ = 0. (2.20)

Sine {Tn} and {Sn} satisfy the asymptotically condition, we also have

lim
n→∞

‖xn − Snxn‖ = 0. (2.21)

Since xn → p and {Tn}∞n=1, {Sn}∞n=1 are uniformly closed, we have

p ∈ F =

( ∞⋂
n=1

F(Tn)

)⋂( ∞⋂
n=1

F(Sn)

)
. (2.22)

Finally, we prove that p = ΠFx0, from Lemma 1.3, we have

φ
(
p,ΠFx0

)
+ φ(ΠFx0, x0) ≤ φ

(
p, x0

)
. (2.23)

On the other hand, xn+1 = ΠCnx0 and F ⊂ Cn, for all n. Also from Lemma 1.3, we have

φ(ΠFx0, xn+1) + φ(xn+1, x0) ≤ φ(ΠFx0, x0). (2.24)



Journal of Applied Mathematics 9

By the definition of φ(x, y), we know that

lim
n→∞

φ(xn+1, x0) = φ
(
p, x0

)
. (2.25)

Combining (2.24) and (2.25), we know that φ(p, x0) = φ(ΠFx0, x0). Therefore, it follows from
the uniqueness of ΠFx0 that p = ΠFx0. This completes the proof.

When αn ≡ 0, δn ≡ 0 in Theorem 2.2, we obtain the following result.

Theorem 2.3. Let E be a uniformly convex and uniformly smooth Banach space, let C be a nonempty
closed convex subset of E, and let {Tn}∞n=1 : C → E be a uniformly closed sequence of hemi-relatively
nonexpansive mappings such that F =

⋂∞
n=1 F(Tn)/= ∅. Assume that {αn}∞n=0 is a sequences in [0,1]

such that 0 ≤ αn ≤ α < 1 for some constant α ∈ (0, 1). Define a sequence {xn} in C by the following
algorithm:

x0 ∈ C arbitrarily,

yn = J−1(αnJxn + (1 − αn)JTnxn), n ≥ 1,

Cn =
{
z ∈ Cn−1 : φ

(
z, yn

) ≤ φ(z, xn)
}
, n ≥ 1,

C0 = C,

xn+1 = ΠCnx0, n ≥ 0.

(2.26)

Then {xn} converges strongly to q = ΠFx0.

3. Applications for Equilibrium Problem

Let E be a real Banach space, and let E∗ be the dual space of E. LetC be a closed convex subset
of E. Let f be a bifunction from C × C to R = (−∞,+∞). The equilibrium problem is to find
x ∈ C such that

f
(
x, y

) ≥ 0, ∀y ∈ C. (3.1)

The set of solutions of (1.2) is denoted by EP(f). Given a mapping T : C → E∗ let f(x, y) =
〈Tx, y − x〉 for all x, y ∈ C. Then, p ∈ EP(f) if and only if 〈Tp, y − p〉 ≥ 0 for all y ∈ C, that
is, p is a solution of the variational inequality. Numerous problems in physics, optimization,
and economics reduce to find a solution of (1.2). Some methods have been proposed to solve
the equilibrium problem in Hilbert spaces, see, for instance, [13–15].

For solving the equilibrium problem, let us assume that a bifunction f satisfies the
following conditions:

(A1) f(x, x) = 0, for all x ∈ E,

(A2) f is monotone, that is, f(x, y) + f(y, x) ≤ 0, for all x, y ∈ E,

(A3) for all x, y, z ∈ E, only lim supt↓0f(tz + (1 − t)x, y) ≤ f(x, y),

(A4) for all x ∈ C, f(x, ·) is convex and lower semicontinuous.
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Lemma 3.1 (Blum and Oettli [13]). Let C be a closed convex subset of a smooth, strictly convex,
and reflexive Banach space E, let f be a bifunction fromC×C to R = (−∞,+∞) satisfying (A1)–(A4),
and let r > 0 and x ∈ E. Then, there exists z ∈ C such that

f
(
z, y

)
+
1
r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C. (3.2)

Lemma 3.2 (Takahashi and Zembayashi [15]). Let C be a closed convex subset of a uniformly
smooth, strictly convex, and reflexive Banach space E, and let f be a bifunction from C × C to R =
(−∞,+∞) satisfying (A1)–(A4). For r > 0, define a mapping Tr : E → C as follows:

Tr(x) =
{
z ∈ C : f

(
z, y

)
+
1
r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C

}
(3.3)

for all x ∈ E. Then, the following hold:

(1) Tr is single-valued;

(2) Tr is a firmly nonexpansive-type mapping, that is, for all x, y ∈ E,

〈
Trx − Try, JTrx − JTry

〉 ≤ 〈Trx − Try, Jx − Jy
〉
, (3.4)

(3) F(Tr) = EP(f);

(4) EP(f) is closed and convex;

(5) Tr is also a relatively nonexpansive mapping.

Lemma 3.3 (Takahashi and Zembayashi [15]). LetC be a closed convex subset of a smooth, strictly
convex, and reflexive Banach space E, let f be a bifunction from C × C to R = (−∞,+∞) satisfying
(A1)–(A4), let r > 0, and let x ∈ E, q ∈ F(Tr), then the following holds:

φ
(
q, Trx

)
+ φ(Trx, x) ≤ φ

(
q, x
)
. (3.5)

Lemma 3.4. Let E be a p-uniformly convex with p ≥ 2 and uniformly smooth Banach space, and let C
be a nonempty closed convex subset of E. Let f be a bifunction fromC×C to R = (−∞,+∞) satisfying
(A1)–(A4). Let {rn} be a positive real sequence such that limn→∞rn = r > 0. Then the sequence of
mappings {Trn} is uniformly closed.

Proof. (1) Let {xn} be a convergent sequence in C. Let zn = Trnxn for all n, then

f
(
zn, y

)
+

1
rn

〈
y − zn, Jzn − Jxn

〉 ≥ 0, ∀y ∈ C, (3.6)

f
(
zn+m, y

)
+

1
rn+m

〈
y − zn+m, Jzn+m − Jxn+m

〉 ≥ 0, ∀y ∈ C. (3.7)
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Putting y = zn+m in (3.6) and y = zn in (3.7), we have

f(zn, zn+m) +
1
rn
〈zn+m − zn, Jzn − Jxn〉 ≥ 0, ∀y ∈ C,

f(zn+m, zn) +
1

rn+m
〈zn − zn+m, Jzn+m − Jxn+m〉 ≥ 0, ∀y ∈ C.

(3.8)

So, from (A2), we have

〈
zn+m − zn,

Jzn − Jxn

rn
− Jzn+m − Jxn+m

rn+m

〉
≥ 0, (3.9)

and hence

〈
zn+m − zn, Jzn − Jxn − rn

rn+m
(Jzn+m − Jxn+m)

〉
≥ 0. (3.10)

Thus, we have

〈
zn+m − zn, Jzn − Jzn+m + Jzn+m − Jxn − rn

rn+m
(Jzn+m − Jxn+m)

〉
≥ 0, (3.11)

which implies that

〈zn+m − zn, Jzn+m − Jzn〉 ≤
〈
zn+m − zn, Jzn+m − Jxn − rn

rn+m
(Jzn+m − Jxn+m)

〉
≥ 0.

(3.12)

By using Lemma 1.6, we obtain the following:

cp

cp−2p
‖zn+m − zn‖p ≤

〈
zn+m − zn, Jzn+m − Jxn − rn

rn+m
(Jzn+m − Jxn+m)

〉
≥ 0

=
〈
zn+m − zn,

(
1 − rn

rn+m

)
Jzn+m +

rn
rn+m

(Jxn+m − Jxn)
〉
.

(3.13)

Therefore, we get the following:

cp

cp−2p
‖zn+m − zn‖p−1 ≤

∣∣∣∣1 −
rn

rn+m

∣∣∣∣‖Jzn+m‖ +
∥∥∥∥

rn
rn+m

Jxn+m − Jxn

∥∥∥∥. (3.14)

On the other hand, for any p ∈ EP(f), from zn = Trnxn, we have

∥∥zn − p
∥∥ =

∥∥Trnxn − p
∥∥ ≤ ∥∥xn − p

∥∥, (3.15)



12 Journal of Applied Mathematics

so that {zn} is bounded. Since limn→∞rn = r > 0, this together with (3.14) implies that {zn} is
a Cauchy sequence. Hence Trnxn = zn is convergent.

(2) By using Lemma 3.2, we know that

∞⋂
n=1

F(Trn) = EP
(
f
)
/= ∅. (3.16)

(3) From (1) we know that, limn→∞Trnx exists for all x ∈ C. So, we can define a
mapping T from C into itself by

Tx = lim
n→∞

Trnx, ∀x ∈ C. (3.17)

It is obvious that T is nonexpansive. It is easy to see that

EP
(
f
)
=

∞⋂
n=1

F(Trn) ⊂ F(T). (3.18)

On the other hand, let w ∈ F(T) andwn = Trnw, we have

f
(
wn, y

)
+

1
rn

〈
y −wn, Jwn − Jw

〉 ≥ 0, ∀y ∈ C. (3.19)

By (A2)we know that

1
rn

〈
y −wn, Jwn − Jw

〉 ≥ f
(
y,wn

)
, ∀y ∈ C. (3.20)

Since wn → Tw = w and from (A4), we have f(y,w) ≤ 0, for all y ∈ C. Then, for t ∈ (0, 1]
and y ∈ C,

0 = f
(
ty + (1 − t)w, ty + (1 − t)w

)

≤ tf
(
ty + (1 − t)w, y

)
+ (1 − t)f

(
ty + (1 − t)w,w

)

≤ tf
(
ty + (1 − t)w, y

)
.

(3.21)

Therefore, we have

f
(
ty + (1 − t)w, y

) ≥ 0. (3.22)

Letting t ↓ 0 and using (A3), we get the following:

f
(
w, y

) ≥ 0, ∀y ∈ C, (3.23)

and hence w ∈ EP(f). From above two respects, we know that F(T) =
⋂∞

n=0 F(Trn).
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Next we show {Trn} is uniformly closed. Assume xn → x and ‖xn − Trnxn‖ → 0, from
above results, we know that Tx = limn→∞Trnx. On the other hand, from ‖xn−Trnxn‖ → 0, we
also get limn→∞Trnx = x, so that x ∈ F(T) =

⋂∞
n=1 F(Trn). That is, the sequence of mappings

{Trn} is uniformly closed. This completes the proof.

Theorem 3.5. Let E be a p-uniformly convex with p ≥ 2 and uniformly smooth Banach space,
and let C be a nonempty closed convex subset of E. Let f and g be two bifunctions from C × C to
R = (−∞,+∞) satisfying (A1)–(A4). Assume that {αn}∞n=0, {βn}∞n=0, {γn}∞n=0, and {δn}∞n=1 are four
sequences in [0, 1] such that αn+βn+γn+δn = 1, limn→∞αn = 0, limn→∞δn = 0, and 0 < γ ≤ γn ≤ 1
for some constant γ ∈ (0, 1). Let {xn} be a sequence generated by

x0 ∈ C arbitrarily,

yn = J−1
(
αnJx0 + βnJxn + γnJTrnxn + δnJSrnxn

)
, n ≥ 1,

Cn =
{
z ∈ Cn−1 : φ

(
z, yn

) ≤ (1 − αn)φ(z, xn) + αnφ(z, x0)
}
, n ≥ 1,

C0 = C,

xn+1 = ΠCnx0, n ≥ 0,

(3.24)

where

Tr(x) =
{
z ∈ C : f

(
z, y

)
+
1
r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C

}
, ∀x ∈ E,

Sr(x) =
{
z ∈ C : g

(
z, y

)
+
1
r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C

}
, ∀x ∈ E,

(3.25)

and limn→∞rn = r > 0. Assume that the mappings Tn and Sn satisfy the asymptotically condition.
Then {xn} converges strongly to q = ΠEP(f)∩∩EP(g)x0.

Proof. By Lemma 3.4, {Trn}∞n=1, {Srn}∞n=1 are uniformly closed; therefore, by using Theorem 2.2
and Lemma 3.2, we can obtain the conclusion of Theorem 3.5. This completes the proof.

When αn ≡ 0, δn ≡ 0 in the Theorem 3.5, we obtain the following result.

Theorem 3.6. Let E be a p−uniformly convex with p ≥ 2 and uniformly smooth Banach space, and
let C be a nonempty closed convex subset of E. Let f be a bifunction from C × C to R = (−∞,+∞)
satisfying (A1)–(A4). Assume that {αn}∞n=0 is a sequences in [0, 1] such that 0 ≤ αn ≤ α < 1 for some
constant α ∈ (0, 1). Define a sequence {xn} in C by the following algorithm:

x0 ∈ C arbitrarily,

yn = J−1(αnJxn + (1 − αn)JTrnxn), n ≥ 1,

Cn =
{
z ∈ Cn−1 : φ

(
z, yn

) ≤ φ(z, xn)
}
, n ≥ 1,

C0 = C,

xn+1 = ΠCnx0, n ≥ 0,

(3.26)

where limn→∞rn = r > 0. Then {xn} converges strongly to q = ΠEP(f)x0.
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4. Applications for Maximal Monotone Operators

In this section, we apply our above results to prove some strong convergence theorem con-
cerning maximal monotone operators in a Banach space E.

Let A be a multivalued operator from E to E∗ with domain D(A) = {z ∈ E : Az/= ∅}
and range R(A) = {z ∈ E : z ∈ D(A)}. An operator A is said to be monotone if

〈
x1 − x2, y1 − y2

〉 ≥ 0 (4.1)

for each x1, x2 ∈ D(A) and y1 ∈ Ax1, y2 ∈ Ax2. A monotone operatorA is said to be maximal
if it’s graph G(A) = {(x, y) : y ∈ Ax} is not properly contained in the graph of any other
monotone operator. We know that if A is a maximal monotone operator, then A−10 is closed
and convex. The following result is also wellknown.

Theorem 4.1. Let E be a reflexive, strictly convex, and smooth Banach space, and letA be a monotone
operator from E to E∗. ThenA is maximal if and only if R(J + rA) = E∗. for all r > 0.

Let E be a reflexive, strictly convex, and smooth Banach space, and letA be a maximal
monotone operator from E to E∗. Using Theorem4.1 and strict convexity of E, we obtain that
for every r > 0 and x ∈ E, there exists a unique xr such that

Jx ∈ Jxr + rAxr. (4.2)

Then we can define a single-valued mapping Jr : E → D(A) by Jr = (J + rA)−1J and such a
Jr is called the resolvent of A, we know that A−10 = F(Jr) for all r > 0.

Theorem 4.2. Let E be a uniformly convex and uniformly smooth Banach space, let A be a maximal
monotone operator from E to E∗, and let Jr be a resolvent ofA for r > 0. Then for any sequence {rn}∞n=1
such that lim infn→∞rn > 0, {Jrn}∞n=1 is a uniformly closed sequence of hemi-relatively nonespansive
mappings.

Proof. Firstly, we show that {Jrn}∞n=1 is uniformly closed. Let {zn} ⊂ E be a sequence such
that zn → p and limn→∞‖zn − Jrnzn‖ = 0. Since J is uniformly norm-to-norm continuous on
bounded sets, we obtain that

1
rn
(Jzn − JJrnzn) −→ 0. (4.3)

It follows from

1
rn
(Jzn − JJrnzn) ∈ AJrnzn (4.4)

and the monotonicity of A that

〈
w − Jrnzn,w

∗ − 1
rn
(Jzn − JJrnzn)

〉
≥ 0 (4.5)
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for all w ∈ D(A) and w∗ ∈ Aw. Letting n → ∞, we have 〈w − p,w∗〉 ≥ 0 for all w ∈ D(A)
and w∗ ∈ Aw. Therefore, from the maximality of A, we obtain that p ∈ A−10 = F(Jrn) for all
n ≥ 1, that is, p ∈ ⋂∞

n=1 F(Jrn).
Next we show that Jrn is a hemi-relatively nonexpansive mapping for all n ≥ 1. For

any w ∈ E and p ∈ F(Jrn) = A−10, from the monotonicity of A, we have

φ
(
p, Jrnw

)
=
∥∥p∥∥2 − 2

〈
p, JJrnw

〉
+ ‖Jrnw‖2

=
∥∥p∥∥2 + 2

〈
p, Jw − JJrnw − Jw

〉
+ ‖Jrnw‖2

=
∥∥p∥∥2 + 2

〈
p, Jw − JJrnw

〉 − 2
〈
p, Jw

〉
+ ‖Jrnw‖2

=
∥∥p∥∥2 − 2

〈
Jrw − p − Jrnw, Jw − JJrnw

〉 − 2
〈
p, Jw

〉
+ ‖Jrnw‖2

=
∥∥p∥∥2 − 2

〈
Jrnw − p, Jw − JJrnw

〉

+ 2〈Jrnw, Jw − JJrnw〉 − 2
〈
p, Jw

〉
+ ‖Jrnw‖2

≤ ∥∥p∥∥2 + 2〈Jrnw, Jw − JJrnw〉 − 2
〈
p, Jw

〉
+ ‖Jrnw‖2

=
∥∥p∥∥2 − 2

〈
p, Jw

〉
+ ‖w‖2 − ‖Jrnw‖2 + 2〈Jrnw, Jw〉 − ‖w‖2

= φ
(
p,w

) − φ(Jrnw,w)

≤ φ
(
p,w

)
.

(4.6)

This implies that Jrn is a hemi-relatively nonexpansive mapping for all n ≥ 1. This completes
the proof.

Theorem 4.3. Let E be a uniformly convex and uniformly smooth Banach space, let A and B be two
maximal monotone operators from E to E∗ with nonempty common zero point set A−1(0)∩B−1(0), let
JAr be a resolvent of A and JBr a resolvent of B for r > 0. Assume that {αn}∞n=0, {βn}∞n=0, {γn}∞n=0, and
{δn}∞n=1 are four sequences in [0, 1] such that αn + βn + γn = 1, limn→∞αn = 0, limn→∞δn = 0, and
0 < γ ≤ γn ≤ 1 for some constant γ ∈ (0, 1). Let {xn} be a sequence generated by

x0 ∈ C arbitrarily,

yn = J−1
(
αnJx0 + βnJxn + γnJJ

A
rn
xn + δnJJ

B
rn
xn

)
, n ≥ 1,

Cn =
{
z ∈ Cn−1 : φ

(
z, yn

) ≤ (1 − αn)φ(z, xn) + αnφ(z, x0)
}
, n ≥ 1,

C0 = C,

xn+1 = ΠCnx0, n ≥ 0,

(4.7)

where lim infn→∞rn > 0. Assume that the mappings JArn and JBrn satisfy the asymptotically condition.
Then {xn} converges strongly to q = ΠA−1(0)∩B−1(0)x0.
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Proof. From Theorem 4.2, {Jrn}∞n=1 is uniformly closed countable family of hemi-relatively
nonexpansive mappings, on the other hand, A−1(0) =

⋂∞
n=1 F(Jrn), by using Theorem 2.2, we

can obtain the conclusion of Theorem 4.3.

When αn ≡ 0, δn ≡ 0 in Theorem 4.3, we obtain the following result.

Theorem 4.4. Let E be a uniformly convex and uniformly smooth Banach space, let A be a maximal
monotone operator from E to E∗ with nonempty zero point set A−1(0), and let Jr be a resolvent of A
for r > 0. Assume that {αn}∞n=0 is a sequence in [0, 1] such that 0 ≤ αn ≤ α < 1 for some constant
α ∈ (0, 1). Define a sequence {xn} in C by the following algorithm:

x0 ∈ C arbitrarily,

yn = J−1(αnJxn + (1 − αn)JJrnxn), n ≥ 1,

Cn =
{
z ∈ Cn−1 : φ

(
z, yn

) ≤ φ(z, xn)
}
, n ≥ 1,

C0 = C,

xn+1 = ΠCnx0, n ≥ 0,

(4.8)

where lim infn→∞rn > 0. Then {xn} converges strongly to q = ΠA−1(0)x0.

5. Examples

Firstly, we give an example which is hemi-relatively nonexpansive mapping but not weak
relatively nonexpansive mapping.

Example 5.1. Let E = Rn and x0 /= 0 be a any element of E. We define a mapping T : E → E as
follows:

T(x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(
1
2
+

1
2n+1

)
x0 if x =

(
1
2
+

1
2n

)
x0,

−x if x /=
(
1
2
+

1
2n

)
x0,

(5.1)

for n = 1, 2, 3, . . .. Next we show that T is a hemi-relatively nonexpansive mapping but no
weak relatively nonexpansive mapping. First, it is obvious that F(T) = {0}. In addition, it is
easy to see that

‖Tx‖ ≤ ‖x‖, ∀x ∈ E. (5.2)
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This implies that

‖Tx‖2 − ‖x‖2 ≤ 2〈0, JTx − Jx〉 = 2
〈
p, JTx − Jx

〉
(5.3)

for all p ∈ F(T). It follows from above inequality that

∥∥p∥∥2 − 2
〈
p, JTx

〉
+ ‖Tx‖2 ≤ ∥∥p∥∥2 − 2

〈
p, Jx

〉
+ ‖x‖2, (5.4)

for all p ∈ F(T) and x ∈ E. That is

φ
(
p, Tx

) ≤ φ
(
p, x

)
, (5.5)

for all p ∈ F(T) and x ∈ E; hence T is a hemi-relatively nonexpansive mapping. Finally, we
show that T is not weak relatively nonexpansive mapping. In fact that, letting

xn =
(
1
2
+

1
2n

)
x0, n = 1, 2, 3, . . . (5.6)

from the definition of T , we have

Txn =
(
1
2
+

1
2n+1

)
x0, n = 1, 2, 3, . . . (5.7)

which implies that ‖xn − Txn‖ → 0 and xn → x0 (xn ⇀ x0) as n → ∞. That is x0 ∈ F̃(T) but
x0 ∈ F(T).

Next, we give an example which is weak relatively nonexpansive mapping but not
relatively nonexpansive mapping.

Example 5.2. Let E = l2, where

l2 =

{
ξ = (ξ1, ξ2, ξ3, . . . , ξn, . . .) :

∞∑
n=1

|ξn|2 < ∞
}
,

‖ξ‖ =

( ∞∑
n=1

|ξn|2
)1/2

, ∀ξ ∈ l2,

〈
ξ, η
〉
=

∞∑
n=1

ξnηn, ∀ξ = (ξ1, ξ2, ξ3, . . . , ξn, . . .), η =
(
η1, η2, η3, . . . , ηn, . . . .

) ∈ l2.

(5.8)
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It is well known that l2 is a Hilbert space, so that (l2)∗ = l2. Let {xn} ⊂ E be a sequence defined
by

x0 = (1, 0, 0, 0, . . .),

x1 = (1, 1, 0, 0, . . .),

x2 = (1, 0, 1, 0, 0, . . .),

x3 = (1, 0, 0, 1, 0, 0, . . .),

...

xn = (ξn,1, ξn,2, ξn,3, . . . , ξn,k, . . .),

(5.9)

where

ξn,k =

⎧
⎨
⎩

1 if k = 1, n + 1,

0 if k /= 1, k /=n + 1,
(5.10)

for all n ≥ 1. Define a mapping T : E → E as follows:

T(x) =

⎧
⎨
⎩

n

n + 1
xn if x = xn (∃n ≥ 1),

−x if x /=xn (∀n ≥ 1).
(5.11)

Conclusion 1. {xn} converges weakly to x0.

Proof. For any f = (ζ1, ζ2, ζ3, . . . , ζk, . . .) ∈ l2 = (l2)∗, we have

f(xn − x0) =
〈
f, xn − x0

〉
=

∞∑
k=2

ζkξn,k = ζn+1 −→ 0, (5.12)

as n → ∞. That is, {xn} converges weakly to x0.

Conclusion 2. {xn} is not a Cauchy sequence, so that, it does not converge strongly to any
element of l2.

Proof. In fact, we have ‖xn −xm‖ =
√
2 for any n/=m. Then {xn} is not a Cauchy sequence.

Conclusion 3. T has a unique fixed point 0, that is, F(T) = {0}.

Proof . The conclusion is obvious.
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Conclusion 4. x0 is an asymptotic fixed point of T .

Proof. Since {xn} converges weakly to x0 and

‖Txn − xn‖ =
∥∥∥∥

n

n + 1
xn − xn

∥∥∥∥ =
1

n + 1
‖xn‖ −→ 0 (5.13)

as n → ∞, so that, x0 is an asymptotic fixed point of T .

Conclusion 5. T has a unique strong asymptotic fixed point 0, so that F(T) = F̃(T).

Proof . In fact that, for any strong convergent sequence {zn} ⊂ E such that zn → z0 and
‖zn − Tzn‖ → 0 as n → ∞, from Conclusion 2, there exists sufficiently large nature number
N such that zn /=xm, for any n,m > N. Then Tzn = −zn for n > N, and it follows from
‖zn − Tzn‖ → 0 that 2zn → 0 and hence zn → z0 = 0.

Conclusion 6. T is a weak relatively nonexpansive mapping.

Proof. Since E = l2 is a Hilbert space, we have

φ(0, Tx) = ‖0 − Tx‖2 = ‖Tx‖2 ≤ ‖x‖2 = ‖x − 0‖2 = φ(0, x), ∀x ∈ E. (5.14)

From Conclusion 2, we have F(T) = F̃(T), then T is a weak relatively nonexpansive mapping.

Conclusion 7. T is not a relatively nonexpansive mapping.

Proof. From Conclusions 3 and 4, we have F(T)/= F̂(T), so that T is not a relatively nonexpan-
sive mapping.
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