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This paper deals with bimatrix games in uncertainty environment based on several types of
ordering, which Maeda proposed. But Maeda’s models was just made based on symmetrical
triangle fuzzy variable. In this paper, we generalized Maeda’s model to the non-symmetrical
environment. In other words, we investigated the fuzzy bimatrix games based on nonsymmetrical
L-R fuzzy variables. Then the pseudoinverse of a nonconstant monotone function was given and
the concept of crisp parametric bimatrix games was introduced. At last, the existence condition
of Nash equilibrium strategies of the fuzzy bimatrix games is proposed and (weak) Pareto
equilibrium of the fuzzy bimatrix games was obtained through the Nash equilibrium of the crisp
parametric bimatrix.

1. Introduction

Nash presented noncooperative game theory [1, 2] based on the assumption that each player
has a well-defined quantitative utility function over a set of the player’s strategy, each player
attempts to optimize his own expected payoffs, and each is assumed to know the extensive
game completely. In this paper, above assumption had been violated involving complex
problems in economics, engineering, social and political sciences due to the difficulty inherent
in defining an adequate payoff function for each player in these types of problems. In other
words, while modeling the noncooperative games, each player can not give the exact payoffs
in practice because of the complexity and uncertainty of the problems. So the gain or payoff
function is not always evaluated by a crisp number. It should be formulated semantically, in
such terms as excellent, good, sufficiently reliable, durable, or resistant. Fortunately, in this
paper, we have another utility to measure the uncertainty: the fuzzy set theory. Indeed, a
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fuzzy variable is used to present the payoffs of the players. For example, one player’s payoff
is about 100 thousand dollars. Since the expected payoffs of the player are fuzzy variable, we
should define new concepts of equilibrium strategy to investigate their properties.

Butnariu [3] started with the work of noncooperative fuzzy games, he proposed a
game to be fuzzy when the players have fuzzy preferences. Campos [4] modeled the two-
person zero-sum games with fuzzy payoffs by fuzzy programming and transformed the
fuzzy programming into a linear programming problems through Yager’s fuzzy variable
ordering method [5]. Nishizaki and Sakawa [6, 7] investigated single- and multiobjective
games and presented max-min algorithm with respect to a degree of attainment of the
aggregated fuzzy goal. Through maximizing the minimum of the fuzzy expected payoff
and fuzzy goal, they transform their model into a fractional programming problem and
compute the fractional programming by a relaxed method., Bector et al. [8, 9] and Vijay e al.
[10, 11] modeled the noncooperative games in uncertainty by fuzzy programming problem
and computed their model by the fuzzy dual programming. Takashi [12, 13] presented three
kinds of equilibrium strategies of fuzzy matrix games based on especial symmetric triangular
fuzzy variable and investigated the existence condition of these equilibrium strategies. But it
is partial acceptance to modeling payoffs by symmetric triangular fuzzy variable.

This paper was going to generalize Maeda’s model and investigate all types of
equilibrium strategies based on more general asymmetric L-R fuzzy variables. Then we
introduce the crisp parametric matrix games and its equilibrium strategies in order to find
the Pareto equilibrium strategies of fuzzy bimatrix games. For that purpose, this paper
is organized as follows. In Section 2, we introduce some basic definitions and notations
about fuzzy set theory. Then, several fuzzy ordering that Ramı́k [14] and Maeda presented
were introduced. And the pseudoinverse of a nonconstant monotone function was given.
In Section 3, we focus on the condition of different equilibrium strategies. Especially, the
relation between the Nash equilibrium strategies of crisp bimatrix parametric games and
Pareto equilibrium strategies of fuzzy bimatrix games is established.

2. Preliminaries

Definition 2.1. A L-R fuzzy variable ã is a fuzzy set defined on the space of real number,
whose membership functions μã : R → [0, 1] as following

μã(x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

L

(

a − x

l

)

, x ≤ a, l ≥ 0,

R

(

x − a

r

)

, x ≥ a, r ≥ 0,
(2.1)

where, L,R : R → [0, 1] are not constant and left continuous function, they satisfy the
followings: (1) L(x) = L(−x), R(x) = R(−x); (2) L(0) = R(0) = 1, L(1) = R(1) = 0; (3) they are
nonincreasing on [0,+∞). The L-R fuzzy variable is denoted by ã = (a, l, r)L-R, a, l and r are
called the center, left extension, and right extension, respectively.

Remark 2.2. Notice that the domains of L(t) and R(t), which are defined in Definition 2.1, are
[0,+∞), respectively. Moreover, for t ∈ [1,+∞), L(t) = R(t) = 0 holds.

We denote the L-R fuzzy variable set as F, for ã ∈ F, α ∈ [0, 1], ãα � {x | μã(x) ≥
α, x ∈ R} is called as α-level set of ã. ã0 � {x | μã(x) > 0, x ∈ R} is called support of ã. In the
following of the paper, we denote aR

α � sup ãα, aL
α � inf ãα, and ãα = [aL

α, a
R
α ].
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Definition 2.3. Let f : [a, b] → [c, d] be a monotone function, where [a, b] and [c, d] are
closed subintervals of the extended real line [−∞,+∞]. The pseudoinverse f (−1)(y) : [c, d] →
[a, b] of f is defined by

f (−1)(y
)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

sup
{

x ∈ [a, b] | f(x) < y
}

, if f(a) < f(b),

sup
{

x ∈ [a, b] | f(x) ≥ y
}

, if f(a) > f(b),

a, if f(a) = f(b).

(2.2)

Example 2.4. Let R(t) be a function defined as Definition 2.1, the graph of R(t) is given in
Figure 1. The graph of the pseudoinverse R(−1)(t) is given in Figure 2. These pictures also
indicate how to construct the pseudoinverse of a non-constant monotone function.

Remark 2.5. According to Remark 2.2 and Definition 2.3, the domains of L(−1)(t) and R(−1)(t)
are [0, 1].

Next, we introduce the extension principle that Zadeh proposed in [15], which has
become an important tool in fuzzy theory and its applications.

Definition 2.6. (i) Let X, Y be two crisp set, F(X) and F(Y ) are two fuzzy variable set defined
on X and Y . The function f : X → Y induces another function ˜f : F(X) → F(Y ) defined on
each fuzzy set ũ on X by

˜f(ũ)
(

y
)

= sup
x∈X, f(x)=y

u(x). (2.3)

Let Xi, i = 1, 2, . . . , n, Y be crisp set, F(∏n
i=1Xi) and F(Y ) are two fuzzy variable set defined

on
∏n

i=1Xi and Y . The function f : X → Y induces another function ˜f : F(∏n
i=1Xi) → F(Y )

defined on each fuzzy set on
∏n

i=1Xi by

˜f(ũ1, ũ2, . . . , ũn)
(

y
)

= sup
f(x1,x2,...,xn)=y

min
i

ui(xi). (2.4)

Based on the extension principle, we introduce the following definitions.

Definition 2.7. Let ã, ˜b ∈ F be L-R fuzzy variables, c ∈ R, then, the membership function of
the sum of two fuzzy variables ã and ˜b, the scalar product of ã and c are defined as following:

(i) μã+˜b(x) = supx=μ+υ min{μã, μ˜b},
(ii) μcã(x) = max{supx=cμμã, 0}, with sup{φ} = − ∝.

Lemma 2.8. Let ã = (a, l, r)L-R, ˜b = (b,m, n)L-R ∈ F be L-R fuzzy variables, c ∈ R+, it holds that

(i) cã = (ca, cl, cr)L-R,

(ii) ã + ˜b = (a + b, l +m, r + n)L-R.

Definition 2.9. Let Rn be n-dimensional Euclidean space, x = (x1, x2, . . . , xn) ∈ Rn, xi ∈ R
(i = 1, 2, . . . , n).
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Figure 1: Monotone function R(t).
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Figure 2: R(t) and its pseudoinverse.

(i) x � y if and only if xi � yi holds,

(ii) x ≤ y if and only if x � y and x /=y holds,

(iii) x < y if and only if xi < yi holds.

Definition 2.10 (see [14]). Let ã, ˜b ∈ F be L-R fuzzy variables, then,

(i) ˜b dominates ã (denote by ã � ˜b) if and only if (aL
α, a

R
α ) � (bLα, b

R
α ) holds with α ∈

[0, 1],

(ii) ˜b strictly dominates ã (denote by ã � ˜b) if and only if ã � ˜b and (aL
α, a

R
α ) ≤ (bLα, b

R
α )

holds with α ∈ [0, 1),

(iii) ˜b strongly dominates ã (denote by ã ≺ ˜b) if and only if (aL
α, a

R
α ) < (bLα, b

R
α ) holds

with α ∈ [0, 1],

(iv) ˜b is equal to ã (denote by ã = ˜b) if and only if (aL
α, a

R
α ) = (bLα, b

R
α ) holds with α ∈

[0, 1].

Theorem 2.11. Let ã = (a, l, r)L-R, ˜b = (b,m, n)L-R ∈ F be L-R fuzzy variables,

(i) ã � ˜b if and only if max{m − l, 0} � b − a and max{r − n, 0} � b − a hold,

(ii) ã ≺ ˜b if and only ifmax{m − l, 0} < b − a and max{r − n, 0} < b − a hold.
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Proof. Just prove (i), the proof of (ii) is similar to (i). Let

μã(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

L

(

a − x

l

)

, x ≤ a, l ≥ 0,

R

(

x − a

r

)

, x ≥ a, r ≥ 0,
μ
˜b(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

L

(

b − x

m

)

, x ≤ b, m ≥ 0,

R

(

x − b

n

)

, x ≥ b, n ≥ 0,
(2.5)

be the membership function of fuzzy variables ã and ˜b (see Figure 3), respectively.
From Definition 2.1, for α ∈ [0, 1], it holds that

α = L

(

a − x

l

)

= L

(

b − y

m

)

= R

(

x − a

r

)

= R

(

x − b

n

)

. (2.6)

By L(0) = R(0) = 1, setting α = 1 it holds that aL
1 = a, bR1 = b. Combining these with

Definition 2.10, it implies that

a ≤ b. (2.7)

By L(1) = R(1) = 0, setting α = 0, it holds that aL
0 = a − l, aR

0 = a + r; bL0 = b −m, bR0 = b + n.
From Definition 2.10, it implies

aL
0 = a − l ≤ bL0 = b −m, aR

0 = a + r ≤ bR0 = b + n. (2.8)

Combining (2.7) and (2.8), we have

max{m − l, 0} � b − a,

max{r − n, 0} � b − a.
(2.9)

Conversely, for any α ∈ [0, 1], it holds (2.6). Using the pseudoinverse of L and R, we
obtain

ãα =
[

aL
α, a

R
α

]

=
[

a − lL(−1)(α), a + rR(−1)(α)
]

,

˜bα =
[

bLα, b
R
α

]

=
[

b −mL(−1)(α), b + nR(−1)(α)
]

.

(2.10)

Then

bLα − aL
α = b −mL(−1)(α) − a + lL(−1)(α) = (b − a) − (m − l)L(−1)(α),

bRα − aR
α = b + nR(−1)(α) − a − rR(−1)(α) = (b − a) − (r − n)R(−1)(α).

(2.11)

From (i) of this Theorem and Remark 2.5, it obviously that aL
α ≤ bLα and aR

α ≤ bRα , in other
words, ã � ˜b.
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Figure 3: the membership function of fuzzy variables ã and ˜b.

Lemma 2.12 (see [16]). Let f(x1, x2, . . . , xn) be any usual continuous function with respect to (x1,
x2, . . . , xn), x̃i, i = 1, 2, . . . , n, be fuzzy variables, and x̃iα = [xL

αi, x
L
αi], i = 1, 2, . . . , n, be corresponding

α-level sets, respectively. Then, for the α-level set of the function ˜f(x̃1, x̃2, . . . , x̃n)with fuzzy variables,
the following relation holds:

(

˜f(x̃1, x̃2, . . . , x̃n)
)

α
=
{

f(x1, x2, . . . , xn) ∈ R | xi ∈
[

xL
iα, x

R
iα

]

, i = 1, 2, . . . , n
}

. (2.12)

In short, one denotes {f(x1, x2, . . . , xn) ∈ R | xi ∈ [xL
iα, x

R
iα], i = 1, 2, . . . , n} by f([xL

iα, x
R
iα]),

i = 1, 2, . . . , n.

3. Equilibrium Strategies of Bimatrix Games with Fuzzy Payoffs

When we apply the game theory to model some practical problems which we encounter in
real world, we have to find the values of payoffs exactly. However, it is difficult to know
the exact values of payoffs and we just know the values of payoffs approximately. In such
situations, we should model the payoffs of the player as a fuzzy variable, so the expected
payoffs of the game should be fuzzy valued. Since there are no concepts of equilibrium
strategies to be accepted widely, it is an important task to define the concepts of equilibrium
strategies and investigate their properties in fuzzy viroment. In this paper, the payoffs of
strategy pair (i, j) ∈ SI × SJ will be modeled as L-R fuzzy variable, such as ã = (a, l, r)L-R,
˜b = (b, h, z)L-R ∈ F.

Definition 3.1. Let M = {1, 2, . . . , m} and N = {1, 2, . . . , n} be sets of all pure strategies of
Player I and Player J , respectively. Their mixed strategies are probability distribution on
their pure strategies. The set of mixed strategies for Player I is represented by

SI =

{

(x1, x2, . . . , xm) ∈ Rm | xi � 0, i = 1, 2, . . . , m,
m
∑

i=1

xi = 1

}

, (3.1)

where Rm is a set of m-dimensional real numbers space. Similarly, the set of mixed strategies
for Player J is represented by

SJ =

{

(

y1, y2, . . . , yn

) ∈ Rn | yi � 0, i = 1, 2, . . . , n,
n
∑

i=1

yi = 1

}

. (3.2)
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Definition 3.2. Let Player I choose a mixed strategy x ∈ SI and Player J choose a mixed
strategy y ∈ SJ . A game is said to be fuzzy bimatrix game if ãij represents the income of
player I and ˜bij represent the incomes of player J , denoted by Γ ≡ ({I, J}, SI , SJ , ˜A, ˜B), where,
the membership function of the payoffs will be given based on the experts’ assessment. The
expected value E(x, y) = xT

˜Ay =
∑m

i=1
∑n

j=1 xiãijyj and E(x, y) = xT
˜By =

∑m
i=1
∑n

j=1 xi
˜bijyj

are called the expected of players. The matrix:

˜A =

⎛

⎜

⎜

⎜

⎝

ã11 · · · ã1n

...
. . .

...

ãm1 · · · ãmn

⎞

⎟

⎟

⎟

⎠

, ˜B =

⎛

⎜

⎜

⎜

⎝

˜b11 · · · ˜b1n
...

. . .
...

˜bm1 · · · ˜bmn

⎞

⎟

⎟

⎟

⎠

(3.3)

is payoff matrix of Player I and Player J , respectively.

In the following of this paper, we denote A = (aij)m×n, L = (lij)m×n, R = (rij)m×n,
AL

0 = A − L, AR
0 = A + R, B = (bij)m×n,H = (hij)m×n, Z = (zij)m×n, B

L
0 = B −H and BR

0 = B +Z.

Definition 3.3 (see [12]). A pair(x∗, y∗) ∈ SI × SJ is called Nash equilibrium strategy of fuzzy
bimatrix game ˜Γ, if it holds that

(i) xT
˜Ay∗ � x∗T

˜Ay∗, x ∈ SI ,

(ii) x∗T
˜By � x∗T ˜By∗, y ∈ SJ .

Definition 3.4 (see [12]). A pair (x∗, y∗) ∈ SI ×SJ is called Pareto equilibrium strategy of fuzzy
bimatrix game ˜Γ, if it holds that

(i) there exists no x ∈ SI such that x∗T
˜Ay∗ � xT

˜Ay∗,

(ii) there exists no y ∈ SJ such that x∗T
˜By∗ � x∗T

˜By.

Definition 3.5 (see [12]). A pair (x∗, y∗) ∈ SI × SJ is called weak Pareto equilibrium strategy
of fuzzy bimatrix game˜Γ, if it holds that

(i) there exists no x ∈ SI such that x∗T
˜Ay∗ ≺ xT

˜Ay∗,

(ii) there exists no y ∈ SJ such that x∗T
˜By∗ ≺ x∗T

˜By.

It is obvious that, if the payoffs of fuzzy bimatrix games are all crisp number, then the
above three definitions coincide with the equilibrium of a crisp bimatrix games. Therefore,
these definitions are natural generalization of the crisp bimatrix games.

Lemma 3.6. Let ˜A = (ãij)m×n be one of fuzzy payoff matrix of fuzzy bimatrix game ˜Γ, for x ∈ SI ,
y ∈ SJ , α ∈ [0, 1], it holds that

(i) xT
˜Ay ∈ F,

(ii) (xT
˜Ay)α = [xTAL

αy, x
TAR

αy].
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Proof. It is easy to obtain (i) from Lemma 2.8. Hence we just prove (ii). Since xTAy is a liner
function with respect to aij , hence it is continuous and increased with respect to aij , from
Lemma 2.12, it is obvious that

(

xT
˜Ay
)

α

=

⎛

⎝

m
∑

i=1

n
∑

j=1

xiãijyj

⎞

⎠

α

=

⎧

⎨

⎩

m
∑

i=1

n
∑

j=1

tij | tij ∈
(

xiãijyj

)

α
, i = 1, 2, . . . , m, j = 1, 2, . . . , n

⎫

⎬

⎭

=

⎧

⎨

⎩

m
∑

i=1

n
∑

j=1

xipijyj | pij ∈
(

ãij

)

α
, i = 1, 2, . . . , m, j = 1, 2, . . . , n

⎫

⎬

⎭

=

⎧

⎨

⎩

m
∑

i=1

n
∑

j=1

xipijyj | pij ∈
[

aij − L(−1)(α)lij , aij + R(−1)(α)rij
]

, i = 1, 2, . . . , m, j = 1, 2, . . . , n

⎫

⎬

⎭

=

⎡

⎣

m
∑

i=1

n
∑

j=1

xi

(

aij − L(−1)(α)lij
)

yj ,
m
∑

i=1

n
∑

j=1

xi

(

aij + R(−1)(α)rij
)

yj

⎤

⎦

=
[

xTAL
αy, x

TAR
αy
]

.

(3.4)

The theorem is proved.

Theorem 3.7. Let ˜Γ ≡ ({I, J}, SI , SJ , ˜A, ˜B) be a bimatrix game with fuzzy payoffs, a pair (x∗, y∗) ∈
SI × SJ is the Nash equilibrium strategy of game ˜Γ if and only if the following inequalities hold with
every x ∈ SI , y ∈ SJ

xTAy∗ � x∗TAy∗, x∗TBy � x∗TBy∗, (3.5)

xTAy∗ − xTLy∗ � x∗TAy∗ − x∗TLy∗, x∗TBy − x∗THy � x∗TBy∗ − x∗THy∗, (3.6)

xTAy∗ + xTRy∗ � x∗TAy∗ + x∗TRy∗, x∗TBy + x∗TZy � x∗TBy∗ + x∗TZy∗. (3.7)

Proof. Let the pair (x∗, y∗) ∈ SI × SJ be Nash equilibrium of game ˜Γ. According to
Theorem 2.11 and Definition 3.3, we have

max
{

x∗TLy∗ − xTLy∗, 0
}

� x∗TAy∗ − xTAy∗, (3.8)

max
{

xTRy∗ − x∗TRy∗, 0
}

� x∗TAy∗ − xTAy∗, (3.9)
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max
{

x∗THy∗ − x∗THy, 0
}

� x∗TBy∗ − x∗TBy, (3.10)

max
{

x∗TZy − x∗TZy∗, 0
}

� x∗TBy∗ − x∗TBy. (3.11)

From (3.8), it indicates that

x∗TLy∗ − xTLy∗ � x∗TAy∗ − xTAy∗, 0 � x∗TAy∗ − xTAy∗. (3.12)

By rearranging, it holds

xTAy∗ − xTLy∗ � x∗TAy∗ − x∗TLy∗, xTAy∗ � x∗TAy∗. (3.13)

In the same way, form (3.9), it holds that

xTRy∗ − x∗TRy∗ � x∗TAy∗ − xTAy∗. (3.14)

By rearranging, it holds

xTRy∗ + xTAy∗ � x∗TAy∗ + x∗TRy∗. (3.15)

By a similar way, from form (3.10) and (3.11), we have

x∗TBy − x∗THy � x∗TBy∗ − x∗THy∗, x∗TBy � x∗TBy∗,

x∗TZy + x∗TBy � x∗TBy∗ + x∗TZy∗.
(3.16)

By rearranging (3.13), (3.15), and (3.16)we get (3.5), (3.6), and (3.7).
Otherwise, according to (3.5), it holds,

0 � x∗TAy∗ − xTAy∗, (3.17)

0 � x∗TBy∗ − x∗TBy. (3.18)

From (3.6), it implies that

x∗TLy∗ − xTLy∗ � x∗TAy∗ − xTAy∗, (3.19)

x∗THy∗ − xTHy∗ � x∗TBy∗ − xTBy∗. (3.20)

From (3.7), it follows that

xTRy∗ − x∗TRy∗ � x∗TAy∗ − xTAy∗, (3.21)

xTZy∗ − x∗TZy∗ � x∗TBy∗ − xTBy∗. (3.22)
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Combining (3.17), (3.19), and (3.21), it holds (3.8) and (3.9). Combining (3.18), (3.20), and
(3.22), it holds (3.10) and (3.11). Therefore, we have Definition 3.3 by Theorem 2.11.

By the above result, from xTAy − xTLy = xTAL
0y, x

TAy + xTRy = xTAR
0 y, x

TBy −
xTHy = xTBL

0y, x
TBy + xTZy = xTBR

0 y with Theorem 3.7, we conclude that a fuzzy bimatrix
game is equivalent to the following three crisp matrix games Γl ≡ ({I, J}, SI , SJ ,A

L
0 , B

L
0 ), Γc ≡

({I, J}, SI , SJ ,A, B), Γr ≡ ({I, J}, SI , SJ ,A
R
0 , B

R
0 ). Then the following holds.

Corollary 3.8. A pair (x∗, y∗) ∈ SI × SJ is equilibrium strategy of bimatrix game ˜Γ if and only if the
pair is still to be the equilibrium strategy of these games Γl, Γc, and Γr .

Remark 3.9. From above existence conditions of equilibrium strategy, it is obvious that the
equilibrium strategy of fuzzy bimatrix games still is equilibrium strategy of three crisp bima-
trix games. It is difficult to satisfy these conditions at the same time, but in following cases,
there exists a equilibrium strategy of the bimatrix games with fuzzy payoffs.

Case 1. The payoff matrix of the bimatrix games are as follows:

aij = k1lij , aij = k2rij , bij = k3hij , bij = k4zij , i = 1, 2, . . . , m, j = 1, 2, . . . , n,
(3.23)

where k1, k2, k3, k4 ∈ (0, 1]. In other words, A = k1L, A = k2R, B = k3H, B = k4Z.

Case 2. If lij = l, rij = r, hij = h, zij = z, i = 1, 2, . . . , m, j = 1, 2, . . . , n, where l, r, h, z ∈ R.

Remark 3.10. In these cases, the fuzzy bimatrix game ˜Γ ≡ ({I, J}, SI , SJ , ˜A, ˜B) is equivalent to
the crisp bimatrix game ˜Γ ≡ ({I, J}, SI , SJ ,A, B).

Theorem 3.11. Let ˜Γ ≡ ({I, J}, SI , SJ , ˜A, ˜B) be a fuzzy bimatrix game, TI(˜Γ), and TJ(˜Γ) are the
sets of the optimal strategy of Player I and Player J , respectively. Then, TI(˜Γ), and TJ(˜Γ) are both
nonempty closed convex set if they are nonempty.

Proof. We just present the proof of the closed convex set of TI(˜Γ), the proof of the closed
convex set of TJ(˜Γ) is similar to the proof of TI(˜Γ).

Let us assume x∗ ∈ TI(˜Γ) and y∗ ∈ TJ(˜Γ), then the pair (x∗, y∗) is a equilibrium strategy
of the fuzzy bimatrix games. From Definition 3.3, it is obvious that

x∗T
˜Ay � x∗T

˜Ay∗, y ∈ SJ,

xT
˜By∗ � x∗T

˜By∗, x ∈ SI.
(3.24)

By Theorem 3.7 and Remark 3.9, the pair (x∗, y∗) is also the equilibrium strategy of three
crisp bimatrix games Γl ≡ ({I, J}, SI , SJ ,A

L
0 , B

L
0 ), Γc ≡ ({I, J}, SI , SJ ,A, B), Γr ≡ ({I, J}, SI ,

SJ ,A
R
0 , B

R
0 ). In other words, x∗ ∈ TI(Γl), x∗ ∈ TI(Γc), x∗ ∈ TI(Γr), then, x∗ ∈ TI(Γl)

⋂

TI(Γc)
⋂

TI(Γr).
On the other hand, TI(Γl), TI(Γc), and TI(Γl) are all closed convex set. Therefore, TI(˜Γ)

is a closed convex set.
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Theorem 3.12. Let ˜Γ ≡ ({I, J}, SI , SJ , ˜A, ˜B) be a fuzzy bimatrix game, a pair (x∗, y∗) ∈ SI × SJ is
the Pareto equilibrium strategy of game ˜Γ if and only if

(i) there exists no x ∈ SI such that

x∗T
(

AL
0 , A

R
0

)

y∗ ≤ xT
(

AL
0 , A

R
0

)

y∗, x∗TAy∗ ≤ xTAy∗, (3.25)

(ii) there exists no y ∈ SJ such that

x∗T
(

BL
0 , B

R
0

)

y∗ ≤ x∗T
(

BL
0 , B

R
0

)

y, x∗TBy∗ ≤ x∗TBy. (3.26)

Proof. Let

μãij (x) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

L

(

aij − x

lij

)

, x ≤ aij , lij ≥ 0,

R

(

x − aij

rij

)

, x ≥ aij , rij ≥ 0,

(3.27)

be the membership function of ãij , which is the payoff of Player I based on pure strategy pair
(i, j). If the pair (x∗, y∗) ∈ SI × SJ is the Pareto equilibrium of the game ˜Γ. we assume there
exists a strategy x ∈ SI such that (3.25) holds, that is to say,

x∗T (A − L,A + R)y∗ ≤ xT (A − L,A + R)y∗, x∗TAy∗ ≤ xTAy∗, (3.28)

It implies the following from above:

x∗T (A − L)y∗ ≤ xT (A − L)y∗, x∗T (A + R)y∗ ≤ xT (A + R)y∗. (3.29)

Furthermore, the above two inequalities do not occur simultaneously. Let α ∈ [0, 1], then
L(−1)(α) ∈ [0, 1] and R(−1)(α) ∈ [0, 1] based on Remark 2.5. From above inequalities, it indi-
cates that
(

x∗T
((

1 − L(−1)(α)
)

A + L(−1)(α)(A − L)
)

y∗, x∗T
((

1 − R(−1)(α)
)

A + R(−1)(α)(A + R)
)

y∗
)

≤
(

xT
((

1 − L(−1)(α)
)

A + L(−1)(α)(A − L)
)

y∗, xT
((

1 − R(−1)(α)
)

A + R(−1)(α)(A + R)
)

y∗
)

.

(3.30)

By rearranging, it implies
(

x∗T
(

A − L(−1)(α)L
)

y∗, x∗T
(

A + R(−1)(α)R
)

y∗
)

≤
(

xT
(

A − L(−1)(α)L
)

y∗, xT
(

A + R(−1)(α)R
)

y∗
)

,
(3.31)

that is, x∗T
˜Ay∗ � xT

˜Ay∗, by the Definition 2.10. This is a contradiction.
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By the manner similar to above, there exists no y such that (3.26) holds.
Otherwise, let the pair (x∗, y∗) ∈ SI × SJ satisfies (3.25), (3.26). We assume that there

exists a strategy x ∈ SI such that x∗T
˜Ay∗ � xT

˜Ay∗ holds. From Definition 2.10, for α ∈ [0, 1),
it is obvious that

x∗T
(

AL
α,A

R
α

)

y∗ ≤ xT
(

AL
α,A

R
α

)

y∗. (3.32)

Let α incline to 1 and set α = 0, respectively, it holds

x∗T
(

AL
0 , A

R
0

)

y∗ ≤ xT
(

AL
0 , A

R
0

)

y∗, x∗TAy∗ ≤ xTAy∗. (3.33)

This is a contradiction.
By the similar way, we have there exists no y ∈ SJ such that x∗T

˜By � x∗T
˜By∗.

Theorem 3.13. Let ˜Γ ≡ ({I, J}, SI , SJ , ˜A, ˜B) be a fuzzy bimatrix game, a pair (x∗, y∗) ∈ SI × SJ is
the weak Pareto equilibrium strategy of game ˜Γ if and only if

(i) there exists no x ∈ SI such that

x∗T
(

AL
0 , A,AR

0

)

y∗ < xT
(

AL
0 , A,AR

0

)

y∗, (3.34)

(ii) there exists no y ∈ SJ such that

x∗T
(

BL
0 , B, B

R
0

)

y∗ < x∗T
(

BL
0 , B, B

R
0

)

y. (3.35)

Proof. The proof of this theorem is similar to the Theorem 3.12.

In the following of this paper, we will characterize the crisp parametric matrix games.
Then other types of equilibrium strategy of fuzzy bimatrix games will be investigated
through the crisp parametric matrix games.

Let ˜Γ ≡ ({I, J}, SI , SJ , ˜A, ˜B) be a fuzzy bimatrix game, while Player I chooses pure
strategy i and Player J chooses pure strategy j, we set (1 − λ)(aij − lij) + λ(aij + rij) to be the
payoffs of player I and −[(1 − μ)(bij − hij) + μ(bij + zij)] to be the payoffs of player J , where
λ, μ ∈ [0, 1]. The payoff matrixes of player I and J are

A(λ) = (1 − λ)(A − L) + λ(A + R), B
(

μ
)

=
(

1 − μ
)

(B −H) + μ(B + Z). (3.36)

Then, we have the crisp parametric matrix game Γ(λ, μ) ≡ ({I, J}, SI , SJ ,A(λ), B(μ)), where λ
and μ are parameters.
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Definition 3.14. For λ, μ ∈ [0, 1], the pair (x∗, y∗) ∈ SI ×SJ is called to be the Nash equilibrium
of the crisp parametric bimatrix game Γ(λ, μ), if it holds that

(i) xTA(λ)y∗ � x∗TA(λ)y∗, x ∈ SI ,

(ii) x∗TB(μ)y � x∗TB(μ)y∗, y ∈ SJ .

Lemma 3.15. There exists at least one Nash equilibrium strategy to all crisp parametric bimatrix
game Γ(λ, μ) with λ, μ ∈ [0, 1].

Theorem 3.16. A pair (x∗, y∗) ∈ SI × SJ is the Pareto equilibrium strategy of fuzzy bi-matrix game
˜Γ, it is necessary and sufficient that there exist λ, μ ∈ (0, 1) such that (x∗, y∗) is the Nash equilibrium
strategy of crisp bimatrix game Γ(λ, μ).

Proof. Let (x∗, y∗) be the Nash equilibrium strategy of bimatrix game Γ(λ0, μ0), where λ0, μ0 ∈
(0, 1). For x ∈ SI , from Definition 3.14(i), it holds

(1 − λ0)xTAL
0y

∗ + λ0x
TAR

0 y
∗ � (1 − λ0)x∗TAL

0y
∗ + λ0x

∗TAR
0 y

∗. (3.37)

For y ∈ SJ , from Definition 3.14(ii), it holds

(

1 − μ0
)

x∗TBL
0y + μ0x

∗TBR
0 y �

(

1 − μ0
)

x∗TBL
0y

∗ + μ0x
∗TBR

0 y
∗. (3.38)

First, we assume there exists x ∈ SI such that x∗T
˜Ay∗ � xT

˜Ay∗ holds. From
Definition 2.10, it holds

(

x∗TAL
0y

∗, x∗TAR
0 y

∗
)

≤
(

xTAL
0y

∗, xTAR
0 y

∗
)

. (3.39)

Because x∗TAL
0y

∗ = xTAL
0y

∗ and x∗TAR
0 y

∗ = xTAR
0 y

∗ do not occur simultaneously, we have

(1 − λ0)x∗TAL
0y

∗ + λ0x
∗TAR

0 y
∗ < (1 − λ0)x

TAL
0y

∗ + λ0x
TAR

0 y
∗, λ0 ∈ (0, 1). (3.40)

This contradicts (3.37).
By the similar way, we can conclude a contradiction to (3.38).
On the other hand, let (x∗, y∗) be the Pareto equilibrium strategy of fuzzy bimatrix

game ˜Γ such that conditions (i) and (ii) of Definition 3.4 hold. It show that there is no x ∈ SI

such that

(

x∗TAL
0y

∗, x∗TAR
0 y

∗
)

≤
(

xTAL
0y

∗, xTAR
0 y

∗
)

(3.41)

holds. Then, one of the following cases happens,

Case 1.

x∗T (A − L)y∗ > xT (A − L)y∗ or x∗T (A + R)y∗ > xT (A + R)y∗; (3.42)
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Case 2.

x∗T (A − L)y∗ = xT (A − L)y∗, x∗T (A + R)y∗ = xT (A + R)y∗. (3.43)

If Case 1 happens, without loss of generality, we set x∗T (A − L)y∗ > xT (A − L)y∗. It is
obviously that there exist λ0 ∈ (0, 1) tended to zero such that

(1 − λ0)x∗T (A − L)y∗ + λ0x
∗T (A + R)y∗ > (1 − λ0)x

T (A − L)y∗ + λ0x
T (A + R)y∗, (3.44)

If Case 2 happens, for any λ ∈ (0, 1)

(1 − λ)x∗T (A − L)y∗ + λx∗T (A + R)y∗ ≥ (1 − λ)xT (A − L)y∗ + λxT (A + R)y∗. (3.45)

Both Cases 1 and 2 show that there exists λ0 ∈ (0, 1) such that Definition 3.14 (i) holds.
By the similar way, we have Definition 3.14 (ii).

Theorem 3.17. A pair (x∗, y∗) ∈ SI × SJ is the Weak Pareto equilibrium strategy of fuzzy bimatrix
game ˜Γ, it is necessary and sufficient that there exist λ, μ ∈ [0, 1] such that (x∗, y∗) is the Nash
equilibrium strategy of crisp bimatrix game Γ(λ, μ).

Proof. The proof of this theorem is similar to the Theorem 3.16.

From Theorems 3.16, 3.17 and Lemma 3.15, it is easy to get the followings.

Theorem 3.18. Let ˜Γ be fuzzy bimatrix games.The followings hold

(i) there exists at least one Pareto equilibrium strategy to game ˜Γ;

(ii) there exists at least one weak Pareto equilibrium strategy to game ˜Γ.

4. Conclusion

This paper developed a new theoretical approach to deal with the bimatrix games with fuzzy
payoffs. Especially, Maeda’s models were generalized from symmetric triangular variable
field to asymmetric L-R fuzzy variable field. By investigating crisp parametric bimatrix
games, we presented a method to figure out the Nashe quilibrium strategy and (weak)
Pareto equilibrium strategy of fuzzy bimatrix games. It is also easy to find that all kinds of
equilibrium strategy that we defined are nature extensions of the Nash equilibrium strategy
of crisp bimatrix games.

Recommendations for future work include the development of a procedure to extend
the concept of two-person fuzzy games to n-person fuzzy games. Furthermore, incorporating
the concept of multiobjective decision making with the definition of fuzzy noncooperative
games would allow us to establish the fuzzy multiobjective games, which is desirable for
situations involving complex multiobjective decision-making problems.
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