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A novel fault detection technique is proposed to explicitly account for the nonlinear, dynamic, and
multimodal problems existed in the practical and complex dynamic processes. Just-in-time (JIT)
detection method and k-nearest neighbor (KNN) rule-based statistical process control (SPC)
approach are integrated to construct a flexible and adaptive detection scheme for the control
process with nonlinear, dynamic, and multimodal cases. Mahalanobis distance, representing the
correlation among samples, is used to simplify and update the raw data set, which is the first merit
in this paper. Based on it, the control limit is computed in terms of both KNN rule and SPCmethod,
such that we can identify whether the current data is normal or not by online approach. Noted that
the control limit obtained changes with updating database such that an adaptive fault detection
technique that can effectively eliminate the impact of data drift and shift on the performance
of detection process is obtained, which is the second merit in this paper. The efficiency of the
developed method is demonstrated by the numerical examples and an industrial case.

1. Introduction

Fault has been a constant topic of research for several decades [1–4]. Several fault detection
methods have been developed to solve problems since there exists a growing need for fault
detection in the real process engineering not only from the plant’s safety perspective but also
from considering the quality of the process products [5–7]. Moreover, the existing methods
used to fault detection have been applied into a broad range of areas such as chemical process,
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networked control systems and semiconduction process, and so forth [8–11]. The dynamic
change, multiple mode, and nonlinearity exist objectively in the most of the aforementioned
process, such as semiconduction process, tank reactors, and so forth [9–11], which has
brought new challenges to the analysis and implementation of fault detection. Therefore,
they must be taken into account carefully in developing a high-performance and adaptive
fault identification method to detect the abnormal cases as early as possible.

As summarized in [12], the technologies of process analysis and operation are derived
broadly into two categories: model-based approach and data-based approach. In the model-
based approach, static or dynamic models are built for the process under normal operating
situation. The difference between the actual process output and nominal model’s output is
monitored to determine whether any fault occurs or not [5, 13–18]. Noted that many con-
trol processes are data rich but information poor, which senses the data-based method is
strongly needed to obtain a flexible and high-efficiency detection manger systems. Among
the reported results in the literature, to mention a few, data-driven KNN fault detection
was addressed in [9]. Based on it, [10] proposed an improved principal component analysis
(PCA) KNN technique to implement the fault identification. Noted that data-based fault
monitoring and identification methods were also investigated in [11, 18, 19].

It should be pointed out the nonlinearity, dynamics, and multimode are the inevitable
obstacles for either model-based approach or data-based approach when process detection
is required in the real-world applications. Various methods, including statistical process
control (SPC), multivariate statistical process control (MSPC), qualitative knowledge-based
methods, artificial intelligence, and various integrated methods, have been developed and
performed in the available literature [20–23]. Well known that PCA is used in MSPC widely,
the existing nonlinear PCA method [24, 25], dynamic PCA method [26], and independent
component analysis PCAmethod [18] have been presented to address the nonlinearity, dyna-
mics, and multimode faced by fault detection, respectively. Since JIT is inherently adaptive
in nature, which is achieved by storing the current measured data in the database [27, 28],
and is capable of detecting and diagnosing whether the query is normal or not by on-line
and adaptive approach [19], as shown in Figure 1, data-based JIT method has attracted much
more scholars’ attention in the recent years (see [12]). Reference [12] proposed a data-based
JIT-SPC detection and identification technique, in which the distance was calculated and
checked every time when fault detection need to be conducted. References [9, 10] applied
KNN rule to fault detection for semiconductor manufactory process, in which k-nearest
neighbors were used to tackle the multimodal problem. However, though nonlinear PCA
method [24, 25], dynamic PCA method [26], independent component analysis PCA method
[18], data-based JIT [12, 18, 19], and KNN methods [9, 10] have been reported, the efficient
method which can naturally handle nonlinear correlation among the variables, dynamic
change of the systems and multimodal batch trajectories have not been fully investigated
so far.

As a matter of fact, it is crucial for realizing the desired performance in detection to
determine an appropriate normal operation data stored in database, since too much data will
have heavy load on both storage cost and computation, while, less data naturally effect on the
efficacy of detection technique. How to determine an appropriate raw data set so that cost,
computation complexity, and performance of detection can be compromised is a challenge.
Based on the Mahalanobis distance between samples, the simplification of raw data set is
studied in [29], in which the simplifying procedure is terminated in terms of the desired
number of samples. However, how to determine number of samples that is closely related
to quality of detection was not investigated. Well known to all, data drift and shift exist
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Figure 2: Simplified database-based on-line detection scheme.

in the practical complex dynamic process inevitably, which can be produced due to much
more insuperable causes, such as aging of instrument, variation of temperature, effect of
environment, and difference in the coming materials, and so forth [30]. In this case, some
of queries with drift and shift that might be normal are mistaken for faults, or that might
be fault are falsely identified as normalities. Then, it is of paramount importance to actively
regulate the control limit (CL) by on-line approach, which will surely improve the quality
of fault detection. However, to the best of authors’ knowledge, how to simplify and update
the raw samples set to light the computation load and realize high performance have not
been investigated fully to date. Especially for data-driven fault detection with time-varying
control limit, few results have been available in the literature so far, which motivates the
present study.

The overall goal in this paper is to propose a flexible, adaptive JIT scheme of fault
detection. By computing the Mahalanobis distance between normal samples, as well as
Mahalanobis distance from the query to the normal operation data stored in the database, the
raw data set is simplified and updated. Moreover, the updated database-based time-varying
CL is derived in terms of KNN rule combined with SPC method, such that the judgment is
conducted every time when fault detection is required as shown in Figure 2. Moreover, the
integration of JIT method and KNN technique is well suited for the nonlinear, dynamic and
multimodal fault detection process. Finally, simulation results and industrial case illustrate
the efficiency of the method proposed.

2. Simplifying the Raw Data Set

In this section, we will describe the method of simplifying the raw data set.
In the practical detection of the process, the huge amounts of raw data bring the

serious calculation load and cost spending for fault detection, identification, and diagnosis.
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Since the closer Mahalanobis distance between two samples is, the more similar their basic
features are, we take mean of them to retain the common characteristics, and this mean is put
into the raw data set to replace the original two samples, which can keep the characteristics
of raw data set to the greatest extent [29]. Let X denotes the raw data matrix with n samples
(rows) and m variables (columms). The specific procedure is as follows.

Algorithm 2.1.
Step 1. Let Z(n×m) = X(n×m), and the covariance matrix of X is defined as:V = (vij) =

((xi − xi)
′(xj −xj)/(n−1)). Where xi, xj (i, j = 1, 2, . . . , m) denote the stochastic variables, and

xi and xj denote the mean of them.
Step 2. Calculate the Mahalanobis distance between every sample and all the other

samples stored in data set Z, which is denoted as mdij (i, j = 1, 2, . . . , n) and is placed in
Mahalanobis distance matrix MD(n × n) = (mdij).

Step 3. Find out the minimum and nonzero element in each raw in the matrix MD,
which is placed in row vector v(1 × n), and the place (column number) of each minimum
element in each row is recorded in row vector p(1 × n). Based on it, finding out the minimum
value in v(1×n), and if it’s place in v(1×n) is i andNo. i element is j in vector p(1×n), thenmdij

is the minimum value in the matrix MD(n × n), which presents the minimum Mahalanobis
distance between the sample i and the sample j in raw data set.

Step 4. Let M = Z, and we use the mean of the sample i and the sample j to replace
the sample i, and delete the sample j, then the row number of the matrix Z is reduced a line.
Define Γ = ((zi − zi)

′(zj − zj)/(l − 1)), where zi, zj (i, j = 1, 2, . . . , m), and l denotes the row
number of the matrix Z. If 1 ≥ Trace(Γ)/Trace(V) ≥ ε, where 0 < ε ≤ 1, return to Step 2;
otherwise, M is the simplified data matrix. Exit.

Pseudocode 1 is given.

Remark 2.2. Motivated by PCA [10, 19, 31], where combination of variables that capture the
largest amount of information in data set is found, the inequality 1 ≥ Trace(Γ)/Trace(V) ≥ ε
realizes the preservation and update of the original information to the greatest extent in
Algorithm 2.1. Note that Trace(Γ) and Trace(V) denote the trace of covariance matrix of
simplified or update data set and original data set, respectively, andwell known that Trace(V)
is equal to the sum of all the eigenvalues of matrix V. In this sense that the threshold ε
is selected to maximize the retention of the originally statistical information. For example,
ε = 0.98 means that 98% of the variance in raw data set is represented by the new simplified
data set Z. Obviously, Algorithm 2.1 is a kind of logical and promising way for the data-
driven fault detection.

Remark 2.3. Different from [29], in which though the raw data is reduced based on Maha-
lanobis distance between samples, the subjectively determined number of simplified data
has an essential effect on high-performance detection process. In this paper, the threshold
that limits the extent of reducing the raw data is given, which is a preferable way that com-
promises the accuracy of fault detection and the computation complexity as well as lower
cost.

Remark 2.4. Apparently, simplification and update scheme of raw data set presented for fault
detection also apply to data-driven fault monitoring, diagnosis, and isolation, since the pro-
per number of raw data still need to be determined and data drift and shift still needs to be
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for i = 1 : m
for j = 1 : m

cov(i, j) = sum((x(:, i) −mean(x(:, i))).
∗(x(:, j) −mean(x(:, j))))/(size(x, 1) − 1);

end
end
Z = X;
ss1 = eig(cov);
[sm1, sn1] = size(ss1);
lmd1 = 0

for i = 1 : sm1
lmd1 = lmd1 + ss1(i);

end
while 1
[p, q] = size(Z)
for i = 1 : q

for j = 1 : q
cov(i, j) = sum((z(:, i) −mean(z(:, i))).
∗(z(:, j) −mean(z(:, j))))/(size(z, 1) − 1);

end
end
ss = eig(cov);
[sm, sn] = size(ss)
lmd = 0

for i = 1 : sm
lmd = lmd + ss(i);

end
if lmd/lmd1 < ε||lmd/lmd1 > 1

break
end
[n,m] = size(Z);
d = zeros(n, n);
M = Z;

for i = 1 : n
for j = 1 : n

d(i, j) = d(i, j) + (z(i, :) − z(j, :)) ∗ inv(cov)
∗(z(i, :) − z(j, :))T

end
end
md = zeros(n − 1, n − 1);

for i = 1 : n
for j = 1 : n

if d(i, j) > 0
md(i, j) = d(i, j);

else
md(i, j) = 10000;

end
end

end
[The Min,The Min ID] = min(md′)
v = The Min;
p = The Min ID;
[The Min,The Min ID] = min(v);
i = The Min ID;
j = p(i);
z(i, :) = (z(i, :) + z(j, :))/2;
z(j, :) = [ ];

end

Pseudocode 1
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Figure 3: Flow chart of proposed detection method.

coped with. In this sense that the simplification and update technique suggested in this paper
is quite general.

3. Detection Method

In this section, we will give the fault detection method including off-line and on-line cases as
shown in Figure 3.

3.1. Off-Line Model Building

Algorithm 3.1.
Step 1. Set i = 1, and s is the number of simplified data set.
Step 2. Find k nearest neighbors (see [30]) for each sample i in the simplified data set

and calculate the distances between sample i and its k-nearest neighbors.
Step 3. Estimate the cumulative density function of the above-squared distances by the

function “ksdensity” in Matlab, which is denoted as fi(x).
Step 4. Calculate expectation of the KNN-squared distance based on the obtained

cumulative density function in terms of the definition of expectation, and the expectation
is denoted as Xi.
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Step 5. Set i = i + 1. If i ≤ s, go to Step 2; otherwise, go to Step 6.
Step 6. Estimate the cumulative distribution function of the expectation to obtain the

CL.

Remark 3.2. At Step 2, Euclidean distance is used, which is simple and easy, but any other
distance is also suitable for the method proposed. The obtained CL in Algorithm 3.1 is based
on the statistical test concept in the same way as SPC, in this sense off-line model is cons-
tructed by the KNN rule-based SPC approach.

Remark 3.3. In general, the estimation of probability density function in multidimensional
space is difficultly derived [12]. To overcome this difficulty, we try to estimate the probability
density functions of squared distance and expectation of squared distance in Step 3 and Step
4 from stochastic variable point of view. In addition, expectation of squared distance can be
also obtained by taking an average over squared distances.

Remark 3.4. Since there are similar statistical characteristics for the normal samples and the
distance between the fault sample and the nearest neighboring samples must be greater than
the normal sample’s distance to the nearest neighboring samples [9, 10, 12], setting CL to
detect faults in terms of cumulative distribution function of the expectation is sound and
effective. CL proposed in this paper means that the expectation values of vast majority
distance for the normal samples do not exceed it. For example, 95% control limit means that
the value within which 95% of population of normal operation data (expectation values)
is included. Here, 95% is also called confidence level based on probability and statistical
theory.

3.2. On-Line Fault Detection

Algorithm 3.5.
Step 1. Calculate the distance between the query and k nearest neighbors in the simp-

lified data set.
Step 2. Estimate the cumulative density function of the above-squared distances.
Step 3. Calculate expectation based on the obtained cumulative density function.
Step 4. The query is abnormal if the expectation is beyond its CL, otherwise, this query

is normal.
Step 5. If the query is normal, to update, it can be put into the normal samples database,

which will be also simplified by using the technique described in Algorithm 2.1. In this case,
the updated database is used to compute the new CL to continue to identify the next query
in Step 1.

Remark 3.6. Compared with [9, 10, 12, 19], the technique that simplifies and updates raw data
set is amain contribution in this paper.More importantly, the time-varying CL can be derived,
such that adaptive fault detection can be implemented by on-line approach, which will elimi-
nate the impact of data drift and shift on the quality of fault detection. Different from [18]
wherein just-in-time-learning (JITL) along with two-step independent component analysis
and principal component analysis was studied, in this paper, the database is updated and
simplified. Moreover, note that the amount of database will not randomly increase when nor-
mal queries are added to it. The reason is that Algorithm 2.1 is implemented once the on-line
detection process is completed. In other words, the updated database still can be simplified
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Table 1: Control limits under the different thresholds.

Thresholds Number of left samples Maximum Mahalanobis distance CL
0.99 292 4.8747e − 005 8.1465e − 004
0.95 271 3.0298e − 004 8.7031e − 004
0.6 124 0.0028 0.0026

by virtue of Algorithm 2.1. Obviously, high fault detection capability and low cost can be
owned due to the usage of Algorithms 2.1–3.5.

Remark 3.7. In fact, the difficulties posed by nonlinearity, dynamics, and multiple modes of
control process on fault detection have been addressed explicitly by the detection method
proposed, which comes as no surprise, since the KNN technique, SPC method as well as
on-line and update scheme are integrated.

4. Numerical Examples

In this section, two examples are given to show the effectiveness of the fault detection tech-
nique. The first example aims at the single modal case to show the efficacy of simplified data
set based detection procedure presented in this paper. The second example is used in the
multimodal case to compare with JIT method [12].

Example 4.1. Consider the following dominant nonlinear process mode [9, 10]:

x1 = x2
2 + noise. (4.1)

Firstly, 30 normal runs are operated for verifying themethod of simplifying raw data set. Here
threshold ε = 0.95 is set. By Algorithm 2.1, the 28 samples are left. Figures 4 and 5 show the
raw data set and the simplified data set, respectively.

Continue to operate the system (4.1), we obtain 300 normal data used for the raw data,
5 normal runs used for validation, and 5 faults introduced, which is shown in Figure 6. The
number of nearest neighbors k is set to be 10, and the confidence level is chosen as 99% to
obtain the CL. Table 1 gives the number of left raw data set used for training, the maximum
Mahalanobis distance, and the CL under the different thresholds ε, and the histogram of
simplified raw data and fault detection is shown in Figure 7, where the percentages of left
date to raw data and detected faults to total faults are clearly seen. Here, the maximum
Mahalanobis distance means that the samples with smaller distance than it can be merged
based on Algorithm 2.1. Correspondingly, the detection results under thresholds 0.99, 0.95,
and 0.6 are also shown in Figures 8, 9, and 10, respectively. As illustrated in Figures 7–10, the
amount of left data become gradually less and less and the CL is increasing with the decrease
in threshold, consequently, the effect of fault detection becomes bad as expected.

Note that the threshold ε decided has a significant impact on the detection results,
obviously, the bigger the threshold is, themore accurate detection operates. Simulation results
presented illustrate that defection performance does not suffer degradation by virtue of the
simplified data set. FD-KNN [9] is applied into this nonlinear case, and the detection result is
shown in Figure 11. It should be pointed out though a better detection result is also obtained
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by using FD-KNN approach [9], the raw data set is simplified before implementing the
detection in this paper, which will contribute to the saving storage space and reducing the
computational complexity.

Example 4.2. Considering the following bimodal case [9, 10]:

A y1 = 2y2 + noise,

B y1 = 1.5y2 + 6 + noise.
(4.2)
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The above two cases are operated to produce 200 normal samples, respectively, and
continue to be operated to produce 100 normal samples and 10 faults that are used for the
validation and fault defection, respectively, which is given in Figure 12. For comparative
analysis, 5 normal data and 10 fault data are marked. Similar to Example 4.1, the number
of nearest neighbors k is set to be 10, and the confidence level is chosen as 99% to obtain the
CL.
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Figure 9: Detection result under the threshold ε = 0.95.

By Algorithm 2.1, the raw data set is simplified. Moreover, the simplified data set is
updated by on-line approach when the 100 normal data and 10 faults are detected. As shown
in Table 2, at the end of the detection, the number of left raw data is 358, it is obvious that
the amount of data set is not increased unlimitedly due to the threshold ε = 0.9. There is no
doubt that the on-line and updatemethod proposed in this paper can surely reduce the cost of
data storage and computation load. The detection results by the method in this paper and JIT
method [12] are presented in Figures 13 and 14, respectively. Moreover, the embedded son
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Table 2: Summary of parameters in Example 4.2.

Raw data 400
Threshold 0.99
Left data 358
Confidence level 99%
CL 0.0067
Normal data 100
Fault data 10
Updated data set 344
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Figure 10: Detection result under the threshold ε = 0.6.

figures in Figures 13 and 14 are used to emphasize the CL and the verification of training
data and validation. From Figure 12, the CL is time-varying as the normal and fault data are
identified. Note that since only normal data 33, 34, and 47 are mistaken for faults by the
method proposed, whereas normal data 33, 34, 47, 6, and 62 are mistaken for faults by the
JIT method [12], the better detection result is obtained in this paper using the original and
update CL than the one in [12]. Here, the original CL means CL that is obtained in terms of
simplified database by off-line approach. Comparatively speaking, the threshold determined
subjectively in advance during calculating the sparse distance might partially degrade the
performance of fault detection. Likewise, the tradeoff of storage cost and high detection per-
formance is realized.

5. Case Study

In this section, an AL stack etch process was performed on a commercial scale Lam 9600
plasma etch tool at Texas Instrument, Inc. [9, 32, 33]. The data are taken from MACHINE
DATA, OES DATA, and RFM DATA during three experiments [33]. As pointed out by [9],
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the unique characteristics associated with semiconductor process different from other pro-
duction processes include the unequal batch duration, unequal step duration, and process
drift and shift, therefore, data from the different experiments of the same resource have dif-
ferent mean and different covariance structures, which can be seen more clearly in the case of
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different resources. Due to the multimodal characteristic, the detection process based on the
method proposed in this paper is as follows.

Step 1. Data preprocessing: we choose 10 normal batches and 10 process variables
selected from the three data resources, such that themeaningful results can be obtained. Then,
30 normal batches are stored in the raw database. Further, the data is unfolded as the 2-D
array by using the way in [9].

Step 2. The data set is simplified by Algorithm 2.1.
Step 3. The CL is computed by Algorithm 3.1.
Step 4. Another 15 normal batches are selected for the validation from the three dif-

ferent resources, in which 5 normal batches are used from each of resources. Moreover, 5
faults are also chosen from the intentionally induced during the experiments in the above
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resources for detection. Note that Algorithm 2.1 still can be used to undate the raw data set to
produce the time-varying CL.

Following the aforementioned steps, threshold ε = 0.9 is determined in the detection
for the etch process, and 29 normal batches can be obtained after Step 2. Moreover, the CL
7.9682e + 009 is computed as original CL under confidence level 0.99. Known that if the query
is normal, then it will be put into the simplified data set during identifying the normal data
and fault data. It is worth pointing out the number of data in the database will be not surely
increasing unlimitedly at the same time of updating the database due to Step 4. In this case,
the final number of samples in the database is 36. The detection result is shown in Figure 15,
where all of faults are identified correctly under the time-varying control limit by the method
proposed in this paper. However, note that if raw data set is not updated, all of 5 faults can not
be detected under the original CL computed. It is certain that some original faults with small
data drift due to the effect of temperature and environment can be identified more easily in
terms of the method of updating raw data set by online approach than the methods without
applying the technology of update data set.

6. Conclusion

This research presented aims at highlighting the following two aspects: on one hand, the raw
data set is simplified and updated by JIT approach based on the Mahalanobis distance bet-
ween samples; on the other hand, combining the KNN rule with SPC method, the time-
varying CL can be obtained to solve the nonlinear, multimodal, and data drift and shift prob-
lems existed in the practical case study. Numerical examples and an industrial case study
show that the method proposed is an adaptive, flexible, and high-performance fault detection
technique.
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