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Suppose that E is a real normed linear space, C is a nonempty convex subset of E, T : C → C is a
Lipschitzian mapping, and x∗ ∈ C is a fixed point of T . For given x0 ∈ C, suppose that the sequence
{xn} ⊂ C is the Mann iterative sequence defined by xn+1 = (1−αn)xn+αnTxn, n ≥ 0, where {αn} is a
sequence in [0, 1],

∑∞
n=0 α

2
n < ∞,

∑∞
n=0 αn = ∞. We prove that the sequence {xn} strongly converges

to x∗ if and only if there exists a strictly increasing function Φ : [0,∞) → [0,∞) with Φ(0) = 0
such that lim supn→∞infj(xn−x∗)∈J(xn−x∗){〈Txn − x∗, j(xn − x∗)〉 − ‖xn − x∗‖2 + Φ(‖xn − x∗‖)} ≤ 0.

1. Introduction

Let E be an arbitrary real normed linear space with dual space E∗, and let C be a nonempty
subset of E. We denote by J the normalized duality mapping from E to 2E

∗
defined by

J(x) =
{
f ∈ E∗ :

〈
x, f

〉
= ‖x‖2 = ∥

∥f
∥
∥2

}
, ∀ x ∈ E, (1.1)

where 〈·, ·〉 denotes the generalized duality pairing.
A mapping T : C → E is called strongly pseudocontractive if there exists a constant

k ∈ (0, 1) such that, for all x, y ∈ C, there exists j(x − y) ∈ J(x − y) satisfying

〈
Tx − Ty, j

(
x − y

)〉 ≤ (1 − k)
∥
∥x − y

∥
∥2

. (1.2)
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T is called φ-strongly pseudocontractive if there exists a strictly increasing function φ : [0,∞) →
[0,∞)with φ(0) = 0 such that, for all x, y ∈ C, there exists j(x − y) ∈ J(x − y) satisfying

〈
Tx − Ty, j

(
x − y

)〉 ≤ ∥
∥x − y

∥
∥2 − φ

(∥
∥x − y

∥
∥
)∥
∥x − y

∥
∥. (1.3)

T is called generalized Φ-pseudocontractive (see, e.g., [1]) if there exists a strictly increasing
function Φ : [0,∞) → [0,∞) with Φ(0) = 0 such that

〈
Tx − Ty, j

(
x − y

)〉 ≤ ∥
∥x − y

∥
∥2 −Φ

(∥
∥x − y

∥
∥
)

(1.4)

holds for all x, y ∈ C and for some j(x − y) ∈ J(x − y).
Let F(T) = {x ∈ C : Tx = x} denote the fixed point set of T . If F(T)/= ∅, and (1.3)

and (1.4) hold for all x ∈ C and y ∈ F(T), then the corresponding mapping T is called
φ-hemicontractive and generalized Φ-hemicontractive, respectively. It is well known that these
kinds of mappings play important roles in nonlinear analysis.

φ-hemicontractive (resp., generalized Φ-hemicontractive) mapping is also called uni-
formly pseudocontractive (resp., uniformly hemicontractive) mapping in [2, 3]. It is easy
to see that if T is generalized Φ-hemicontractive mapping, then F(T) is singleton.

It is known (see, e.g., [4, 5]) that the class of strongly pseudocontractive mappings is a
proper subset of the class of φ-strongly pseudocontractive mappings. By takingΦ(s) = sφ(s),
where φ : [0,∞) → [0,∞) is a strictly increasing function with φ(0) = 0, we know that
the class of φ-strongly pseudocontractive mappings is a subset of the class of generalized Φ-
pseudocontractive mappings. Similarly, the class of φ-hemicontractive mappings is a subset
of the class of generalized Φ-hemicontractive mappings. The example in [6] demonstrates
that the class of Lipschitzian φ-hemicontractive mappings is a proper subset of the class of
Lipschitzian generalized Φ-hemicontractive mappings.

It is well known (see, e.g., [7]) that if C is a nonempty closed convex subset of a real
Banach space E and T : C → C is a continuous strongly pseudocontractive mapping, then
T has a unique fixed point p ∈ C. In 2009, it has been proved in [8] that if C is a nonempty
closed convex subset of a real Banach space E and T : C → C is a continuous generalized
Φ-pseudocontractive mappings, then T has a unique fixed point p ∈ C.

Many results have been proved on convergence or stability of Ishikawa iterative
sequences (with errors) or Mann iterative sequences (with errors) for Lipschitzian φ-
hemicontractivemappings or Lipschitzian generalizedΦ-hemicontractive mapping (see, e.g.,
[4–6, 9–12] and the references therein). In 2010, Xiang et al. [6] proved the following result.

Theorem XCZ (see [6, Theorem 3.2]). Let E be a real normed linear space, let C be a nonempty
convex subset of E, and let T : C → C be a Lipschitzian generalizedΦ-hemicontractive mapping. For
given x0 ∈ C, suppose that the sequence {xn} ⊂ C is the Mann iterative sequence defined by

xn+1 =
(
1 − βn

)
xn + βnTxn, n ≥ 0, (1.5)
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where {βn} is a sequence in [0, 1] satisfying the following conditions:

(1)
∑∞

n=0 βn = ∞,

(2)
∑∞

n=0 β
2
n < ∞.

Then {xn} converges strongly to the unique fixed point of T in C.

The main purpose of this paper is to give necessary and sufficient condition for the
Mann iterative sequence which converges to a fixed point of general Lipschitzian mappings
in an arbitrary real normed linear space. As an immediate consequence, we will obtain
necessary and sufficient condition for the Mann iterative sequence which converges to a
solution of a general Lipschitzian operator equation Tx = f .

2. Preliminaries

The following lemmas will be used in the proof of our main results.

Lemma 2.1 (see, e.g., [12]). Let E be a real normed linear space. Then for all x, y ∈ E, we have

∥
∥x + y

∥
∥2 ≤ ‖x‖2 + 2

〈
y, j

(
x + y

)〉
, ∀j(x + y

) ∈ J
(
x + y

)
. (2.1)

Lemma 2.2 (see, e.g., [13]). Let {an}, {bn}, {cn} be three nonnegative sequences satisfying the
following condition:

an+1 ≤ (1 + bn)an + cn, ∀ n ≥ n0, (2.2)

where n0 is some nonnegative integer,
∑∞

n=n0
bn < ∞, and

∑∞
n=n0

cn < ∞. Then the limit limn→∞an

exists.

Lemma 2.3. Suppose that ϕ : [0,∞) → [0,∞) is a strictly increasing function with ϕ(0) = 0 and
there exists a natural number n0 such that an, bn, εn, and αn are nonnegative real numbers for all
n ≥ n0 satisfying the following conditions:

(i) an+1 ≤ (1 + bn)an − αnϕ(an+1) + αnεn, for all n ≥ n0,

(ii)
∑∞

n=n0
bn < ∞, limn→∞εn = 0,

(iii)
∑∞

n=n0
αn = ∞.

Then limn→∞an = 0.

Proof. Without loss of generality, let limn→∞ inf an = a. Now, we will show that a = 0.
Consider its contrary: a > 0 or a = ∞. For any given r ∈ (0, a), there exists a nonnegative
integer n1 ≥ n0 such that an ≥ r > 0 and εn < 1/2ϕ(r) ≤ 1/2ϕ(an+1) for all n ≥ n1. By
condition (i), we have

an+1 ≤ (1 + bn)an − αnϕ(an+1) + αn · 12ϕ(an+1)

= (1 + bn)an − 1
2
αnϕ(an+1)

≤ (1 + bn)an, ∀n ≥ n1.

(2.3)
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Using Lemma 2.2 and condition (ii), we obtain that limn→∞an exists and {an} is bounded.
Suppose that an ≤ M (for all n ≥ n1), where M is a nonnegative constant. It follows that

an+1 ≤ (1 + bn)an − 1
2
αnϕ(an+1) ≤ an − 1

2
αnϕ(r) +Mbn(∀n ≥ n1). (2.4)

Thus,

∞ =
1
2
ϕ(r)

∞∑

n=n1

αn ≤ an1 +M
∞∑

n=n1

bn < ∞, (2.5)

which is a contradiction. Therefore,

lim inf
n→∞

an = 0. (2.6)

By condition (ii), for all ε > 0, there exists a nonnegative integer n2 ≥ n0 such that

εn < ϕ(ε) (∀n ≥ n2),
∞∑

n=n2

bn < ln 2. (2.7)

By (2.6), there exists a natural numberN ≥ n2 such that aN < ε. Now, we prove the following
inequality (2.8) holds for all k ≥ N:

ak ≤ ε · exp
(

k−1∑

n=N

bn

)

. (2.8)

It is obvious that (2.8) holds for k = N. Assuming (2.8) holds for some k ≥ N, we prove that
(2.8) holds for k + 1. Suppose this is not true, that is, ak+1 > ε · exp(∑k

n=N bn). Then ak+1 ≥ ε
and so ϕ(ak+1) ≥ ϕ(ε). Noting that 1 + bk ≤ exp(bk), it follows from condition (i), (2.7), and
(2.8) that

ak+1 ≤ (1 + bk)ak − αkϕ(ak+1) + αkεk

≤ (1 + bk)ak − αkϕ(ε) + αkϕ(ε)

≤ ε · (1 + bk) exp

(
k−1∑

n=N

bn

)

≤ ε · exp
(

k∑

n=N

bn

)

,

(2.9)
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which is a contradiction. This implies that (2.8) holds for k + 1. By induction, (2.8) holds for
all k ≥ N. From (2.7), and (2.8), we have

lim sup
k→∞

ak ≤ ε · exp
( ∞∑

n=N

bn

)

< 2ε. (2.10)

Taking ε → 0, we obtain limn→∞ supak = 0. By (2.6), we have limn→∞ an = 0. This completes
the proof.

Remark 2.4. Lemma 2.3 is different from Lemma 3 in [14], which requires that bn = 0 for all
n ≥ 0. It is also different from Lemma 2.3 in [6], which requires that

∑∞
n=n0

αnεn < ∞.

3. Main Results

Theorem 3.1. LetE be a real normed linear space,C be a nonempty convex subset ofE, let T : C → C
be a Lipschitzian mapping, and let x∗ ∈ C be a fixed point of T . For given x0 ∈ C, suppose that the
sequence {xn} ⊂ C is the Mann iterative sequence defined by

xn+1 = (1 − αn)xn + αnTxn, n ≥ 0, (3.1)

where {αn} is a sequence in [0, 1] satisfying the following conditions:

(i)
∑∞

n=0 α
2
n < ∞,

(ii)
∑∞

n=0 αn = ∞.

Then {xn} converges strongly to x∗ if and only if there exists a strictly increasing function Φ :
[0,∞) → [0,∞) with Φ(0) = 0 such that

lim sup
n→∞

inf
j(xn−x∗)∈J(xn−x∗)

{〈
Txn − x∗, j(xn − x∗)

〉 − ‖xn − x∗‖2 + Φ(‖xn − x∗‖)
}
≤ 0. (3.2)

Proof. First, we prove the sufficiency of Theorem 3.1.
Suppose there exists a strictly increasing function Φ : [0,∞) → [0,∞) with Φ(0) = 0

such that (3.2) holds. Let

γn = inf
j(xn−x∗)∈J(xn−x∗)

{〈
Txn − x∗, j(xn − x∗)

〉 − ‖xn − x∗‖2 + Φ(‖xn − x∗‖)
}
. (3.3)

Then there exists j(xn − x∗) ∈ J(xn − x∗) such that

〈
Txn − x∗, j(xn − x∗)

〉 − ‖xn − x∗‖2 + Φ(‖xn − x∗‖) < γn +
1
n
, ∀n ≥ 1. (3.4)

By (3.2), we obtain limn→∞ sup γn ≤ 0. Taking εn = 1/(n + 1) +max{γn+1, 0} (for all n ≥ 0),
then

lim
n→∞

εn = 0. (3.5)
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From (3.1) and (3.4), by using Lemma 2.1, we obtain

‖xn+1 − x∗‖2

= ‖(1 − αn)(xn − x∗) + αn(Txn − x∗)‖2

≤ (1 − αn)2‖xn − x∗‖2 + 2αn

〈
Txn − x∗, j(xn+1 − x∗)

〉

≤ (1 − αn)2‖xn − x∗‖2 + 2αn

〈
Txn+1 − x∗, j(xn+1 − x∗)

〉

+ 2αn〈Txn − Txn+1, j(xn+1 − x∗)〉

≤ (1 − αn)2‖xn − x∗‖2 + 2αn

[

‖xn+1 − x∗‖2 −Φ(‖xn+1 − x∗‖) + γn+1 +
1

n + 1

]

+ 2Lαn‖xn − xn+1‖ · ‖xn+1 − x∗‖

≤ (1 − αn)2‖xn − x∗‖2 + 2αn

[
‖xn+1 − x∗‖2 −Φ(‖xn+1 − x∗‖) + εn

]

+ 2Lαn‖xn − xn+1‖ · ‖xn+1 − x∗‖,

(3.6)

where L is the Lipschitzian constant of T . It follows from (3.1) that

‖xn − xn+1‖ = ‖αn(xn − Txn)‖
≤ αn(‖xn − x∗‖ + ‖Tx∗ − Txn‖)
≤ αn(1 + L)‖xn − x∗‖.

(3.7)

Substituting (3.7) into (3.6), we have

‖xn+1 − x∗‖2 ≤ (1 − αn)2‖xn − x∗‖2 + 2αn‖xn+1 − x∗‖2 − 2αnΦ(‖xn+1 − x∗‖)

+ 2αnεn + 2L(1 + L)α2
n‖xn − x∗‖ · ‖xn+1 − x∗‖

≤ (1 − αn)2‖xn − x∗‖2 + 2αn‖xn+1 − x∗‖2 − 2αnΦ(‖xn+1 − x∗‖)

+ 2αnεn + L(1 + L)α2
n

(
‖xn − x∗‖2 + ‖xn+1 − x∗‖2

)
.

(3.8)

Setting an = ‖xn − x∗‖2(for all n ≥ 0), ϕ(s) = 2Φ(
√
s), it follows from (3.8) that

an+1 ≤ (1 − αn)2an + 2αnan+1 − αnϕ(an+1) + 2αnεn

+ L(1 + L)α2
n(an + an+1)

=
[
1 − 2αn + α2

n + L(1 + L)α2
n

]
an +

[
2αn + L(1 + L)α2

n

]
an+1

− αnϕ(an+1) + 2αnεn.

(3.9)
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It follows from condition (i) that limn→∞[2αn + L(1 + L)α2
n] = 0. Thus, there exists a natural

number n0 such that 2αn + L(1 + L)α2
n ≤ 1/2 for all n ≥ n0. Let

bn =
1 − 2αn + α2

n + L(1 + L)α2
n

1 − 2αn − L(1 + L)α2
n

− 1 =
α2
n + 2L(1 + L)α2

n

1 − 2αn − L(1 + L)α2
n

, ∀n ≥ n0. (3.10)

Since 1/2 ≤ 1 − 2αn − L(1 + L)α2
n ≤ 1 for all n ≥ n0, by (3.9) and (3.10), we have

an+1 ≤ (1 + bn)an − αnϕ(an+1) + 4αnεn, ∀n ≥ n0,

0 ≤ bn ≤ 2[1 + 2L(1 + L)]α2
n, ∀n ≥ n0.

(3.11)

It follows from condition (i) that
∑∞

n=n0
bn < ∞. Therefore, by (3.5), condition (ii), and

Lemma 2.3, we obtain that limn→∞an = limn→∞‖xn − x∗‖2 = 0. That is, {xn} converges
strongly to x∗.

Finally, we prove the necessity of Theorem 3.1.
Assume that {xn} converges strongly to x∗. Let L be the Lipschitzian constant of T . For

all j(xn − x∗) ∈ J(xn − x∗), we have

∣
∣
〈
Txn − x∗, j(xn − x∗)

〉∣
∣ ≤ L‖xn − x∗‖2. (3.12)

Taking Φ(s) =
√
s, then Φ : [0,∞) → [0,∞) is a strictly increasing function with Φ(0) = 0,

and limn→∞Φ(‖xn − x∗‖) = 0. From (3.12), we obtain

lim
n→∞

inf
j(xn−x∗)∈J(xn−x∗)

{〈
Txn − x∗, j(xn − x∗)

〉 − ‖xn − x∗‖2 + Φ(‖xn − x∗‖)
}
= 0, (3.13)

which implies (3.2) holds. This completes the proof of Theorem 3.1.

Remark 3.2. If T : C → C is a generalized Φ-hemicontractive mapping, then (3.2) holds. By
Theorem 3.1, we obtain Theorem XCZ.

Theorem 3.3. Let E be a real Banach space, let C be a nonempty closed convex subset of E, and let
T : C → C be a Lipschitzian generalized Φ-pseudocontractive mapping. For given x0 ∈ C, suppose
that the sequence {xn} ⊂ C is the Mann iterative sequence defined by

xn+1 = (1 − αn)xn + αnTxn, n ≥ 0, (3.14)

where {αn} is a sequence in [0, 1] satisfying the following conditions:

(1)
∑∞

n=0 αn = ∞,

(2)
∑∞

n=0 α
2
n < ∞.

Then {xn} converges strongly to the unique fixed point of T in C.

Proof. By Theorem 2.1 in [8], T has a unique fixed point x∗ in C. By Theorem 3.1, {xn}
converges strongly to x∗. This completes the proof of Theorem 3.3.
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Theorem 3.4. Let E be a real normed linear space, let S : E → E be a Lipschitzian operator, and let
f ∈ E and x∗ be a solution of the equation Sx = f . For given x0 ∈ E, suppose that the sequence {xn}
is the Mann iterative sequence defined by

xn+1 = (1 − αn)xn + αn

(
f + xn − Sxn

)
, n ≥ 0, (3.15)

where {αn} is a sequences in [0, 1] satisfying the following conditions:

(i)
∑∞

n=0 α
2
n < ∞,

(ii)
∑∞

n=0 αn = ∞.

Then {xn} converges strongly to x∗ if and only if there exists a strictly increasing function Φ :
[0,∞) → [0,∞) with Φ(0) = 0 such that

lim inf
n→∞

sup
j(xn−x∗)∈J(xn−x∗)

{〈
Sxn − Sx∗, j(xn − x∗)

〉 −Φ(‖xn − x∗‖)} ≥ 0. (3.16)

Proof. Define T : E → E by Tx = f + x − Sx. Since Sx∗ = f , we have Tx∗ = x∗. From (3.15),
we obtain xn+1 = (1 − αn)xn + αnTxn, n ≥ 0. Since

〈
Sxn − Sx∗, j(xn − x∗)

〉 −Φ(‖xn − x∗‖)

= −
{〈

Txn − x∗, j(xn − x∗)
〉 − ‖xn − x∗‖2 + Φ(‖xn − x∗‖)

}
.

(3.17)

Therefore,

lim inf
n→∞

sup
j(xn−x∗)∈J(xn−x∗)

{〈
Sxn − Sx∗, j(xn − x∗)

〉 −Φ(‖xn − x∗‖)}

= −lim sup
n→∞

inf
j(xn−x∗)∈J(xn−x∗)

{〈
Txn − x∗, j(xn − x∗)

〉 − ‖xn − x∗‖ + Φ(‖xn − x∗‖)}.
(3.18)

The condition (3.16) is equivalent to condition (3.2). Since S is a Lipschitzian operator, T
is a Lipschitzian mapping. By Theorem 3.1, Theorem 3.4 holds. This completes the proof of
Theorem 3.4.
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