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By using the matrix decomposition and the reverse order law, we provide some new expressions
of the Drazin inverse for any 2 × 2 block matrix with rank constraints.

1. Introduction

Let A be a square complex matrix. The symbols r(A) and A† stand for the rank and the
Moore-Penrose inverse of thematrixA, respectively. The Drazin inverseAD ofA is the unique
matrix satisfying

Ak+1AD = Ak, ADAAD = AD, AAD = ADA, (1.1)

where k = ind(A) is the index of A, the smallest nonnegative integer such that r(Ak+1) =
r(Ak). We write Aπ = I −AAD.

The Drazin inverse of a square matrix plays an important role in various fields
like singular differential equations and singular difference equations, Markov chains, and
iterative methods.

The problem of finding explicit representations for the Drazin inverse of a complex
block matrix,

M =
(
A B
C D

)
(1.2)

in terms of its blocks was posed by Campbell and Meyer [1, 2] in 1979. Many authors have
considered this problem and have provided formulas forMD under some specific conditions
[3–6].
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In this paper, under rank constraints, we will present some new representations ofMD

which have not been discussed before.

2. Preliminary

Lemma 2.1 (see [4]). Let P and Q be square matrices of the same order.
If PQ = 0, then

(P +Q)D = Qπ

[
k−1∑
i=0

Qi
(
PD
)i]

PD +QD

[
k−1∑
i=0

(
QD
)i
P i

]
Pπ, (2.1)

wheremax{ind(P), ind(Q)} ≤ k ≤ ind(P) + ind(Q).
If PQ = 0 and QP = 0, then (P +Q)D = PD +QD.

Lemma 2.2 (see [7]). Let

M1 =
(
A 0
C B

)
, M2 =

(
B C
0 A

)
, (2.2)

where A, B are square matrices with ind(A) = r, ind(B) = s. Then

MD
1 =

(
AD 0
X BD

)
, MD

2 =
(
BD X
0 AD

)
, (2.3)

where

X =
(
BD
)2[r−1∑

i=0

(
BD
)i
CAi

]
Aπ + Bπ

(
s−1∑
i=0

BiC
(
AD
)i)(

AD
)2 − BDCAD. (2.4)

Lemma 2.3 (see [8]). Let A = A1A2 · · ·An, X = AD
n A

D
n−1 · · ·AD

1 . Then X = AD if and only if
A1, A2, . . . , An, A satisfy

r

(
(−1)nA2k+1 AkE

E
T
Ak N

)
= r
(
Ak
)
+ r
(
Ak

1

)
+ · · · + r

(
Ak

n

)
, (2.5)

where Ai ∈ Cm×m, i = 1, 2, . . . , n, E = (0, . . . , 0, Im) ∈ Cm×m(n+1) and

N =

⎛
⎜⎜⎜⎜⎝

A2k+1
1 Ak

1
...

...
A2k+1

n Ak
nA

k
n−1

Ak
n

⎞
⎟⎟⎟⎟⎠, (2.6)

with k = max{ind(Ai), ind(A)}, 1 ≤ i ≤ n.
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Lemma 2.4 (see [9]). Let A ∈ Cm×n, B ∈ Cm×k, C ∈ Cl×n. Then

r

(
A B
C 0

)
= r(B) + r(C) + r

[(
Im − BB†

)
A
(
In − C†C

)]
. (2.7)

3. Main Results

In this section, with rank equality constraints, we consider the Drazin inverse of block
matrices.

Let M =
(
A B
C D

)
, where A ∈ Cm×m is invertible and D − CA−1B ∈ Cn×n is singular. It is

easy to verify thatM can be decomposed as

M =
(

Im 0
CA−1 In

)(
A 0
0 D − CA−1B

)(
Im A−1B
0 In

)
= M1M2M3. (3.1)

Let

E = (0, 0, 0, Im+n), N =

⎛
⎜⎜⎜⎝

M2k+1
1 Mk

1
M2k+1

2 Mk
2M

k
1

M2k+1
3 Mk

3M
k
2

Mk
3

⎞
⎟⎟⎟⎠, (3.2)

where k = max{ind(M2), ind(M)}. According to Lemma 2.3, we have the following
theorem.

Theorem 3.1. LetM =
(
A B
C D

)
, whereA ∈ Cm×m is invertible andD −CA−1B ∈ Cn×n is singular. If

r
(
Mk
)
+ r

(
Mk

2M
−1
1 FMk 0
0 EMkM−1

3 Mk
2

)
= r
(
Mk

2

)
, (3.3)

where k = max{ind(M2), ind(M)}, EMk = I − Mk(Mk)†, FMk = I − (Mk)†Mk, then MD has
the following form:

MD =

(
AD +A−1B

(
D − CA−1B

)D
CA−1 −A−1B

(
D − CA−1B

)D
−(D − CA−1B

)D
CA−1 (

D − CA−1B
)D

)
. (3.4)

Proof. From Lemma 2.3 and (3.1), we know that if

r

(−M2k+1 MkE
ETMk N

)
= r
(
Mk
)
+ r
(
Mk

1

)
+ r
(
Mk

2

)
+ r
(
Mk

3

)
, (3.5)
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where k = max{ind(M2), ind(M)}, then

MD = M−1
3 MD

2 M
−1
1 =

(
Im −A−1B
0 In

)(
AD 0
0
(
D − CA−1B

)D
)(

Im 0
−CA−1 In

)

=

(
AD +A−1B

(
D − CA−1B

)D
CA−1 −A−1B

(
D − CA−1B

)D
−(D − CA−1B

)D
CA−1 (

D − CA−1B
)D

)
.

(3.6)

Note that

r

(−M2k+1 MkE
ETMk N

)
= r

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−M2k+1 0 0 0 Mk

0 0 0 M2k+1
1 Mk

1

0 0 M2k+1
2 Mk

2M
k
1 0

0 M2k+1
3 Mk

3M
k
2 0 0

Mk Mk
3 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= r

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 Mk+1Mk
3 0 0 Mk

0 0 0 M2k+1
1 Mk

1

0 0 M2k+1
2 Mk

2M
k
1 0

0 M2k+1
3 Mk

3M
k
2 0 0

Mk Mk
3 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= r

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 Mk

0 −Mk
1MMk

3 0 M2k+1
1 Mk

1

0 0 M2k+1
2 Mk

2M
k
1 0

0 M2k+1
3 Mk

3M
k
2 0 0

Mk Mk
3 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(3.7)

Let

G =
(
0, 0, 0,Mk

)
, J =

⎛
⎜⎜⎝

0
0
0

Mk

⎞
⎟⎟⎠, H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−Mk
1MMk

3 0 M2k+1
1 Mk

1

0 M2k+1
2 Mk

2M
k
1 0

M2k+1
3 Mk

3M
k
2 0 0

Mk
3 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.8)
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From Lemma 2.4, we have

r

(
0 G
J H

)
= r

(
H J
G 0

)
= r(J) + r(G) + r

[(
I4m − JJ†

)
H
(
I4m −G†G

)]

= 2r
(
Mk
)
+ r
[(

I4m − JJ†
)
H
(
I4m −G†G

)]
.

(3.9)

Note that J† = (0, 0, 0, (Mk)†), G† =

( 0
0
0

(Mk)
†

)
. Then we get

(
I4m − JJ†

)
H
(
I4m −G†G

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−Mk
1MMk

3 0 M2k+1
1 Mk

1

[
I4m − (Mk

)†
Mk
]

0 M2k+1
2 Mk

2M
k
1 0

M2k+1
3 Mk

3M
k
2 0 0

[
I4m −Mk

(
Mk
)†]

Mk
3 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(3.10)

Let EMk = I4m −Mk(Mk)†, F = I4m − (Mk)†Mk. Then (I4m − JJ†)H(I4m −G†G) can be
rewritten as the following three matrix products:

⎛
⎜⎜⎝

Mk
1 0 0 0

0 Im 0 0
0 0 Mk

3 0
0 0 0 Im

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

−M 0 M1 Fk
M

0 M2k+1
2 Mk

2 0
M3 Mk

2 0 0
Ek
M 0 0 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝

Mk
3 0 0 0

0 Im 0 0
0 0 Mk

1 0
0 0 0 Im

⎞
⎟⎟⎠. (3.11)

Since M1,M3 is nonsingular, then

r
[(

I4m − JJ†
)
H
(
I4m −G†G

)]

= r

⎛
⎜⎜⎝

−M 0 M1 FMk

0 M2k+1
2 Mk

2 0
M3 Mk

2 0 0
EMk 0 0 0

⎞
⎟⎟⎠

= r

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−M 0 Im+n FMk

0 M2k+1
2 Mk

2M
−1
1 0

Im+n M−1
3 Mk

2 0 0

EMk 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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= r

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 M1M
k+1
2 Im+n FMk

0 M2k+1
2 Mk

2M
−1
1 0

Im+n M−1
3 Mk

2 0 0

0 −EMkM−1
3 Mk

2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= r

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 M1M
k+1
2 Im+n FMk

0 0 0 −Mk
2M

−1
1 FMk

Im+n M−1
3 Mk

2 0 0

0 −EMkM−1
3 Mk

2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= r

⎛
⎜⎜⎝

0 0 Im+n 0
0 0 0 −Mk

2M
−1
1 FMk

Im+n 0 0 0
0 −EMkM−1

3 Mk
2 0 0

⎞
⎟⎟⎠

= 2(m + n) + r

(
Mk

2M
−1
1 FMk 0
0 EMkM−1

3 Mk
2

)
.

(3.12)

Thus, we have

r

(−M2k+1 MkE
ETMk N

)

= r

(
0 G
J H

)
= 2r

(
Mk
)
+ 2(m + n) + r

(
Mk

2M
−1
1 FMk 0
0 EMkM−1

3 Mk
2

)
.

(3.13)

From the above equality and the condition (3.3), (3.5) is easily verified.

Let M =
(
A B
C D

)
, where A ∈ Cm×m, D ∈ Cn×n. It is easy to verify that the matrix M can

be decomposed as

M =
(

Im 0
CAD In

)(
A AπB

CAπ S

)(
Im ADB
0 In

)
= A1A2A3, (3.14)

where S = D − CADB is the generalized Schur complement of A inM.
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Let

N1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A2k+1
1 Ak

1

A2k+1
2 Ak

2A
k
1

A2k+1
3 Ak

3A
k
2

Ak
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.15)

where k = max {ind(A2), ind(M)}. Then we have the following theorem.

Theorem 3.2. If AAπB = 0, CAπB = 0, and the matrices A1, A2, A3,M satisfy

r
(
Mk
)
+ r

(
Ak

2A
−1
1 FMk 0
0 EMkA−1

3 Ak
2

)
= r
(
Ak

2

)
, (3.16)

then,

MD =

(
AD +AπBXAD +

(
AπBSD −ADB

)
Y AπB

(
SD
)2 −ADBSD

Y SD

)
, (3.17)

where S = D − CADB, Y = (SD)2[
∑ind(A)−1

i=0 (SD)iCAπAi]Aπ − SDCAD.

Proof. From Lemma 2.3 and (3.14), we get that if

r

(−M2k+1 MkE
ETMk N1

)
= r
(
Mk
)
+ r
(
Ak

1

)
+ r
(
Ak

2

)
+ r
(
Ak

3

)
, (3.18)

then

MD = A−1
3 AD

2 A
−1
1 =

(
Im −ADB
0 In

)(
A AπB

CAπ S

)D(
Im 0

−CAD In

)
. (3.19)

Similar to the proof of Theorem 3.1, we derive that the rank condition (3.18) can be
simplified as (3.16).

Next, we will give the representation for AD
2 . Let

A2 =
(

A 0
CAπ S

)
+
(
0 AπB
0 0

)
= P +Q. (3.20)

Since AAπB = 0, CAπB = 0, and AπAπ = Aπ , then PQ = 0. From Lemma 2.2, we get

QD = 0, PD =
(
AD 0
X SD

)
, where X =

(
SD
)2[ind(A)−1∑

i=0

(
SD
)i
CAπAi

]
Aπ. (3.21)
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From Lemma 2.1 and the fact Qi = 0, i ≥ 2, it follows that

AD
2 = (P +Q)D =

(
Im+n −QQD

)(
Im+n +QPD

)
PD

=
[
Im+n +

(
0 AπB
0 0

)(
AD 0
X SD

)](
AD 0
X SD

)

=
(
Im +AπBX AπBSD

0 In

)(
AD 0
X SD

)

=

(
AD +AπB

(
XAD + SDX

)
AπB

(
SD
)2

X SD

)
.

(3.22)

Substituting AD
2 in (3.19), the conclusion can be obtained.

From Theorem 3.2, we can easily obtain the following corollaries.

Corollary 3.3. If AπB = 0 and the rank equality (3.16) hold, then

MD =
(
AD −ADB

(
X − SDCAD

) −ADBSD

X − SDCAD SD

)
, (3.23)

where S and X are the same as in Theorem 3.2.

Corollary 3.4. If AπB = 0, CAπ = 0, and the rank equality (3.16) hold, then

MD =
(
AD +ADBSDCAD −ADBSD

−SDCAD SD

)
, (3.24)

where S = D − CADB.

Next, we will consider another decomposition of M involving the generalized Schur
complement SB = C −DBDA.

Let M =
(
A B
C D

)
, where A,D ∈ Cm×m. Then M can be decomposed as

M =
(

Im 0
DBD Im

)(
BπA B
SB DBπ

)(
Im 0

BDA Im

)
= V1V2V3, (3.25)

where SB = C −DBDA is the generalized Schur complement of B in M.
Let

E1 = (0, 0, 0, I2m), N2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

V 2k+1
1 V k

1

V 2k+1
2 V k

2 V
k
1

V 2k+1
3 V k

3 V
k
2

V k
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.26)

where k = max{ind(V2), ind(M)}. Then we have the following theorem.
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Theorem 3.5. Let M =
(
A B
C D

)
, where A, D ∈ Cm×m. If BπA = 0, CB = DBDAB and the matrices

V1, V2, V3,M satisfy the following rank equality:

r
(
Mk
)
+ r

(
V k
2 V

−1
1 FMk 0
0 EMkV −1

3 V k
2

)
= r
(
V k
2

)
, (3.27)

then

MD =
(

BX2(XSB −DBD
)

BX2(
I − BDABX

)
X
(
XSB −DBD

) (
I − BDABX

)
X

)
, (3.28)

where X = (DBπ)D.

Proof. From Lemma 2.3 and (3.25), we get that if the following rank condition

r

(−M2k+1 MkE
ETMk N2

)
= r
(
Mk
)
+ r
(
V k
1

)
+ r
(
V k
2

)
+ r
(
V k
3

)
(3.29)

holds, then M = V −1
3 VD

2 V −1
1 . From the same method used in Theorem 3.1, we can verify that

the above condition (3.29) can be reduced to (3.27).
Next, we will give the representation for VD

2 . For BπA = 0, we write

V2 =
(

0 0
SB DBπ

)
+
(
0 B
0 0

)
= P1 +Q1, (3.30)

where SB = C −DBDA.
From the condition CB = DBDAB, we get P1Q1 = 0, according to Lemma 2.2, we have

QD
1 = 0, PD

1 =

⎡
⎣ 0 0(

(DBπ)D
)2
SB (DBπ)D

⎤
⎦. (3.31)

Let X = (DBπ)D. By Lemma 2.1 and the fact Qi
1 = 0, i ≥ 2, we get

VD
2 =

(
I2m −Q1Q

D
1

)(
I2m +Q1P

D
1

)
PD
1

=
[
I2m +

(
0 B
0 0

)(
0 0

X2SB X

)](
0 0

X2SB X

)

=
(
Im + BX2SB BX

0 Im

)(
0 0

X2SB X

)
=
(
BX3SBX BX2

X2SB X

)
.

(3.32)
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Therefore, we get

MD =
(

Im 0
−BDA Im

)(
BX3SBX BX2

X2SB X

)(
Im 0

−DBD Im

)

=
(

BX2(XSB −DBD
)

BX2(
I − BDABX

)
X
(
XSB −DBD

) (
I − BDABX

)
X

)
.

(3.33)

Remark 3.6. In addition to the decompositions of M in (3.14) and (3.25), the matrix M also
can be decomposed as other matrix products involving the generalized Schur complements
SC = B −ACDD or SD = A − BDDC. In these cases, new formulas for MD would be derived
by the method used in this paper.

4. Conclusion

In this paper, we mainly discuss the Drazin inverse of block matrices under rank equality
constraints. Comparing with the existing results, it is obvious that our results have more
strong restrictions, but the methods used in this paper are different from those in previous
relevant paper.
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