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Discriminant analysis (DA) is used for the measurement of estimates of a discriminant function by
minimizing their group misclassifications to predict group membership of newly sampled data. A
major source of misclassification in DA is due to the overlapping of groups. The uncertainty in the
input variables and model parameters needs to be properly characterized in decision making. This
study combines DEA-DA with a sensitivity analysis approach to an assessment of the influence of
banks’ variables on the overall variance in overlap in a DA in order to determine which variables
are most significant. A Monte-Carlo-based sensitivity analysis is considered for computing the
set of first-order sensitivity indices of the variables to estimate the contribution of each uncertain
variable. The results show that the uncertainties in the loans granted and different deposit variables
are more significant than uncertainties in other banks’ variables in decision making.

1. Introduction

The classification problem of assigning observations to one of different groups plays an
important role in decision making. When observations are restricted to one of two groups,
the Binary classification has wide applicability in business environments.

Discriminant analysis (DA) is a classification method that can distinguish the group
membership of a new observation. A group of observations for which the memberships have
already been identified is used for the estimation of a discriminant function by some criteria,
such as the minimization of misclassification. A new sample is classified into one of the
groups based on the gained results [1].

Mangasarian [2] identified that linear programming (LP) could be used to determine
separating hyperplanes, namely, when two set of observations are linearly separable
use linear discriminant function. Freed and Glover [3] and Hand [4] using objectives
such as minimization of the sum of deviations (MSD) or maximization of the minimum
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deviation (MMD) of misclassified observations from the separating hyperplane, when sets of
observations that are not necessarily linearly separable, proposed LP methods for generating
linear discriminant function.

Then a model is based on the goal programming (GP) extension of LP by choosing
different criteria, such as minimizing the maximum deviation, maximizing the minimum
deviation, minimizing the sum of interior deviation, minimizing the sum of deviations,
minimizing misclassified observations, minimizing external deviations, maximizing internal
deviations, maximizing the ratio of internal to external, and hybrid models for which there
are both advantages and deficiencies [5-9].

In DA, LP and other mathematical programming (MP) based approaches are non-
parametric and more flexible than statistical methods [6, 10]. Retzlaff-Roberts [11, 12] and
Tofallis [13] proposed the use of DEA-ratio model for DA. Sueyoshi [14] using a data envel-
opment analysis (DEA) additive model, described a goal programming formulation of DA in
which the proposed model is more directly linked to minimizing the sum of deviations from
the separating hyperplane; this method was named DEA-DA to distinguish it from other DA
and DEA approaches. The original GP version of DEA-DA could not deal with negative data.
Therefore, Sueyoshi [15] extended DEA-DA to overcome this deficiency. This approach was
designed to minimize the total distance of misclassified observations and formulated by two-
stage GP formulations. The number of misclassifications can, however, be considered as mea-
sures of misclassification, in which binary variables indicate whether observations are cor-
rectly or in correctly classified. Bajgier and Hill [16] proposed a Mixed Integer Programming
(MIP) model that included the number of misclassifications in the objective function for the
two-group discriminant problem. Gehrlein [17] and Wilson [18] introduced a MIP approach
for minimizing the number of misclassified observations in multigroup problems. Chang and
Kuo [19] proposed a procedure based on benchmarking model of DEA to solve the two-
group problems. Sueyoshi [20] reformulated DEA-DA by MIP to minimize the total number
of misclassified observations. When an overlap between two groups is not a serious problem,
dropping the first stage of the two-stage MIP approach simplifies the estimation process [21].

Sensitivity analysis provides an understanding of how the model outputs is affected
by changes in the inputs, therefore it can assist to increase the confidence in the model
and its predictions. sensitivity analysis can use in deciding whether inputs estimates are
sufficiently precise to give reliable predictions or we can find the model parameters that can
be eliminated.

Two classes in sensitivity analysis have been distinguished [22].

Local Sensitivity Analysis

Studies how some small variations of inputs around a given value, change the value of the
output. This approach is practical when the variation around a baseline of the input-output
relationship to be assumed linear.

Global Sensitivity Analysis

Takes into account all the variation range of the inputs, and has for aim to apportion output
uncertainty to inputs’ ones. It quantified the output uncertainty due to the uncertainty in
the input parameters. Global sensitivity analysis apportions the output uncertainty to the
uncertainty in the input factors, described typically by probability distribution functions that
cover the factors’ ranges of existence.
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Local methods are less helpful when sensitivity analysis is used to compare the effect
of various factors on the output, as in this case the relative uncertainty of each input should be
weighted. A global sensitivity analysis technique thus incorporates the influence of the whole
range of variation and the form of the probability density function of the input. The variance-
based methods can be considered as a quantitative method for global sensitivity analysis. In
this Study, the Sobol” decomposition in the framework of Monte Carlo simulations (MCS),
[22], which is from the family of quantitative methods for global sensitivity analysis, is
applied to study of the effect of the variability in DA due to the uncertainty in the variables.
The results of the sensitivity analysis can determine which of the variables have a more
dominant influence on the uncertainty in the model output.

This paper is organized as follows: Section 2 briefly introduces the DEA-DA model;
Section 3 describes the sensitivity analysis based on a Monte-Carlo simulation. Section 4
contains an example and the conclusion is provided in Section 5.

2. Data Envelopment Analysis-Discriminant Analysis (DEA-DA)

The two-stage MIP approach [20] is used in this study to describe DEA-DA. We considered
two groups (G; and G,) for which the sum of the two groups has n observations (j = 1,...,n).
Each observation has m independent factors (i = 1,...,m), denoted by r;;. It is necessary to
identify the group membership of each observation before its computation. In the two stage
approach, the computation process consists of classification and overlap identification, and
handling overlap. The first stage is formulated as follows [20].

Stage 1.

Minimize s,

Subject to D (A = A;)rij—d+s>0, jeG,
i=1

S -A)rj—d-s<-e, jeG,

i=1

;(AT +17) =1, 2.1)

G2 2edf, &2A2ef, i=1,...m,

&+E<1, i=1,...,1,
S+ =1,
i=1

d,s : unrestricted, ¢;,¢; € {0,1} and all other variables > 0.

“u
S

Here “d” indicates a discriminant score for group classification and indicates the size of

an overlap between two groups.
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Let A7 (=A" — 1) and d* and s* be an optimal solution of the model (2.1). Then, the

original data set (G) is classified into the following subsets G = G1 UG, = C{UN; UC, U Ny,
where

C1={j€G1

m
Z)L;k Tij >d +s* ,

i=1

c - {]_ . (2.2)

Z)L;k Tij <d*—5*},
i=1
N =G -(Cy, Ny =G, - Co.

Then, we determine that observations in C; belong to G; and the observations of C,
belong to G, because their location is identified from model (2.1). The two subsets N; and
N, consist of the observations have not yet been classified in the first stage.

Stage 2. 1If s* > 0, then the existence of an overlap is identified in the fist stage. In this stage,
we reclassify all of the observations belonging to the overlap (N1 U N) because the group
membership of these observations is still undetermined. The second stage is reformulated as
follows [20]:

Minimize Z li+w Z L,

f€D1 jEDz

Subject to Z()L;r -A)rij—c+Ml; >0, jeN,
i1

m
Z()L:—)Li_)ri]’—c—Mlj < -g, jENz,
i=1

2+ =1,
i=1

(2.3)

G2Mzell, &G2zMNzey, i=1...m,
gr+g <1, i=1,...,m,
AT +)7 >¢,  for some i,

¢ : unrestricted, ¢/ ,&,yj € 10,1}, and all other variables > 0.

Here, the binary variable (I;) counts the number of observations classified incorrectly.
The objective function minimizes the number of such misclassifications. The weight (w)
identifies the importance between G; and G, in terms of the number of observations. In the
presented model (2.3), it is necessary to prescribe a large number (M) and a small number
(¢). The equation ] + A] > ¢ (for some i) indicates that some pairs avoid the occurrence of
Af=0and A; =0.

After gaining an optimal solution on A} and c*, the second stage classifies observations
in the overlap as follows: if 3;"; A* r;; > c*, then the jth observation belongs to Gi, or if
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> A} rij < ¢* — g, then it belongs to G,. Thus, all of the observations in G are classified into
Gi or G; at the end of the second stage.

3. Sensitivity Analysis Based on Monte-Carlo Simulation (MCS)

Sensitivity analysis was created to deal simply with uncertainties in the input variables and
model parameters [22]. The results of an sensitivity analysis can determine which of the input
parameters have a more dominant influence on the uncertainty in the model output [23]. A
variance-based sensitivity analysis, which addresses the inverse problem of attributing the
output variance to uncertainty in the input, quantifies the contribution that each input factor
makes to the variance in the output quantity of interest. A global sensitivity analysis of com-
plex numerical models can be performed by calculating variance-based importance measures
of the input variables, such as the Sobol” indices. These indices are calculated by evaluating
a multidimensional integral using a Monte-Carlo technique. This approach allows analyzing
the influence of different variables and their subsets, the structure of f(x), and so forth.

It is assumed that a mathematical model having n input parameters gathered in an
input vector with a joint probability density function (pdf) can be presented as a model
function:

s=f(r), r=(r,1,...,1,)eU"=[0;1]", thatr;eU"=[0;1]" i=1,...,m; j=1,...,n,
3.1)

where r; = (r1;,72,.--, rm-)T. Because of the variables are affected by several kinds of
heterogeneous uncertainties that reflect the imperfect knowledge of the system, it is assumed
that input variables are independent and that the probability density function p(r) is known,
even if the 7;; are not actually random variables.

The Sobol” sensitivity method explores the multidimensional space of the unknown
input parameters x with a certain number of MC samples. The sensitivity indices are
generated by a decomposition of the model function f in an n-dimensional factor space into
summands of increasing dimensionality [22]:

f(r) = f(re,..., 1) =f0+Z Z Favrai (CqrTgns -, Xg)- (3.2)

i=1 q1<<gi

where the constant fj is the mean value of the function, and the integral of each summand
over any of its independent variables is zero. Due to this property, the summands are
orthogonal to each other in the following form:

fu fill-»~,itf]'1,-~-,jq dr = 0, (il, ey lt) # (jl, e ,jq). (33)

The sensitivity index, Sl;, represents the fractional contribution of a given factor r;
to the variance in a given output variable, s. To calculate the sensitivity indices, the total
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variance, Vs, in the model output, s, is apportioned to all of the input factors, ry,..., 1, as
follows:

V, = j fA(r)dr - f2. (3.4)
Un

By integrating the square of (2.2) and with (2.3), it is possible to decompose the total
variance (3.1) as follows [24]:

Vo= D Vit D Vit D Vit -+ Vigo, (3.5)
i i<h i<h<k

where V; = V[E(s|r; = 1])],
Vin=V[E(s|ti =1}, 15, =1},)] - Vi= Vj, (3.6)

and so on. V[E(s | r; = 1})] is referred to as the variance of the conditional expectation and is
the variance over all of the values of r} in the expectation of s given that r; has a fixed value r}.
This is an intuitive measure of the sensitivity of s to a factor r;, as it measures the amount by
which E(s | 1; = 1}) varies with the value of 1} whilst averaging over the ry,’s, h #i. Following
the above definition for the partial variances, the sensitivity indices are defined as

Vi
Sl = — 3.7
v (37)

Higher order indices can be calculated with a similar approach. With regard to (3.2),
the decomposition of the sensitivity indices can be written in the following form:

m
ZSL + Z SLin+ - +Ship, m=1 (3.8)
i=1

1<i<h<m

The Sobol’” indices are usually computed with a MC simulation. The mean value and
total and partial variance can be derived with Ngim samples in the following [22]:

Nsim

fo= f(x),
Nsim pz:; P
. 1 Nsim ) /\2
Vo= 2. f (%) - o, (3.9)
sim =1
1 Nsim

<)

7t ) () = Fo
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In the later equations, r,, is a sampled variable in U", and

T(Ni)p = (Tlp/ sz, e ,T(—l)p, T(,'+1)p, ey Tmp). (310)

The superscripts (1) and (2) indicate that two different samples are generated and mixed.

4. Illustrative Examples

Classification methods are widely used in economic and finance. They are useful for classi-
fying the sectors based upon their performance in different groups and predict the group
memberships of new firms. Most of researchers used classification methods to classifying the
firms based upon their performance assessment. DA is a classification method that is used
in this study. The purpose of the first stage in DEA-DA is to determine whether there is
an overlap between the two groups. The existence of an overlap is the main source of mis-
classification in DA. By identification of the overlap between two groups, it is possible to
increase the number of observations classified correctly. If there is no overlap, any DA method
may produce an almost perfect classification. However, if there is an overlap, an additional
computation process is needed to deal with such an overlap [20]. So, there is a tradeoff
between computational effort/time and a high level of classification capability.

Misclassification can result as a consequence of an intersection between two groups.
Many researchers have proposed approaches that try to reveal the advantage of identifying
the minimized overlap of two groups for risk management on the classification problem [19,
20, 25, 26]. Given the importance of the banking sector for, in general, the whole economy
and, in particular, for the financial system, in this section, we present an application of the
sensitivity analysis to overlaps, s, on data from a commercial bank of Iran. This assertion is
illustrated numerically for bank branches that have more than 20 and 30 personnel, in two
different examples.

If we wish to take into account the inherent randomness with respect to what the
criteria might experience, we have to bring stochastic characterization into play. The stochas-
tic efficiency assessment of banking branches normally requires performing a set of analyses
on DMUs with a suit of variables as criteria.

At first, we use the additive model to discriminate banking branches. Most models
need to examine both a DEA efficiency score and slacks or an efficiency score measured by
them, which depends upon input-based or output-based measurement. The additive model
[27] aggregates input-oriented and output-oriented measures to produce the efficiency score.
Consequently, the efficiency status is more easily determined by the additive model than by
the radial model.

In two different examples, the real data set consists of 78 and 18 banking branches. This
study selects 31 and 8 branches as inefficient branches, and 47 and 10 branches as efficient
branches, respectively, in example 1 and 2, documented in Tables 1 and 2. For determining
the classifications based on the additive model, three variables of personnel, payable interest,
and non-performing loans are considered as inputs. Nine variables of loans granted, long-
term deposit, current deposit, non-benefit deposit, short-term deposit, received interest, and
received fee are assumed as outputs.
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Figure 1: The relative contributions of different variables on the overlap in DEA-DA in example 1 that the
real data set consists of 78 banking branches.

Then, for sensitivity analysis in DEA-DA, each observation is modeled as random
parameters as follows [28]:

rij = fry (1 + Vri].m), (4.1)

where y,,, and V,,; are the mean value and the coefficients of variation (COV) of the random
parameters, respectively, and a; is generated random parameter with a zero mean that is used
in MC simulation. The determination of the bank branches’ parameters carries a high degree
of uncertainty, and the specification of these parameters can involve a significant degree of
expert judgment. Additionally, the COV of these variables plays an important role in the vari-
ation of the efficiency. Here, the COV of the all of the parameters are assumed to equal 0.05.

To compute the sensitivity indices, the Sobol’ sampling scheme has been used.
Sequences of Sobol” sampling vectors are essentially quasi-random sequences that are defined
as sequences of points that have no intrinsic random properties. In this study, a sensitivity
analysis is applied to assess the influence of the banks’ variables on the overlap.

After one hundred estimates with a sample size of 5000, convergence was seen in
the first-order Sobol” indices derived by a Sobol’ sampling of the uniform criteria spaces
for different banks’ variables. The sensitivity indices, S;, are depicted in Figures 1 and 2.
These figures present the comparison of the first-order indices of the banks’ variables. The
total fraction of the variance captured by the first order functions is approximately 99%. This
indicates that, for this problem, higher order contributions to the Sobol” series are relatively
small. The overall variance in banks’ efficiency is affected by the variances in each of the
random variables. Figure 1 indicates that 54% and 33% of the overall variance in overlap in
DEA-DA is attributable to the variance in loans granted and different deposits, respectively,
while the personnel, received interest, fee, and non-performing loans variables have little
effect. Also, Figure 2 indicates that uncertainties in loans granted and different deposits are
the dominant variables in overlap in DEA-DA.
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Figure 2: The relative contributions of different variables on the overlap in DEA-DA in example 1 that the
real data set consists of 18 banking branches.

5. Conclusions

Due to the inherent complexity and randomness of the data in DEA and problems involving
unpredictable or stochastic variables, a probabilistic analysis may be the most rational
method of analysis. Therefore, in a probabilistic-based approach, the results open the door
to understanding the appropriate estimation of the deciding variables in DEA. In the overlap
in DA, the analytical results show that the loans granted and different deposit variables are
the main sources of uncertainty, while other variables have a relatively small effect. The main
advantage of the used sensitivity analysis approach is that it provides quantified evaluation
of the influence of individual variables in DA, and results may be used for decision making.
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