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Random forests are known to be good for data mining of classification tasks, because random
forests are robust for datasets having insufficient information possibly with some errors. But
applying random forests blindly may not produce good results, and a dataset in the domain of
rotogravure printing is one of such datasets. Hence, in this paper, some best classification accuracy
based on clever application of random forests to predict the occurrence of cylinder bands in
rotogravure printing is investigated. Since random forests could generate good results with an
appropriate combination of parameters like the number of randomly selected attributes for each
split and the number of trees in the forests, an effective data mining procedure considering the
property of the target dataset by way of trial random forests is investigated. The effectiveness of
the suggested procedure is shown by experiments with very good results.

1. Introduction

Because rotogravure printing is used to print in a large volume, it is important to prevent
process delays for higher productivity. But, when rotogravure printing is being performed,
sometimes a series of bands appear in the cylinder of printing machine so that it ruins
the printouts. When this happens, a pressman should do appropriate action to remove the
bands from the cylinder, resulting in process delays up to even several hours. In order
to reduce the delays, preventive maintenance activity is more desirable, if we can predict
possible occurrence of the bands accurately in advance [1]. So many researchers tried to
increase the predictive accuracy for the task [2–5], and decision tree-based methods and
neurocomputing-based methods have been used mostly for the task. It is known that a weak
point of decision trees is relatively poor accuracy compared to other dataminingmethods like
neural networks, because decision trees fragment datasets and prefer majority classes, even
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if the size of available datasets is small. In order to overcome the problem, a large number
of decision trees could be generated for a single dataset based on some random sampling
method and could be used for classification. Random forests [6, 7] are a representative data
miningmethod that uses many trees for that purpose. Random forests are known to be robust
for real world datasets that may not have enough information as well as may have missing
and erroneous data. Because a related dataset called “cylinder bands” is a real world dataset
that contains such properties in the domain of rotogravure printing, and random forests have
different performance depending on the values of parameters of the algorithm with respect
to the property of given dataset, therefore, in this paper we want to find some best predictive
accuracy with random forests to predict the cylinder bands by examining the property of the
dataset by way of trial random forests and effective search.

Several research results have been published to find better classification models for the
so-called “cylinder bands” dataset, after the first paper [2] related to the task was published.
They generated rules based on C4.5 decision tree algorithm [8] to improve the heuristics
that can predict possible occurrence of bands or a series of grooves in the cylinder during
printing. But, because the rules are based on a single decision tree, the prediction accuracy
is somewhat limited. After the first paper, other researchers have tried also to find better
knowledge models with respect to accuracy.

As an effort to find the knowledge models of better performance, fuzzy lattice
neurocomputing (FLN) models based on competitive clustering and supervised clustering
were suggested [3]. Later, the researchers of FLN models found that the data space can be
divided into subspaces based on class values of each data instance. So depending on fitness
of each data instance to data space, five fit algorithms were suggested [4]; FLN tightest fit,
FLN ordered tightest fit, FLN first fit, FLN selective fit, and FLN max tightest fit. A fit is
called tightest, if the lattice-join of any data instance in the same class causes a contradiction.
The FLN tightest fit was the first one among the five FLN models, and the accuracy of FLN
ordered tightest fit is the best accuracy among the fuzzy lattice neurocomputing models. FLN
models have the time complexity of O(n3) to train, which means that it is a polynomial time
algorithm, so it will take some long computing time, if the size of input data is large [9].

Some other researchers tried to find better knowledgemodels of performance based on
randomness in attribute selection and training datasets. Random subspace method [6] tries to
select the subsets of attributes randomly and applies aggregating to find better classification
models. SubBag method [5] tries BAGGING [10] and random subspace method together.
BAGGING stands for Bootstrap AGGregatING. So in BAGGING several equally sized
training sets are made using sampling with replacement, and trained knowledge models vote
for classification or prediction. It was combined with decision tree algorithm based on C4.5
and rule generator named JRip which is based on RIPPER (Repeated Incremental Pruning to
Produce Error Reduction) [11]. According to experiments with a variety of datasets RIPPER
algorithm gave better accuracy and could treat larger datasets than the rule generation
method of C4.5, and the algorithm was known to be robust for noisy datasets also. SubBag
and BAGGING with JRip showed competitive results with FLN tightest fit.

More recently, random forests were tried with some fixed parameter values. Because
each decision tree in random forests is independent, parallel training of each decision tree in
the random forests was tried with a concurrent programming language called erLang [12].
Boström generated the random forests based on decision tree algorithm that uses information
gain [13]. The random forests of 100 trees, 1000 trees, 10,000 trees, and 100,000 trees were
generated and showed comparable results to FLN tightest fit and SubBag method. Table 1
summarizes all the previous works.
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Table 1: Comparison of accuracy for “cylinder bands” data set in different data mining methods.

Number Method Accuracy (%) Year
1 FLN tightest fit [3] 78.33 2000
2 FLN ordered tightest fit [4] 85.56 2003
3 Concurrent random forests [12] 80.19 2011
4 SubBag-JRip [5] 78.15 2007
5 BAGGING-JRip [5] 79.26 2007

Table 2: The accuracy of trial random forests (RF) for each class with different parameters.

(T = 1, R = 39) (T = 100, R = 6) (T = 100, R = 1)
Class accuracy

“Band” 18.4% 70.2% 74.6%
“No band” 92.9% 91.7% 91.7%

Accuracy of RF 61.4815% 82.5926% 84.4444%

2. The Method

2.1. Random Forests

Random forests suggested by Breiman [7] are based on BAGGING, use many decision trees
with some random selection of attributes to split each node in the tree, and do no pruning.
In other words, random forests use bootstrap method [14] in sampling to generate a training
set, and the training set is used to build a tree, and since bootstrap method uses sampling
with replacement, each training set can have some duplicate instances and could compensate
the insufficiency of data to train somewhat.

After sampling some conventional decision tree generation algorithms like C4.5 or
CART can be applied, but without pruning. When random selection of attributes to split each
node is applied, the number of candidate attributes for split is limited by some predefined
number, say R. R may be given by user, or default value can be used. Default R value is
the first integer less than log2A + 1 [7, 15], and the half and double of the number are also
recommended for further search [16]. So, depending on which number is used, the degree of
randomness in tree generation is affected.

The other factor that affects the accuracy of random forests is the number of decision
trees, say T in the forests. Because the trees in the forests are generated samples with random
sampling with replacement, appropriate T value could compensate the insufficiency of data
for training. According to Breiman tens to hundreds of decision trees are enough as T value,
because thousands of trees may not give better performance than the smaller number of
trees in the random forests. Moreover, we may have different accuracy of random forests
depending on how many trees are in the forests, but small difference in the number of trees
may not give different accuracy.

2.2. Optimization Procedure

Decision tree algorithms have the tendency of neglecting minor classes to achieve overall
best accuracy, so smaller R value in random forests can alleviate the tendency. Minor classes
are classes that have less number of instances possibly having more conflicting class values.
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Table 3: The accuracy of random forests for the data set “cylinder bands.”

Number of attr. to
pick randomly (R)

Worst accuracy
(%)

Median accuracy
(%)

Best accuracy
(%)

Number of trees in
random forests resulting
in the best accuracy (T)

12 77.5926 78.5185 79.4444 575
6 82.037 82.7778 83.3333 475, 500
3 83.7037 84.0741 84.4444 200, 500, 675
2 83.7037 84.0741 84.6296 1000
1 84.4444 85.0 85.7407 325

Procedure:
Begin

Check if the grid search could be effective by generating trial random forests;
/∗ |A|: the number of conditional attributes ∗/
R := the double of the first integer less than log2|A| + 1;
I = 100; F = 1000; D = 25;
Do

For t = I to F by increasing D
/∗ Generate random forests of t trees in which R attributes are picked
randomly to split each node ∗/
Generate Random forests (R, t);

End For;
R := the first integer larger than R/2;

Until R = 1;
End.

Procedure 1

Depending on the composition of given datasets, this discrimination of minor or major
can be varied. Note that setting R = (the number of attributes) makes the random forests
conventional decision trees without pruning. Moreover, because preparing training sets
with random sampling with replacement or bootstrapping has the effect of oversampling,
it could duplicate training instances that can result in better accuracy. Therefore, appropriate
combination ofR and T value can generate better results. In other words, because appropriate
T value could supplement training instances for better accuracy and appropriate or smaller
R value could mitigate the decision tree’s property of neglecting minor classes, we could find
best random forests.

We often use the default R value with some fixed T value, because we believe that the
values would be good for their datasets, since the values were often recommended as other
researchers did [12, 17, 18]. But, we understand that the parameters should be set well to
reflect the fact that we may not have enough instances to train.

This is the reason why we generate trial random forests in three different ways: {R
= the number of attributes, T = 1}, {R = the default number of attributes to pick randomly,
T = 100}, {R = 1, T = 100}. Note that with parameter {R = the number of attributes, T = 1}
the splitting criteria of decision tree algorithmwill be used 100% as conventional decision tree
algorithms. By setting R value smaller we can mitigate the splitting criteria so that decision
tree’s property of preferring major classes can be mitigated.
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As for our target dataset, the total number of instances in our target dataset called
“cylinder bands” is 540, and it has two classes, “band” and “no band,” and 39 conditional
attributes like “cylinder number” as nominal attribute and “viscosity” as numeric attribute.
The number of instances in class “band” and “no band” is 228 and 312, respectively. So the
size of the dataset is small. This means that we may not have enough instances for accurate
classification. The procedure to find the best random forests is shown in Procedure 1.

In Procedure 1, there are four parameters to be defined, I, F,D, and R. I represents the
initial number of trees in random forests. F represents the final number of trees in random
forests. D represents the increment of the number of trees in the random forests in the for-
loop. I and F are set 100 and 1000, respectively, in the experiment. I was set 100 to consider
small enough number of trees in the forests. F was set 1,000 because the parameter showed
the best results in average by Boström’s experiment [12]. In the experiment, 100 trees, 1,000
trees, 10,000 trees, and 100,000were generated for 34 datasets with defaultR value and ranked
1 to 4 based on accuracy. The average rank of 100 trees, 1,000 trees, 10,000 trees, and 100,000
trees is 3.12, 2.06, 2.44, and 2.38, respectively. For cylinder bands dataset, the accuracy of 1,000
trees and 100,000 trees is 79.81% and 80.19%, respectively. But, because the rank of 1,000 trees
is the best in average for the 34 datasets, we use 1,000 trees for generalization.Dwas set to 25,
because we found that smaller numbers than 25 generated almost the same accuracies. One
may set smallerD value as R becomes smaller for more searches. R represents the number of
randomly selected attributes to generate each decision tree in random forests. It is initialized
by the double of the first integer less than log2|A| + 1, where |A| is the number of attributes.
The initial value of R was inspired by Breiman’s recommendation, because smaller R value
could generate better results for most cases [16, 19]. But one may set the value as the total
number of attributes, if more through search is necessary. This necessity for rare cases could
be raised by inspecting trial random forests also. For example, if the accuracy of random
forests with {R = the number of attributes, T = 1} is greater than the accuracy of random
forests with {R = the default number of attributes to pick randomly, T = 100} or {R = 1,
T = 100}, we should initialize R with the total number of attributes. On the other hand, if
the accuracy of random forests with {R = 1, T = 100} is greater than the accuracy of random
forests with {R = the default number of attributes to pick randomly, T = 100}, we can set as
above and do the grid search. R value is decreased during iteration. We consider R value to
be up to 1, because the dataset is small, which means we may not have enough information
for accurate classification, so we want randomness in tree building process to be maximized
as the search proceeds. For details about random forests (R, t), you may refer to Breiman’s
[7].

3. Experiments

3.1. Experiments for the Dataset “Cylinder Bands”

The dataset was obtained from UCI machine learning repository [20]. The number of
attributes is 39. Among the 39 attributes, 19 attributes are nominal attributes and the other 20
attributes are numeric attributes. About 4.8% of attribute values is missing.

We first check if our suggested method could find better random forests effectively by
generating trial random forests. If we generate random forests with the parameters (T = 1,
R = 39), the accuracy of the random forests is 61.4815%, and the accuracy of each class is
18.4% for class “band” and 92.9% for class “no band” with 10-fold cross-validation. Because
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Figure 1: ROC curves for R = 6 (a) and R = 1 (b).

Table 4: Confusion matrix.

R = 6 (default) R = 1
TRUE TRUE

Band No band Band No band

Predicted Band 162 66 Predicted Band 177 51
No band 24 288 No band 26 286

Table 5: Comparison of accuracy in other data mining methods.

Number Method Accuracy
(%) Sensitivity Specificity AUC

(%) Remarks

1 FLN tightest fit [3] 78.33 0.6375 0.91 NA 2/3 for training,
1/3 for testing, once

2 FLN ordered
tightest fit [4] 85.56 0.7875 0.91 NA 2/3 for training,

1/3 for testing, once

3 Concurrent random
forests [12] 80.19 NA NA 89.32 10-fold cross

validation

4 SubBag-JRip [5] 78.15 NA NA NA 10-fold cross
validation

5 BAGGING-JRip [5] 79.26 NA NA NA 10-fold cross
validation

6 C4.5 [8] 70.19 0.303 0.994 62.6 10-fold cross
validation

7 Suggested random
forests 85.74 0.7763 0.9167 91.45 10-fold cross

validation

Table 6: The number of attributes and instances of data sets.

Data set The number of attributes The number of instances
Cylinder bands 39 540
Bridges 12 108
Dermatology 33 306
Post Operative 8 90
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Table 7: The accuracy of trial random forests (RF) for each class with different parameters.

Bridges (T = 1, R = 12) (T = 100, R = 4: def.) (T = 100, R = 1)
Accuracy per class

1 0% 0% 0%
2 0% 100% 100%
3 0% 0% 27.3%
4 100% 100% 93.2%
5 0% 15.4% 23%
6 0% 0% 0%
7 0% 50% 60%

Accuracy of RF 41.5094% 63.2075% 65.0943%
Dermatology (T = 1, R = 34) (T = 100, R = 6: def.) (T = 100, R = 1)
Accuracy per class

1 97.3% 100% 100%
2 77% 85.2% 85.2%
3 97.2% 100% 100%
4 87.8% 87.8% 87.8%
5 90.4% 100% 100%
6 85.0% 95.0% 100%

Accuracy of RF 90.9836% 95.6284% 96.4881%
Post Operative (T = 1, R = 8) (T = 100, R = 4: def.) (T = 100, R = 1)
Accuracy per class

1 0% 0% 0%
2 26.7% 4.2% 0%
3 58.1% 85.9% 92.2%

Accuracy of RF 52.2222% 62.2222% 65.5556%

Table 8: The accuracy of random forests for the data set “Bridges.”

Number of attr. to
pick randomly (R)

Worst accuracy
(%)

Median accuracy
(%)

Best accuracy
(%)

Number of trees in random
forests resulting in the best
accuracy (T)

8 53.7736 53.7736 53.7736 All
4 (default) 62.2642 63.2075 63.2075 All except 625, 750, 775, 800, 825
2 64.1509 66.0377 66.9811 200

1 65.0943 66.9811 66.9811 All except 100, 125, 175, 850, 875,
900

the dataset has 39 attributes, it is like conventional decision tree without pruning in which
bootstrap method is applied. So, from the trial random forests, we can understand that the
class “band” has very limited data instances for correct classification.

In order to see if more randomness and bootstrapping may give better results, we
try random forests of parameters like (T = 100, R = 6) and (T = 100, R = 1). Note that
R = �log239 + 1� = 6 is the default value [15] for the number of attributes to pick randomly,
while R = 1 is not. The result is summarized in Table 2.

From Table 1, we can expect that we may find better accuracy as we perform grid
search by giving smaller R and larger T value in generating random forests. In order to find
best possible results, we decrease R value from the initial number of attributes. But, because
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Table 9: The accuracy of random forests for the data set “Dermatology.”

Number of attr. to
pick randomly
(R)

Worst accuracy
(%)

Median accuracy
(%)

Best accuracy
(%)

Number of trees in random
forests resulting in the best
accuracy (t)

12 95.9016 96.4481 96.4481 All except 100, 125, 500, 725,
800, 850 ∼ 1000

6 (default) 95.6284 96.1749 96.4481 950
3 96.4481 96.9945 97.2678 200, 225, 250
2 96.7213 96.9945 97.2678 425

1 96.4481 97.2678 97.541 500, 525, 575, 600, 625,
750 ∼ 950

Table 10: The accuracy of random forests for the data set “Post Operative.”

Number of attr. to
pick randomly
(R)

Worst accuracy
(%)

Median accuracy
(%)

Best accuracy
(%)

Number of trees in random
forests resulting in the best
accuracy (T)

8 60 61.1111 65.5556 100

4 (default) 60 61.1111 62.2222 200, 675, 725, 900, 925, 950,
975, 1000

2 61.1111 63.3333 64.4444 375, 625, 700, 725, 750, 775,
800, 825, 875

1 63.3333 65.5556 65.5556
200, 275, 300, 525, 550, 575,
650, 675, 700, 725, 950, 975,
1000

we do not know exactly which T value will generate the best result for a given R value,
and very small increase in T value may generate the similar accuracy to previous ones, we
increase the T value in given interval as we iterate.

In the experiment 10-fold cross-validation was used. Hence, the dataset is divided into
ten equal subsets and each subset was used for test while nine other subsets were used for
training. Random forests in weka were utilized for the experiment. Weka is a data mining
package written in Java [21]. Table 3 shows the best accuracy based on Procedure 1 in which
R and T were varied.

For each iteration the initial number of trees is 100, and 25 trees are incremented at
each step to find proper number of trees in the forests, and the final number of trees in the
forests is 1000. From the results in Table 3, we can see that we could get better accuracy as R
value decreases. Table 4 shows the confusion matrix of the result for default and suggested R
value.

Figure 1 shows ROC curves for R = 6 and R = 1. AUC for R = 6 is 88.8%, and R = 1 is
91.45%.

In Table 3, the accuracy of the random forests having 325 decision trees when the
number of randomly selected attribute is one is 85.7407%, and this accuracy is yet the
best accuracy according to literature survey. Table 5 summarizes the survey to compare the
accuracy in other methods.

In Table 5, the accuracy of fuzzy lattice neurocomputing models is given at row 1 [3]
and row 2 [4]. The training and testing were done once, so the experiments are less objective
than other experiments. The result of 100,000 trees which is the best in the concurrent random
forests [12] is presented at the 3rd row of the table. It is based on default value in the number
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Table 11: The number of attributes and instances of data sets.

Data set The number of attributes The number of instances
DB world 4,703 64
Lung cancer 57 32

Table 12: The accuracy of trial random forests (RF) for each class with different parameters.

DB world (T = 1, R = 46) (T = 100, R = 6: def.) (T = 100, R = 1)
Accuracy per class

0 80% 91.4% 94.3%
1 86.2% 89.7% 96.6%

Accuracy of RF 82.8125% 90.625% 95.3125%
Lung cancer (T = 1, R = 11) (T = 100, R = 4: def.) (T = 100, R = 1)
Accuracy per class

1 66.7% 77.8% 77.8%
2 53.8% 76.9% 69.2%
3 50.0% 70.0% 80.0%

Accuracy of RF 56.25% 75.0% 75.0%

of attributes to pick randomly. It was generated by using Dell PowerEdge R815 sever with
48 cores and 64GB memory so that it took a lot of computing resources, while our random
forests were generated by using a Pentium PC with 2GB main memory. SubBag with JRip
[5] has some poorer result than the others as we can see at the 4th row. In the experiment
BAGGING with JRip has better accuracy between the two experiments using JRip as we can
see at the 5th row. 50 JRip classifiers were used for aggregation in the experiment. The 6th
row of the table contains the accuracy of single decision tree of C4.5 that is the base of the first
paper for the dataset [2]. From the value of sensitivity and specificity, we can understand
that C4.5 has the tendency of neglecting minor classes. The last row shows the result of the
suggestedmethod. All in all, we can say that our random forests produced a very competitive
result. Some other advantage of our method is high availability than other referred data
mining methods. For example, several data mining tools that provide random forests are
available like Salford system’s [22], R [23], and weka, and so forth.

3.2. Experiments for Other Datasets Having the Property of the Number of
Attributes < the Number of Instances

In order to see the suggested procedure can find better results than conventional application
of random forests, other three datasets in different domain called “Bridges,” “Dermatology,”
and “Post Operative” in UCI machine learning repository were tried. Dataset “Bridges”
has 12 conditional attributes, 108 instances, and 7 classes. Dataset “Dermatology” has 33
conditional attributes, 366 instances, and 6 classes. Dataset “Post Operative” has 8 conditional
attributes, 90 instances, and 3 classes. Table 7 has the results of trial random forests for each
dataset. Note that all the four datasets including “cylinder bands” have the property, of the
number of attributes < the number of instances as in Table 6.

Table 7 shows trial random forests for the three datasets.
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Table 13: The accuracy of random forests for the data set “DB world.”

Number of attr. to
pick randomly
(R)

Worst accuracy
(%)

Median accuracy
(%)

Best accuracy
(%)

Number of trees in random
forests resulting in the best
accuracy (t)

12 90.625 90.625 90.625 All
6 (default) 90.625 90.625 90.625 All
3 93.75 93.75 93.75 All
2 93.75 93.75 93.75 All

1 93.75 95.3125 95.3125 All except 550, 650 ∼ 850,
900 ∼ 1000

Table 14: The accuracy of random forests for the data set “lung cancer.”

Number of attr. to
pick randomly
(R)

Worst accuracy
(%)

Median accuracy
(%)

Best accuracy
(%)

Number of trees in random
forests resulting in the best
accuracy (t)

8 65.625 65.625 71.875 575, 600, 625, 650

4 (default) 71.875 71.875 75.0
100, 125, 175, 200, 225, 275,
300, 325, 375, 400, 425, 450,
475, 550

2 68.75 71.875 75.0 125, 150, 175, 200
1 71.875 71.875 75.0 100 ∼ 325

As we can see in Table 7, because we could generate better results with R = 1. Tables 8,
9, and 10 have the results of grid search for the datasets. Table 8 has the results of experiments
for the dataset “Bridges.”

For “Bridges” dataset the same best accuracy of 66.9811% was found at R = 2 and
R = 1. But, while the accuracy was found only once at R = 2, the accuracy was found 34 times
at R = 1. Table 9 has the results of experiments for the dataset “Dermatology.”

Table 10 has the results of experiments for the dataset “Post Operative.”
For “Post Operative” dataset the same best accuracy of 65.5556% was found at R = 8

and R = 1. But, while it was found only once at R = 8, it was found 19 times at R = 1. As we
can see in Tables 8, 9, and 10, we could find better results based on the suggested procedure
in other datasets also.

3.3. Experiments for Another Datasets Having the Property of the Number of
Attributes > the Number of Instances

Because we have considered datasets having the property of the number of attributes < the
number of instances, two other datasets in UCI machine learning repository, “DB world” and
“lung cancer,” that have the property of the number of attributes > the number of instances,
were tried. Table 11 summarizes the datasets.

Because the two datasets might have many irrelevant attributes, preprocessing to
select major attributes was performed first. It is based on weka’s correlation-based feature
subset (CFS) selection method [24]with best first search. For “DB world” and “lung cancer”
datasets 46 and 11 attributes are selected, respectively. Table 12 shows the results of trial
random forests.
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Table 15: The accuracy of trial random forests (RF) for each class with different parameters.

DB world (T = 1, R = 4703) (T = 100, R = 13: def.) (T = 100, R = 1)
Accuracy per class

0 74.3% 91.4% 94.3%
1 79.3% 79.3% 48.3%

Accuracy of RF 76.5625% 85.9375% 73.4375%
Lung cancer (T = 1, R = 57) (T = 100, R = 4: def.) (T = 100, R = 1)
Accuracy per class

1 33.3% 55.6% 22.2%
2 38.5% 69.2% 46.2%
3 40% 40% 60%

Accuracy of RF 37.5% 56.25% 43.75%

Table 13 has the results of experiments for the dataset “DB world.”
Table 14 has the results of experiments for the dataset “lung cancer.”
Note that the trial random forests of the dataset “lung cancer” have the same accuracy

at R = default and R = 1. So we have the best accuracy at both R values. Experiments
were done without attribute selection for the datasets of “DB world” and “lung cancer” to
compare. Table 15 shows the results of trial random forests.

Table 16 has the results of experiments for the dataset “DB world.” As the values for R,
additional numbers like the whole number of attributes and 1/3 of it were used also, because
we know that the dataset contains many irrelevant attributes. The setting is based on Genuer
et al.’s idea [17].

Table 17 has the results of experiments for the dataset “lung cancer.” As the values for
R, additional numbers like the whole number of attributes and 1/3 of it were used also.

If we compare the best accuracies in Tables 13 and 16 for the dataset “DB world,” the
best accuracy of preprocessed dataset is 95.3125% and that of original dataset is 90.625%.
Moreover, if we compare the best accuracies in Tables 14 and 17 for the dataset “lung cancer,”
the best accuracy of preprocessed dataset is 75.0% and that of original dataset is 59.375%.
Therefore, we can conclude that our method is effective and the trial random forests well
reflect whether the grid search is needed or not.

4. Conclusions

Rotogravure printing is very favored for massive printing tasks to print millions of copies.
Hence, it is important to prevent process delays for better productivity. In order to reduce the
delays preventive maintenance activity is more desirable, if we can predict some possible
occurrence of bands in the cylinder. Therefore, more accurate prediction is important to
reduce the delays. Random forests are known to be robust for missing and erroneous data
as well as insufficient information with good performance, and moreover, they can utilize
the fast building property of decision trees, so they do not require much computing time
in most datasets for data mining, even though the forests have many trees. Hence, they are
good for real word situation of data mining, because in the real world, lots of datasets have
the property.

Because random forests have high possibility to generate better results when the
combinations of parameters like the number of randomly picked attributes (R) and the
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Table 16: The accuracy of random forests for the data set “DB world.”

Number of attr. to
pick randomly
(R)

Worst accuracy
(%)

Median accuracy
(%)

Best accuracy
(%)

Number of trees in random
forests resulting in the best
accuracy (t)

4703 82.8125 85.9375 87.5 125, 600, 625, 650, 725

1568 85.9375 89.0625 90.625 500, 575, 600, 625, 650, 675,
725, 850 ∼ 925, 975, 1000

523 89.0625 90.0625 90.625 All except 100, 125, 700
175 89.0625 89.0625 90.625 100 ∼ 175
59 85.9375 87.5 89.0625 100, 175, 275, 300

26 85.9375 87.5 87.5 All except 125, 150,
200 ∼ 300, 500, 950, 975, 1000

13 (default) 81.25 82.8125 87.5 200, 225
7 82.8125 84.375 87.5 225, 250
4 76.5625 78.125 81.25 325, 1000
2 76.5625 79.6875 81.25 225, 350
1 73.4375 78.125 79.6875 375, 675, 775, 800

Table 17: The accuracy of random forests for the data set “lung cancer.”

Number of attr. to
pick randomly
(R)

Worst accuracy
(%)

Median accuracy
(%)

Best accuracy
(%)

Number of trees in random
forests resulting in the best

accuracy (t)

57 56.25 56.25 56.25 All
19 46.75 53.125 56.25 200, 325, 575, 600, 625, 650
12 43.75 46.875 56.25 175
6 (default) 46.875 50.0 59.375 150
3 46.875 50.0 56.25 300, 325
2 43.75 50.0 53.125 200, 250 ∼ 300
1 34.375 37.5 56.25 150

number of trees in the forests (T) are good for given datasets, an effective procedure
considering the properties of both of the datasets and random forests is investigated to find
good results. Among R and T , because different R values could affect the accuracy of random
forests very much, we suggest generating trial random forests to see the possibility of better
results. Among the used six datasets, the five datasets showed that R = 1 is the best choice,
while one dataset showed default R value and R = 1 is the best choices. R = 1 can be the best
choice means that we need maximum randomness to spilt, because the datasets do not have
sufficient information for correct classification. So for some datasets the default R value with
appropriate number of trees could be the best choice, but for some other datasets smaller R
value could be the best. In this sense, the trial random forests can do the role of a compass for
further grid search.
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