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For its theoretical interest and strong impact on financial markets, option valuation is considered
one of the cornerstones of contemporary mathematical finance. This paper specifically studies the
valuation of exotic options with digital payoff and flexible payment plan. By means of the Incom-
plete Fourier Transform, the pricing problem is solved in order to find integral representations of
the upfront price for European call and put options. Several applications in the areas of corporate
finance, insurance, and real options are discussed. Finally, a new type of digital derivative named
supercash option is introduced and some payment schemes are also presented.

1. Introduction

Digital options, also referred to as binary options, are derivatives contracts whose value
derives from the value of the so-called underlying asset (e.g., a financial index or a real
estate asset). Digital options were first introduced in the 90s by Rubinstein and Reiner [1]
and Turnbull [2], and since then their popularity has grown enormously in the derivatives
market. In July 2008 they also reached the Chicago Board Options Exchange (CBOE), where
digital option contracts on the S&P 500 Index and on the CBOE Volatility Index are traded.
Given the peculiar payoff structure, they are embedded in many financial and insurance
products and their valuation is crucial for corporate finance and real option problems as well.

In this paper we investigate the digital options world from a fresh perspective. In fact,
in the literature, there are several articles devoted to digital options valuation, including [3–
5], but none, as far as the authors know, has tried to solve the pricing problem considered
here. Our aim is to recover pricing formulas for a wide variety of European installment
derivatives with digital-type and path-independent payoffs. In contrast to the smooth payoff
patterns of standard options, digital options have discontinuous payoffs, switched com-
pletely one way or the other depending on whether the terminal price of the underlying asset
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satisfies an exercise condition: if such condition occurs, the option pays out a predetermined
amount dependent on the terms of the contract; otherwise, the option expires worthless.
Furthermore, we consider that the premium can also be paid in installments over the contract
lifetime and that the digital option can be lapsed at any payment date before maturity (for
more details on the installment feature, see [6–9]).

The rest of the paper is organized as follows. In Section 2 a free boundary problem for
the upfront price function and optimal stopping boundary is solved by the Fourier transform
method. A general decomposition formula for European-style options with digital payoff
structure and flexible payment plan is also derived. Using this approach, several applications
in the areas of corporate finance, insurance, and real options are discussed in Section 3. In
Section 4 the conclusions are drawn.

2. Problem Formulation

In the standard Black-Scholes-Merton (BSM) model [10, 11], in which there exists a unique
risk-neutral probability measure Q such that any discounted price process is a martingale
and the price process of the risky asset S = (St)t≥0 follows a geometric Brownian motion

dSt = μStdt + σStdWt, (2.1)

where W = (Wt)t≥0 is a standard Brownian motion, σ > 0 the volatility, and μ = (r − δ) the
drift, with r ≥ 0 the risk-free rate and δ ≥ 0 the dividend yield, let us consider the European
installment options written on S with maturity date T < ∞, payoff H(ST ), and installment
rate Lt = L(t). Let H : R+ → [yH,∞) be a bounded below and left-continuous (resp., right-
continuous) function on R+ and that H(ST ) → 0 as ST → 0 (resp., H(ST ) → 0 as ST →
∞) for call (resp., put) options. Assume that L : [0, T] → R+ is a nonnegative real-valued
function of bounded variation on [0, T]. Let VE

t = VE(St, t;Lt) be the initial premium function
of the option at the time of purchase t ∈ [0, T], defined on the domain D = {(St, t) ∈ R+ ×
[0, T]}. Let us denote by At = A(t;Lt) and Gt = G(t;Lt), for t ∈ [0, T], the optimal stopping
(or free) boundaries of call and put options, respectively, such that the domain D is divided
into a stopping region S and a continuation region C, that is,

For call options For put options

S = {(St, t) ∈ [0, At] × [0, T]}, S = {(St, t) ∈ [Gt,∞) × [0, T]};
C = {(St, t) ∈ (At,∞ ) × [0, T]}, C = {(St, t) ∈ [0, Gt) × [0, T]}.

(2.2)

In order to ensure that the fundamental constraint VE
t ≥ 0 is satisfied in the domain D, it is

necessary to impose the following conditions:

VE
t = 0, on S; (2.3)

VE
t > 0, on C; (2.4)

since the option is worth more alive than dead only in the continuation region C, where it is
then optimal to continue with the installment payments until the maturity date. The initial
premium is given by (2.3) if the asset price starts in the stopping region S, so we assume that
the option is alive at the time t ≥ 0 of entering into the contract.
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The initial premium function VE
t and the optimal stopping boundary, {At}t∈[0,T] for

call options and {Gt}t∈[0,T] for put options, jointly solve a free boundary problem consisting
of the inhomogeneous BSM partial differential equation (PDE) in C, that is,

∂V E
t

∂t
+ μS

∂V E
t

∂S
+
1
2
σ2S2 ∂

2VE
t

∂S2
− rV E

t = Lt, on C, (2.5)

subject to the following final and boundary conditions:

For call options For put options

VE
t = H(ST ), V E

t = H(ST ), 0 ≤ ST < ∞;

lim
St↓At

V E
t = 0, lim

St↑Gt

V E
t = 0, 0 ≤ t < T ;

lim
St↓At

∂V E
t

∂S
= 0, lim

St↑Gt

∂V E
t

∂S
= 0, 0 ≤ t < T.

(2.6)

The Incomplete Fourier Transform (IFT) is used to solve the problem specified by
(2.5)–(2.6) in order to obtain an integral representation of the upfront price for the class of
European contingent claims with generic payoff and installment rate.

Using the change of variables St = ex and t = T − τ , we get the transformed function
vτ = v(x, τ) ≡ V (ex, T − τ ;Lt) with the continuation region Cv defined by

For call options For put options

Cv = {(x, τ) ∈ (lnaτ ,∞) × [0, T]} Cv =
{
(x, τ) ∈ (−∞, ln gτ

) × [0, T]
}
,

(2.7)

where aτ = a(τ) ≡ A(T − τ ;Lt) and gτ = g(τ) ≡ G(T − τ ;Lt), respectively, denote the
transformed free boundaries of call and put options. It follows that (2.5) reduces to a PDE
with constant coefficients

∂vτ

∂τ
=

1
2
σ2 ∂

2vτ

∂x2
+ ρ

∂vτ

∂x
− rvτ − lτ , on Cv, (2.8)

with ρ = (r − δ − (1/2)σ2), lτ = l(τ) ≡ L(T − τ), h(x) ≡ H(ex) and the associated initial and
boundary conditions given by

For call options For put options

v0 = h(x), v0 = h(x), −∞ < x < ∞;

lim
x↓lnaτ

vτ = 0, lim
x↑gτ

vτ = 0, 0 < τ ≤ T ;

lim
x↓lnaτ

∂vτ

∂τ
= 0, lim

x↑gτ
∂vτ

∂τ
= 0, 0 < τ ≤ T.

(2.9)

In order to be able to apply the IFT to solve PDE (2.8) for v(x, τ), we will consider the
domain Dv = {(x, τ) ∈ R × [0, T]} by expressing (2.8) as follows:

For call options For put options

H(x − lnaτ)(LBSMvτ + lτ) = 0, H(ln gτ − x
)
(LBSMvτ + lτ) = 0,

(2.10)
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where LBSM := (∂/∂τ) − (1/2)σ2(∂2/∂x2) − ρ(∂/∂x) + r is the BSM differential operator and
H(x) the Heaviside step function defined as

H(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, x > 0,

1
2
, x = 0,

0, x < 0,

(2.11)

with the initial and boundary conditions that remain unchanged.

Theorem 2.1. Let v(x, τ) be the solution of the PDE (2.10) satisfying the initial and boundary
conditions (2.9). Then, the initial premiums of the European installment call and put options with
maturity date T , payoff h(x), and payment plan l(τ) are given, respectively, by:

For call options

v(x, τ) =
e−rτ

σ
√
2πτ

∫∞

lna0+
e−(x−u+ρτ)

2/2σ2τh(u)du

−
∫ τ

0

∫∞

lnaξ

e−r(τ−ξ)

σ
√
2π(τ − ξ)

e−[x−u+ρ(τ−ξ)]
2/2σ2(τ−ξ)l(ξ)dudξ, for (x, τ)∈(lnaτ ,∞)×[0,T).

(2.12)

For put options

v(x, τ) =
e−rτ

σ
√
2πτ

∫ ln g0+

−∞
e−(x−u+ρτ)

2/2σ2τh(u)du

−
∫ τ

0

∫ ln gξ

−∞

e−r(τ−ξ)

σ
√
2π(τ−ξ)

e−[x−u+ρ(τ−ξ)]
2/2σ2(τ−ξ)l(ξ)dudξ, for (x,τ)∈(−∞, ln gτ

)×[0, T).

(2.13)

Furthermore, the optimal stopping boundaries a(τ) and g(τ), respectively, for call and put options,
satisfy the following relationships:

For call options For put options

0 = v(lnaτ , τ) 0 = v
(
ln gτ , τ

)
.

(2.14)

In Appendix A, it is shown how the free boundary problem defined by (2.9)–(2.10)
can be solved with the aid of the IFT. Therefore, to price a European installment option for
any given payoff pattern h(x) and payment plan l(τ), (2.14)must be solved using numerical
methods to find the optimal stopping boundary. Once this is found, the function v(x, τ) can be
evaluated via numerical integration. Existence and uniqueness of the solution to the pricing
problem of European installment call and put options, as well as the regularity properties of
the free boundary, are proved in [12, 13], respectively.
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In order to enhance the mathematical tractability and economical meaning, we give a
parametric representation of the European installment option price as function of the current
asset price St and time to maturity τ . This allows to deal with a wide range of payoff
structures and payment schemes.

Theorem 2.2. LetH : R+ → [yH,∞) be differentiable, except for at most a finite number of points,
and let L : [0, T] → R+ be piecewise continuous over [0, T]. Then, the initial premium functions
C(St, τ) and P(St, τ) of the European installment call and put options can be expressed, respectively,
as

H(St − aτ)C(St, τ) = cBSME (St, τ) −ΛC(St, τ ;a(·)), (St, τ) ∈ [aτ ,∞) × (0, T]; (2.15)

H(gτ − St

)
P(St, τ) = pBSME (St, τ) −ΛP(St, τ ; g(·)

)
, (St, τ) ∈

[
0, gτ

] × (0, T]; (2.16)

with cBSME (·, ·) and pBSME (·, ·) the generalized BSM European call and put option pricing formulas

cBSME (St, τ) := Ste
−δτ
∫d1(St,a0+ ,τ)

−∞

h′(z−1(zu)
)

ez−1(zu)
e−z

2
u/2

√
2π

dzu

+ e−rτ
∫d2(St,a0+ ,τ)

−∞

[
h
(
ζ−1(ζu)

)
− h′

(
ζ−1(ζu)

)]e−ζ
2
u/2

√
2π

dζu;

(2.17)

pBSME (St, τ) := Ste
−δτ
∫∞

d1(St,g0+ ,τ)

h′(z−1(zu)
)

ez−1(zu)
e−z

2
u/2

√
2π

dzu

+ e−rτ
∫∞

d2(St,g0+ ,τ)

[
h
(
ζ−1(ζu)

)
− h′

(
ζ−1(ζu)

)]e−ζ
2
u/2

√
2π

dζu;

(2.18)

and where

ΛC(St, τ ;a(·)) :=
∫ τ

0
e−r(τ−ξ)l(ξ)N

(
d2
(
St, aξ, τ − ξ

))
dξ; (2.19)

ΛP(St, τ ; g(·)
)
:=
∫ τ

0
e−r(τ−ξ)l(ξ)N

(−d2
(
St, gξ, τ − ξ

))
dξ; (2.20)

are the Discounted Expected Payment Streams (DEPS) of call and put options, respectively. Further-
more, the optimal stopping boundaries aτ and gτ are given by

0 = cBSME (aτ , τ) −ΛC(aτ , τ ;a(·));

0 = pBSME

(
gτ , τ

) −ΛP(gτ , τ ; g(·)
)
.

(2.21)

Theorem 2.2, whose proof is reported in Appendix B, shows that the European
installment option price can be divided into two parts: the value of an associated European
option with the same characteristics (underlying asset, maturity, and payoff structure) and
the DEPS component, which is the present value of all future installment payments along the
optimal stopping boundary.
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3. Valuation of Digital Installment Options

Now we consider some applications in order to illustrate the flexibility and generality
of Theorem 2.2. They cover the fundamental class of digital-type and path-independent
payoffs which form the building blocks for pricing a wide range of European derivative
securities. In the subsequent propositions, which share a single proof given in Appendix C,
we will provide explicit formulas for the initial premium and free boundary of the option
corresponding to a certain digital payoff pattern and with a generic payment plan.

3.1. Cash-or-Nothing Payoff

The simplest option with binary payoff profile is the cash-or-nothing call (resp., put) option
which pays off nothing if the underlying asset price ST ∈ [0,∞) finishes below (resp., above)
the strike price K ≥ 0, or pays out a predetermined constant amount X ≥ 0 if the underlying
asset finishes above (resp., below) the strike price. Then, the payoff functionHCoN(ST ) of this
option contract is given by

HCoN(ST ) :=

{
XH0(ST −K), for a call option,
XH0(K − ST ), for a put option,

(3.1)

where H0(·) is the unit step function, defined as

H0(x) :=

{
0, x ≤ 0,
1, x > 0.

(3.2)

Proposition 3.1. Let H : R+ → [yH,∞) be defined by (3.1). Then, the initial premiums CCoN(St,
τ) and PCoN(St, τ) of the European cash-or-nothing installment call and put options are given,
respectively, by

H(St − aτ)CCoN(St, τ) = Xe−rτN(d2(St,K, τ)) −ΛC(St, τ ;a(·)),
for (St, τ) ∈ [aτ ,∞) × (0, T];

(3.3)

H(gt − St

)
PCoN(St, τ) = Xe−rτN(−d2(St,K, τ)) −ΛP(St, τ ; g(·)

)
,

for (St, τ) ∈
[
0, gτ

) × (0, T].
(3.4)

3.1.1. Application: Corporate Finance

The cash-or-nothing payoff structure is very versatile and apt to represent a wide variety
of situations, such as a very interesting corporate finance problem: the executive incentive
compensation evaluation. Suppose that a company is considering to introduce an incentive
program for its employees such that, if at the end of the year a given productivity index
is greater or equal to a contractually specified threshold K, each employee will receive a
monetary incentiveX. The employee payoff profile as function of the final productivity index
is shown in Figure 1. From the company’s perspective, it is very important to set K and X at
the “right” level in terms of the cost benefit analysis. In order to perform such research, the
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Figure 1: Corporate finance: executive incentive compensation.

valuation of the option given to the employees is crucial and to this extent the analysis here
proposed can be very helpful.

3.2. Asset-or-Nothing Payoff

The binary asset-or-nothing payoff is characterized by a function HAoN(ST ) of the form

HAoN(ST ) :=

{
STH0(ST −K), for a call option,
STH0(K − ST ), for a put option,

(3.5)

with ST ∈ [0,∞) the underlying asset price at maturity T and K ≥ 0 the strike price. From
(3.5), we see that an asset-or-nothing call (resp., put) option pays off one unit of the underly-
ing asset if and only if ST > K (resp., ST < K), otherwise the payoff is zero.

Proposition 3.2. Let H : R+ → [yH,∞) be defined by (3.5). Then, the initial premiums CAoN(St,
τ) and PAoN(St, τ) of the European asset-or-nothing installment call and put options are given,
respectively, by

H(St − aτ)CAoN(St, τ) = Ste
−δτN(d1(St,K, τ)) −ΛC(St, τ ;a(·)),

for (St, τ) ∈ [aτ ,∞) × (0, T];
(3.6)

H(gt − St

)
PAoN(St, τ) = Ste

−δτN(−d1(St,K, τ)) −ΛP(St, τ ; g(·)
)
,

for (St, τ) ∈
[
0, gτ

) × (0, T].
(3.7)

3.2.1. Application: Insurance

An insurance contract provides protection against loss for which periodically a premium
is paid in exchange for a guarantee that there will be a compensation, under stipulated
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conditions, for a loss caused by a specified event. Given the nature of the risk insured
and the payment structure, installment options are very suitable for valuation purposes
and asset-or-nothing payoffs in particular are often embedded in insurance products. Let
us consider for instance an earthquake insurance that provides a coverage proportional to
the earthquake magnitude. Suppose that the insurance is provided only above a certain
earthquake magnitude level K and that the resulting payoff grows linearly. The resulting
insurance payoff as function of the earthquake magnitude is depicted in Figure 2.

3.3. Gap Payoff

The third derivative built from a digital payoff is the gap option. The payoff functionHG(ST ),
for ST ∈ [0,∞), of this option contract is defined by

HG(ST ) :=

{
(ST −X)H0(ST −K), for a call option,
(X − ST )H0(K − ST ), for a put option,

(3.8)

that is, the holder of a call (resp., put) option receives nothing if the underlying asset price
ST finishes below (resp., above) the trigger priceK ≥ 0, or she gets a payout of ST −X (resp.,
X − ST ), with X ≥ 0 the strike price, if and only if ST > K (resp., ST < K). The gap payoff
reverts to the standard one when trigger and strike prices coincide, that is,K ≡ X. Notice that
the trigger price K determines whether or not the option contract will be exercised at expiry,
while the strike price X determines the amount of the nonzero payoff, which may be positive
or negative depending on the settings of X and K.

Proposition 3.3. LetH : R+ → [yH,∞) be defined by (3.8). Then, the initial premiums CG(St, τ)
and PG(St, τ) of the European gap installment call and put options are given, respectively, by

H(St − aτ)CG(St, τ) = Ste
−δτN(d1(St,K, τ)) −Xe−rτN(d2(St,K, τ))

−ΛC(St, τ ;a(·)), for (St, τ) ∈ [aτ ,∞) × (0,T];
(3.9)

H(gτ − St

)
PG(St, τ) = Xe−rτN(−d2(St,K, τ)) − Ste

−δτN(−d1(St,K, τ)),

−ΛP(St, τ ; g(·)
)
, for (St, τ) ∈

[
0, gτ

] × (0,T].
(3.10)

3.3.1. Application: Real Options

A rather common situation where gap option evaluation is relevant is the following real
option case. Let us consider a request for tender by an agency for the supply of a given
maximum quantity of goods of value K in exchange of a fixed amount of money X, with
0 < X < K. The quantity of goods supplied is a stochastic variable. It is known only at
maturity and matches the demand at that date. Thus, the maximum quantity of goods is
chosen by the agency large enough so that the demand does not exceed the level K. The cost
of the goods is known, linear and independent from the quantity supplied (i.e., there are
no economies of scale). The supplier’s profit and loss as function of the value of the goods
supplied is represented in Figure 3. It is interesting to note that if the actual demand exceeds
the level X, the supplier will incur in a loss, unlike most options final payoffs.
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Figure 2: Insurance: earthquake.
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Figure 3: Real option: request for tender.

3.4. Range Binary Payoffs

So far we have considered options with payoffs having only one singularity. Range binary
payoffs present two points of discontinuity in a given bounded interval within which must
lie the terminal price of the underlying asset so that the option expires in-the-money. This
feature makes range binary options cheaper than their plain vanilla counterpart.

Following the original idea in [14], we consider an option with an asset-or-nothing
range binary payoff. This option contract, which is referred to as supershare option, entitles
its owner to a given monetary unit value proportion of the underlying asset, provided that
its price ST ∈ [0,∞) finishes within a lower value Kl and an upper value Ku; otherwise, the
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option expires worthless. Then, the payoff functionHSS(ST ) of a supershare option is defined
as follows:

HSS(ST ) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
ST

Kl

)
[H0(ST −Kl) −H0(ST −Ku)], for a call option,

(
K − ST

Kl

)
[H0(Ku − ST ) −H0(Kl − ST )], for a put option,

(3.11)

where K := (Kl + Ku)/Kl, with 0 < Kl < Ku.

Proposition 3.4. LetH : R+ → [yH,∞) be defined by (3.11). Then, the initial premiums CSS(St,
τ) and PSS(St, τ) of the European supershare installment call and put options are given, respectively,
by

H(St − aτ)CSS(St, τ) =
(
St

Kl
e−δτ

)
[N(d1(St,Kl, τ)) −N(d1(St,Ku, τ))]

−ΛC(St, τ ;a(·)), for (St, τ) ∈ [aτ ,∞) × (0,T];

(3.12)

H(gτ − St

)
PSS(St, τ) =

(
K − St

Kl
e−δτ

)
[N(−d1(St,Ku, τ)) −N(−d1(St,Kl, τ))]

−ΛP(St, τ ; g(·)
)
, for (St, τ) ∈

[
0, gτ

] × (0,T].

(3.13)

We now introduce a new type of option contract that entitles the holder to receive a
fixed cash amountX ≥ 0 if the underlying asset price ST ∈ [0,∞) lies between a lower limitKl

and an upper limit Ku, and zero otherwise. A cash-or-nothing range binary option, hereafter
called supercash call option, has a payoff function HSC(ST ) of the form

HSC(ST ) := X[H0(ST −Kl) −H0(ST −Ku)], (3.14)

that is, the option finishes in-the-money if and only if ST ∈ (Kl,Ku].

Proposition 3.5. Let H : R+ → [yH,∞) be defined by (3.14). Then, the initial premium CSC(St,
τ) of the European supercash installment call option is given by

H(St − aτ)CSC(St, τ) = Xe−rτ[N(d2(St,Kl, τ)) −N(d2(St,Ku, τ))]

−ΛC(St, τ ;a(·)), for (St, τ) ∈ [aτ ,∞) × (0,T].
(3.15)

3.4.1. Application: Structured Products

Range binary options are very attractive for creating structured financial products. In fact
their peculiar payoff pattern allows to tailor made contracts meeting the expectations of the
potential buyer. More importantly, by doing so it is possible to cut the costs relative to those
scenarios that the buyer considers uninteresting. Therefore, the pricing framework of the
range binary options is very useful for evaluation purposes in case of setting up investment
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strategies or when analyzing insurance products which are effective only within a certain
range.

For instance, let us consider at time t ≥ 0 an individual investor who holds a risky
portfolio and needs to withdraw a fixed amount of money X > 0 at a prespecified time T >
t to meet an obligation. In this case, in order to hedge the market risk, the investor could
buy a cash-or-nothing installment put option with maturity date T which pays the constant
amount X if an appropriate index that mimics his/her portfolio value is below a certain
threshold K. Alternatively, excluding some tail scenarios, he/she could choose a cheaper
option, a supercash installment call option, that guarantees the same amount X if at maturity
T the index value, as shown in Figure 4, lies within a certain range (Kl,Ku], with Ku = K.
Furthermore, the installment feature allows the investor to drop the option as soon as the
market conditions turn out to be reasonably favorable.

3.5. Flexible Payment Plans

In this paragraph, we analyze in greater detail the wide class of time-varying payment
schemes, specifying two different functional forms of the installment rate L(t) and focusing
on the DEPS representation for call options.

Assume an installment payment function L : [0, T] → R+ of the form

L(t) :=
q1 − q0

T
t + q0,

(
q0, q1 ∈ R+

0
)
. (3.16)

Clearly the condition q0 < q1 (resp., q0 > q1) leads to a monotonically increasing (resp.,
decreasing) function of t. It is also straightforward to obtain the constant payment stream by
setting q0 = q1 ≡ q, with q ∈ R+

0 . Figure 5(a) shows the plot of the installment rate L(t) as
a linear function of the time t with a positive (solid line) and negative (dashed line) slope;
the special case L(t) ≡ q is represented by the horizontal dotted line. Three possible payment
schemes can be outlined in this case: (1) it increases at a constant rate from q0 at t = 0 to q1
at t = T ; (2) it decreases at a constant rate from q0 to q1; (3) it is constant for all times. Then,
from (2.19), we get

ΛC
lin(St, τ ;a(·)) = α0

∫ τ

0
e−r(τ−ξ)N

(
d2
(
St, aξ, τ − ξ

))
dξ

− α1

∫ τ

0
ξe−r(τ−ξ)N

(
d2
(
St, aξ, τ − ξ

))
dξ,

(3.17)

with α0 = q1 and α1 = (q1 − q0)/(T).
Finally, the installment rate L(t) is supposed to be a linear combination of characteristic

functions of disjoint bounded intervals, that is,

L(t) :=
n−1∑

k=0

qkXIk(t),
(
qk ∈ R+

0 , ∀k
)
, (3.18)

where n ∈ N and {Ik = [tk, tk+1), k = 0, 1, . . . , n − 1} is a partition P of the time interval [0, T],
withXI the indicator function defined as

XI(t) =

{
1, if t ∈ I,

0, otherwise.
(3.19)
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Figure 4: Structured products: portfolio insurance.

The function L : [0, T] → R+ defined by (3.18) is called step function and it is continuous
from the right: the size of the step at point tk is |qk−qk−1|, for all k = 1, 2, . . . , n−1. By definition,
L(t) is a piecewise constant function having at most a countable number of steps since it
either remains the same or changes value going from one interval to the next. It follows that
in this case, the payment scheme can be monotonic or not over time depending on whether
{q0, q1, . . . , qn−1} is a real sequence. Therefore, as shown in Figure 5(b), if, for k = 1, . . . , n −
1, either condition qk−1 ≤ qk or condition qk−1 ≥ qk holds, then the installment rate L(t) is
either increasing (solid segments) or decreasing (dashed segments) with respect to t; while
it reduces to a constant (horizontal dotted line) if and only if, for all k, qk ≡ q, with q ∈ R+

0 .
Note that, when L(t) is strictly monotonic, then it is often referred to as the staircase function.
Then, from (2.19), we have

ΛC
step(St, τ ;a(·)) =

n−1∑

k=0

αk

∫ τk+1

τk

e−r(τk+1−ξ)N
(
d2
(
St, aξ, τk+1 − ξ

))
dξ, (3.20)

where τk = tn−tn−k is the length of the interval (tn, tn−k] and αk = qn−(k+1), for k = 0, 1, . . . , n−1,
are the constant coefficients associated with the partition P([0, T]).

4. Conclusions

In this paper, we have studied the valuation of exotic options with digital payoff and flexible
payment plan. Taking the free boundary problem formulation, we have used the Fourier
transform method to solve the inhomogeneous Black-Scholes-Merton equation subject to the
appropriate boundary and terminal conditions. An integral representation of the upfront
price and its decomposition formula has been proposed.

The class of path-independent options with discontinuous payoffs forms the building
blocks for pricing a wide range of securities such as barrier options, structured convertible
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Figure 5: Examples of time-varying payment schemes.

bonds, and mortgage-backed securities. This framework has been usefully applied to solve
problems in different areas, including corporate finance, insurance, and real options.

Appendices

A. Proof of Theorem 2.1

Focusing on call options, we reduce (2.10) to an ordinary differential equation (ODE) by
using the auxiliary function yτ = y(x, τ) := e−xv(x, τ), for which the condition limx→∞ y(x,
τ) = 0 does hold. Writing vτ and its derivatives in terms of yτ and substituting into (2.10)
yield

H(x − lnaτ)

(
∂yτ

∂τ
− 1
2
σ2 ∂

2yτ

∂x2
− θ

∂yτ

∂x
+ δyτ +mτ

)

= 0, (A.1)

with θ = (ρ+σ2),mτ = m(x, τ) := e−xl(τ), and where the associated initial and boundary con-
ditions (2.9) are expressed by

y0 = e−xh(x), −∞ < x < ∞; (A.2)

lim
x↓lnaτ

yτ = 0, 0 < τ ≤ T ; (A.3)

lim
x↓lnaτ

∂yτ

∂x
= 0, 0 < τ ≤ T. (A.4)
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By applying the definition of the IFT to (A.1), we have

Faτ ,∞
{
∂yτ

∂τ

}
=

1
2
σ2Faτ ,∞

{
∂2yτ

∂x2

}

+ θFaτ ,∞
{
∂yτ

∂x

}

− δFaτ ,∞{yτ

} − Faτ ,∞{mτ},
(A.5)

where Faτ ,∞ is the IFT applied to the functions y(x, τ) andm(x, τ) in the continuation region
Cv.

Using the properties of the Fourier transform of the derivatives of yτ along with the
boundary conditions (A.3)-(A.4), the following three identities are obtained

Faτ ,∞
{
∂yτ

∂x

}
= iωŷ(ω, τ);

Faτ ,∞
{
∂2yτ

∂x2

}

= −ω2ŷ(ω, τ);

Faτ ,∞
{
∂yτ

∂τ

}
=

∂ŷ(ω, τ)
∂τ

;

(A.6)

and substituting into (A.5) yields

dŷ(ω, τ)
dτ

+

(
σ2

2
ω2 − θiω + δ

)

ŷ(ω, τ) = −m̂(ω, τ), (A.7)

where ŷ(ω, τ) = Faτ ,∞{yτ}, m̂(ω, τ) = Faτ ,∞{mτ}, and with the initial condition ŷ(ω, 0) =
Faτ ,∞{y(x, 0)} calculated from (A.2). Using the integrating factor method, we find that the
solution for ŷ(ω, τ) is given by

ŷ(ω, τ) = ŷ(ω, 0)e−((σ
2/2)ω2−θiω+δ)τ −

∫ τ

0
e−((σ

2/2)ω2−θiω+δ)(τ−ξ)m̂(ω, ξ)dξ. (A.8)

Applying the inverse Fourier transform F−1, we obtain for the function y(x, τ) the following
representation:

y(x, τ) ≡ y1(x, τ) − y2(x, τ), (x, τ) ∈ (lnaτ ,∞) × (0, T], (A.9)

with

y1(x, τ) := F−1
{
ŷ(ω, 0)e−((σ

2/2)ω2−θiω+δ)τ
}
;

y2(x, τ) := F−1
{∫ τ

0
e−((σ

2/2)ω2−θiω+δ)(τ−ξ)m̂(ω, ξ)dξ
}
.

(A.10)
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To determine explicit expressions for y1(x, τ) and y2(x, τ), wewill use the Convolution
Theorem for Fourier transforms, which, for arbitrary functions f(x, τ1) and g(x, τ2), is written
as

F−1{F(ω, τ1)G(ω, τ2)} =
1√
2π

∫∞

−∞
f(x − u, τ1)g(u, τ2)du. (A.11)

In order to apply this result to the definition of y1(x, τ), we let

F(ω, τ1) = e−((σ
2/2)ω2−θiω+δ)τ , (A.12)

and then using the inverse Fourier transform, we get

f(x, τ1) =
1√
2π

∫∞

−∞
e−(σ

2/2)ω2τ−iω[−(x+θτ)]e−δτdω =
e−δτ−(x+θτ)

2/2σ2τ

σ
√
τ

, (A.13)

where the last expression is obtained by setting λ1 = (σ2/2)τ , λ2 = i[−(x + θτ)], n = 0, and
making use of the following identity:

∫∞

−∞
e−λ1ω

2−λ2ωωndω = (−1)n
√

π

λ1

∂n

∂λn2
e(λ

2
2/4λ1), (A.14)

in which λ1 and λ2 are any complex functions not involving the integration variable ω, with
Re(λ1) ≥ 0 and n ∈ N0. By rearranging terms of (x + θτ)2, the function f(x, τ1) can be simpli-
fied as follows:

f(x, τ1) =
e−δτ−{(x

2+ρ2τ2+2xρτ)+[(σ2+2ρ)τ2σ2+2xσ2τ]}/2σ2τ

σ
√
τ

=
e−rτ−x−(x+ρτ)

2/2σ2τ

σ
√
τ

. (A.15)

Letting now G(ω, τ2) = ŷ(ω, 0) yields

g(x, τ2) = H(x − lna0+)e−xh(x). (A.16)

Then, substituting for f(x − u, τ1) and g(u, τ2) into (A.11), we obtain

y1(x, τ) =
e−rτ−(x−u)

σ
√
2πτ

∫∞

−∞
e−(x−u+ρτ)

2/2σ2τH(u − lna0+)e−uh(u)du. (A.17)

Next, we consider the definition of y2(x, τ)which can be written as

y2(x, τ) =
∫ τ

0
F−1

{
e−((σ

2/2)ω2−θiω+δ)(τ−ξ)m̂(ω, ξ)
}
dξ. (A.18)
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To evaluate the above integral by the Convolution Theorem, we let

F(ω, τ1) = e−((σ
2/2)ω2−θiω+δ)(τ−ξ);

G(ω, τ2) = m̂(ω, ξ);
(A.19)

then applying the inverse Fourier transform to the functions F(ω, τ1) and G(ω, τ2), we get,
respectively,

f(x, τ1) =
1√
2π

∫∞

−∞
e−(σ

2/2)ω2(τ−ξ)−iω[−(x+θ(τ−ξ))]−δ(τ−ξ)dω =
e−δ(τ−ξ)−[x+θ(τ−ξ)]

2/2σ2(τ−ξ)

σ
√
τ − ξ

;

g(x, τ2) = H(x − lnaξ

)
e−xl(ξ),

(A.20)

where the last expression of f(x, τ1) is obtained by (A.14) setting λ1 = (σ2/2)(τ − ξ), λ2 =
i[−(x + θ(τ − ξ))] and n = 0. Hence, it is quite straightforward to express the function f(x, τ1)
as follows:

f(x, τ1) =
e−δ(τ−ξ)−{[x+ρ(τ−ξ)]

2+[(σ2+2ρ)σ2(τ−ξ)2+2xσ2(τ−ξ)]}/2σ2(τ−ξ)

σ
√
τ − ξ

=
e−r(τ−ξ)−x−[x+ρ(τ−ξ)]

2/2σ2(τ−ξ)

σ
√
τ − ξ

.

(A.21)

Then, substituting for f(x − u, τ1) and g(u, τ2) into (A.11) yields

y2(x, τ) =
∫ τ

0

(∫∞

−∞

e−r(τ−ξ)−(x−u)

σ
√
2π(τ − ξ)

e−[x−u+ρ(τ−ξ)]
2/2σ2(τ−ξ)H(u − lnaξ

)
e−ul(ξ)du

)

dξ. (A.22)

Finally, replacing the expressions for y1(x, τ) and y2(x, τ) into (A.9), making use of the
Heaviside step function on the continuation region Cv, and recovering v(x, τ) as exy(x, τ), we
obtain the integral representation (2.12) defining the initial premium v(x, τ) of the European
installment call option.

Similarly, for put options, by expressing PDE (2.10) and (2.9) in terms of the newly
defined auxiliary function y(x, τ) := exv(x, τ), we are able to apply the IFT (since the re-
quired condition limx→−∞ y(x, τ) = 0 is fulfilled) and then obtain the solution ŷ(ω, τ) for
the resulting ODE. Taking the inverse Fourier transform of this solution in conjunction with
the Convolution Theorem and then recovering the original function v(x, τ), we derive the
integral representation (2.13) for the initial premium v(x, τ) of the European installment put
option.

Now, applying the second condition in (2.9), that is, imposing that the function v(x, τ)
is equal to zero as x tends to the optimal stopping boundary, we get (2.14) which completes
the proof.
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B. Proof of Theorem 2.2

Focusing on call options, we consider the first integral in the right-hand side of (2.12), which
can be written as follows:

v1(x, τ) :=
e−rτ

σ
√
2πτ

∫∞

lna0+
e−(x−u+ρτ)

2/2σ2τh′(u)du

+
e−rτ

σ
√
2πτ

∫∞

lna0+
e−(x−u+ρτ)

2/2σ2τ[h(u) − h′(u)
]
du,

(B.1)

with h′(x) = dh(x)/dx. Multiplying and dividing by eu in the first term of v1(x, τ) yield

I1(x, τ) :=
e−rτ

σ
√
2πτ

∫∞

lna0+

h′(u)
eu

e−((x−u+ρτ)
2−2uσ2τ)/2σ2τdu. (B.2)

Adding and subtracting appropriate terms, we have

e−((x−u+ρτ)
2−2uσ2τ)/2σ2τ = e−((x−u+ρτ)

2−2uσ2τ+2xσ2τ+σ4τ2+2ρσ2τ2)/2σ2τe(2xσ
2τ+2ρσ2τ2+σ4τ2)/2σ2τ

= e−[u−(x+(ρ+σ
2)τ)]2/2σ2τex+(r−δ)τ ,

(B.3)

and substituting it into I1(x, τ) yields

I1(x, τ) = exe−δτ lim
c→∞

∫ c

lna0+

h′(u)
eu

e−(1/2)[(u−(x+(ρ+σ
2)τ))/σ

√
τ]2

σ
√
2πτ

du. (B.4)

Setting zu = z(u) := x−u+(ρ+σ2)τ/σ
√
τ and defining d1(x, y, τ) := (ln(x/y)+(ρ+σ2)τ)/σ

√
τ ,

we get

I1(x, τ) = exe−δτ
∫d1(ex,a0+ ,τ)

−∞

h′(z−1(zu)
)

ez−1(zu)
e−z

2
u/2

√
2π

dzu. (B.5)

Similarly, the second term of v1(x, τ) can be written as

I2(x, τ) := e−rτ lim
c→∞

∫ c

lna0+

[
h(u) − h′(u)

]e−(1/2)[(x−u+ρτ)/σ
√
τ]2

σ
√
2πτ

du. (B.6)

Setting ζu = ζ(u) := (x − u + ρτ)/σ
√
τ and defining d2(x, y, τ) := (ln(x/y) + ρτ)/σ

√
τ , we

obtain

I2(x, τ) = e−rτ
∫d2(ex,a0+ ,τ)

−∞

[
h
(
ζ−1(ζu)

)
− h′

(
ζ−1(ζu)

)]e−ζ
2
u/2

√
2π

dζu. (B.7)
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Furthermore, the second integral in the right-hand side of (2.12) can be simplified as follows:

v2(x, τ) :=
∫ τ

0

⎡

⎣ lim
c→∞

∫ c

lnaξ
e−r(τ−ξ)

e−(1/2)[(x−u+ρ(τ−ξ))/σ
√

τ−ξ]2

σ
√
2π(τ − ξ)

l(ξ)du

⎤

⎦dξ. (B.8)

Performing the change of variable ηu = η(u) := (x−u+ρ(τ −ξ))/σ√τ − ξ and using the above
definition of d2(·, ·, ·), yields

v2(x, τ) =
∫ τ

0
e−r(τ−ξ)l(ξ)

∫d2(ex,aξ,τ−ξ)

−∞

e−η
2
u/2

√
2π

dηudξ

=
∫ τ

0
e−r(τ−ξ)l(ξ)N

(
d2
(
St, aξ, τ − ξ

))
dξ,

(B.9)

where N(·) is the standard normal cumulative distribution function given by the formula

N
(
y
)
:=

1√
2π

∫y

−∞
e−(1/2)υ

2
dυ. (B.10)

Substituting the expressions of v1(x, τ) and v2(x, τ) into (2.12) and reverting back
to the original variable via St = ex, we obtain (2.15) in conjunction with the expressions
(2.17) and (2.19) defining cBSME (St, τ) and ΛC(St, τ ;a(·)), respectively. Finally, because the
early stopping decision is optimal when St = aτ , by applying the value matching condition
(2.14), we get (2.21).

C. Proof of Propositions 3.1–3.5

In this appendix, we consider the European installment call option whose payoff function
H : R+ → [yH,∞) is defined by

H(ST ) = φ(ST )[H0(ST −Kl) −H0(ST −Ku)], (C.1)

where φ : R+ → R is a linear function of the terminal asset price ST , that is,

φ(ST ) := φ0 + φ1ST ,
(
φ0, φ1 ∈ R

)
, (C.2)

Kl and Ku, with 0 < Kl < Ku, are, respectively, a lower and an upper limit to the values of ST

for which the option is in-the-money. Performing the change of variable ST = eu, the function
h(u) ≡ H(eu) and its first derivative can be written, respectively, as

h(u) = φ(eu)[H0(eu −Kl) −H0(eu −Ku)];

h′(u) = φ1e
u[H0(eu −Kl) −H0(eu −Ku)] + φ(eu)[δ0(eu −Kl) − δ0(eu −Ku)],

(C.3)
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where δ0(·) is the Dirac delta function, representing the derivative of H0(·) and defined by
the following two properties:

(1) δ0(x) :=

{
0, x /= 0,
∞, x = 0,

(2)
∫∞

−∞
δ0(x)dx = 1. (C.4)

From (B.5)–(B.7) in the proof of Theorem 2.2, it follows that cBSME (·, ·) is the sum of
two integrals, I1(·, ·) and I2(·, ·), as expressed by the general formula (2.17). Substituting the
expression for h′(·) into (B.5) and then rearranging terms yield

I1(x, τ) = exe−δτ
∫d1(ex,a0+ ,τ)

−∞
φ1

[
H0

(
ez

−1(zu) −Kl

)
−H0

(
ez

−1(zu) −Ku

)]e−z
2
u/2

√
2π

dzu

+ exe−δτ
∫d1(ex,a0+ ,τ)

−∞

φ
(
z−1(zu)

)

ez−1(zu)

[
δ0
(
ez

−1(zu) −Kl

)
− δ0

(
ez

−1(zu) −Ku

)]e−z
2
u/2

√
2π

dzu,

(C.5)

with z−1(zu) = x − zuσ
√
τ + (ρ + σ2)τ . It is easy to see (e.g., by integration by parts) that

the second term vanishes and then, splitting the first one in two parts, the above equation
becomes

I1(x, τ) = φ1e
xe−δτ

[∫d1(ex,a0+ ,τ)

−∞

e−z
2
u/2

√
2π

H0

(
ez

−1(zu) −Kl

)
dzu

−
∫d1(ex,a0+ ,τ)

−∞

e−z
2
u/2

√
2π

H0

(
ez

−1(zu) −Ku

)
dzu

]

.

(C.6)

Solving the inequalities ez
−1(zu) − Kl > 0 and ez

−1(zu) − Ku > 0 for zu and using the indicator
function 1{x>0} = H0(x) yield

I1(x, τ) = φ1e
xe−δτ

[∫d1(ex,a0+ ,τ)

−∞

e−z
2
u/2

√
2π

1{zu<d1(ex,Kl,τ)}dzu

−
∫d1(ex,a0+ ,τ)

−∞

e−z
2
u/2

√
2π

1{zu<d1(ex,Ku,τ)}dzu

]

.

(C.7)

Since it can be shown that a0+ := limτ → 0+aτ , that is, the optimal stopping boundary at expiry,
is equal to the trigger pricesKl andKu for the first and the second integrals, respectively, the
above equation becomes

I1(x, τ) = φ1e
xe−δτ

[∫d1(ex,Kl,τ)

−∞

e−z
2
u/2

√
2π

dzu −
∫d1(ex,Ku,τ)

−∞

e−z
2
u/2

√
2π

dzu

]

, (C.8)

and using the definition of the cumulative distribution function N(·) given in (B.10) yields

I1(x, τ) = φ1e
xe−δτ[N(d1(ex,Kl, τ)) −N(d1(ex,Ku, τ))]. (C.9)
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Plugging the expressions for h(·) and h′(·) into (B.7), it follows that

I2(x, τ) = e−rτ
∫d2(ex,a0+ ,τ)

−∞
φ0

[
H0

(
eζ

−1(ζu) −Kl

)
−H0

(
eζ

−1(ζu) −Ku

)]e−ζ
2
u/2

√
2π

dζu

+ e−rτ
∫d2(ex,a0+ ,τ)

−∞
φ
(
eζ

−1(ζu)
)[

δ0
(
eζ

−1(ζu) −Kl

)
− δ0

(
eζ

−1(ζu) −Ku

)]e−ζ
2
u/2

√
2π

dζu,

(C.10)

with ζ−1(ζu) = x − ζuσ
√
τ + ρτ . However, the second term into I2(x, τ) vanishes and the first

one can be split in two parts. Solving the inequalities eζ
−1(ζu) −Kl and eζ

−1(ζu) −Ku for ζu and
using the same arguments as before, we get

I2(x, τ) = φ0e
−rτ[N(d2(ex,Kl, τ)) −N(d2(ex,Ku, τ))]. (C.11)

Going back to St = ex and substituting for I1(·, ·) and I2(·, ·) from (C.9) and (C.11) into (2.17)
yield

cBSME (St, τ) = φ1Ste
−δτ[N(d1(St,Kl, τ)) −N(d1(St,Ku, τ))]

+ φ0e
−rτ[N(d2(St,Kl, τ)) −N(d2(St,Ku, τ))].

(C.12)

Propositions 3.4-3.5 are easily proved using (C.12) since the in-the-money region is
the bounded interval (Kl,Ku]. Plugging {(φ0 = 0) ∧ (φ1 = 1/Kl)} into (C.12), we have the
explicit expression for cBSME (St, τ) and substituting it into (2.15) yields (3.12). Similarly, setting
{(φ0 = X) ∧ (φ1 = 0)} in (C.12) and substituting the resulting expression into (2.15), we get
(3.15).

The proofs of Propositions 3.1–3.3 can be obtained by setting Kl = K and taking the
limit of the right-hand side of (C.12) asKu goes to infinity, that is, using the following result:

c BSM
E (St, τ) = φ1Ste

−δτN(d1(St,K, τ)) + φ0e
−rτN(d2(St,K, τ)), (C.13)

since the option is in-the-money on the unbounded interval (K,∞). Equations (3.3) and (3.6)
are derived from (2.15) by setting the couple of parameters values {(φ0 = X) ∧ (φ1 = 0)}
and {(φ0 = 0) ∧ (φ1 = 1), respectively, and plugging it into (C.13). In a similar way, setting
{(φ0 = −X) ∧ (φ1 = 1)} in (C.13) and substituting the expression for cBSME (St, τ) into (2.15)
yield (3.9).
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