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Ordinary differential equations usefully describe the behavior of a wide range of dynamic physical
systems. The particle swarm optimization (PSO) method has been considered an effective tool
for solving the engineering optimization problems for ordinary differential equations. This paper
proposes a modified hybrid Nelder-Mead simplex search and particle swarm optimization (M-
NM-PSO) method for solving parameter estimation problems. The M-NM-PSO method improves
the efficiency of the PSOmethod and the conventional NM-PSOmethod by rapid convergence and
better objective function value. Studies are made for three well-known cases, and the solutions of
the M-NM-PSO method are compared with those by other methods published in the literature.
The results demonstrate that the proposed M-NM-PSO method yields better estimation results
than those obtained by the genetic algorithm, the modified genetic algorithm (real-coded GA
(RCGA)), the conventional particle swarm optimization (PSO)method, and the conventional NM-
PSO method.

1. Introduction

The parameter estimation problems involve estimating the unknown parameters of themath-
ematical models based on a system of ordinary differential equations by using experiment
data that are obtained under well-defined standard conditions. Traditional optimization
methods such as the Nelder-Mead (NM) method [1, 2] and the Gauss-Newton method [3]
can be applied to find reasonably good estimations of parameters of simplemodels. However,
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they are not robust enough for complex problems that involve a huge search space, and they
tend to find local optimum points rather than the global optimum points. In addition, quasi-
linearization methods and data-smoothing methods are also often used to solve parameter
estimation problems [4].

To overcome the problem of finding the global optimum points, several heuristic
optimization methods such as the genetic algorithm (GA) [5], the simulated annealing (SA)
method, and the particle swarm optimization (PSO) method [6] for solving the parameter
estimation problems have been proposed. Some modifications to the heuristic optimization
methods have also been proposed in recent years. Khalik et al. proposed the real-coded GA
(RCGA) method for parameter estimation to overcome the drawbacks of the binary-coded
GA (BCGA) method [7, 8]. Ali et al. proposed the application of a modified differential
evolution (MDE) method [9]. Schwaab et al. proved that less computational attempts are
needed by the PSO method than the GA method and the SA method for solving parameter
estimation problems [10]. Zahara and Liu [6] applied the PSO method and the conventional
NM-PSO method to solve parameter estimation problems, demonstrated the advantages
of the conventional NM-PSO method, and showed that it is an effective tool in solving
unconstrained or constrained optimization problems.

The advantages of the heuristic methods are that they do not require information
about the gradient of the objective function [11–13], that they are insensitive to the guessed
solutions, and that they can find the global solutions by making extensive calculations of the
objective function in the parameter space.

In this research, a modified hybrid Nelder-Mead simplex search and particle swarm
optimization (M-NM-PSO) method is proposed to solve the parameter estimation problems.
The proposed M-NM-PSO method is applied to three well-known cases, and the results
obtained are compared to those obtained by the GA, RCGA, MDE, PSO, and conventional
NM-PSO methods to demonstrate its superiority in terms of accuracy, rate of convergence,
and feasibility.

The content of this paper is organized as follows. Section 2 describes briefly the
parameter estimation problems. Section 3 presents the proposed M-NM-PSO algorithm.
Section 4 discusses the numerical simulation cases and compares the results obtained by
different methods, and the conclusions are summarized in Section 5.

2. The Parameter Identification Problems

Assume that the mathematical model is defined either by a first-order differential equation

dy

dt
= f

(
t, y, p

)
, (2.1)

or a second-order differential equation

d2y

dt2
= f

(
t, y,

dy

dt
, p

)
, (2.2)

where p is the parameter vector with n unknown real parameters p1, p2, p3, . . . , pn.
The experiment data are (ti, yi), i = 1, . . . , m, where ti are the independent time

variables and yi are the experiment data or measured values of the corresponding dependent
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Figure 1: Illustration of the NM simplex algorithm.

variables. Typically, we have n � m. The problem considered herein is that of estimating the
optimal parameter vector p∗ as accurately as possible from the given experiment data. This is
a problem of minimizing the sum of square errors (SSE), which can be represented as

SSE = E
(
p∗
)
= min

m∑

i=1

[
y
(
ti; p

) − yi

]2 = min
m∑

i=1

e2(i), p ∈ Rn, (2.3)

where y(ti; p) are obtained by the Runga-Kutta method and yi are the experiment data.
Three cases are analyzed in this study to validate the superiority of the proposed M-

NM-PSO method. The first two cases are standard minimal SSE problems, and the third case
is a more complex seven-dimensional isothermal continuously stirred tank reactor (CSTR)
maximal SSE problem.

3. The Proposed M-NM-PSO Method

3.1. The Nelder-Mead (NM) Simplex Search Method

The NM simplex search method is proposed by Nelder and Mead [2], which is a good local
search method designed for unconstrained optimization problem without using gradient
information. This method rescales the simplex by four basic linear transformations: reflection,
expansion, contraction, and shrinkage. Through these transformations, the simplex can
successively improve itself towards the optimum point.

Take the problem of finding the simplex 3 solutions in a 2-dimensional search space
for example. The basic NM procedures to minimize the two-variable function is illustrated
in Figure 1. The NM simplex design begins with a starting point G and initial step sizes to
construct points W and B as shown in Figure 1. Suppose that f(W) is the highest (worst) of
all function values and the point W is to be replaced by the point R. In this example, R is the
reflection of W to the centroid point M between G and B. Suppose f(B) < f(G) < f(W). At
this stage, two situations may arise.
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Figure 2: Position update of particles.

Case 1 (f(R) < f(B)). An extension point, point E, is created. Point W is replaced by point E
if f(E) < f(R), otherwise point W is replaced by point R.

Case 2 (f(R) > f(B)). A contraction point, point S, is created. S = S1 if f(W) < f(R),
otherwise S = S2.

Point W is replaced by point S if f(S) < f(B), otherwise a shrinkage operation is
performed to reduce the size of the simplex by moving point W and point G towards point
B.

The advantage of the NM method is that it is intrinsically fast in finding an optimal
solution, but the disadvantage is that the solution found may be a local optimal solution
rather than a global one. We want to retain its advantages but not its shortcomings in our
proposed M-MN-PSO algorithm.

3.2. The Particle Swarm Optimization (PSO) Algorithm

Eberhart and Kennedy [14] were the first to propose the PSO algorithm. As shown in Figure
2, it begins by randomly initializing a flock of birds over the problem space where each bird
is called a “particle”.

Each particle remembers the best solution which it has found and the best solution
found by the entire swarm along the search trajectory. Their velocities and positions are
updated by the following equations:

VNew
id (t + 1) = w × V old

id (t) + c1 × rand() ×
(
pid(t) − xold

id (t)
)
+ c2 × rand()

×
(
pgd(t) − xold

id (t)
)
,

(3.1)

xNew
id (t + 1) = xold

id (t) + VNew
id (t + 1) ×Δt, (3.2)
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where c1 and c2 are two acceleration constants called the cognitive parameter and the social
parameter, respectively, and are typically set to 2.0. The function rand() generates uniformly
a random value in the range [0, 1]. The parameter w is an inertia weight. Eberhart and Shi
[15] suggested that w = 0.5 + (rand()/2).

Equation (3.1) yields the new velocity of a particle which is determined by the
particle’s previous velocity (Vid), its best position (pid), and the global best position (pgd).
It is necessary to impose a maximum limit value Vmax on the velocity. If the computed new
velocity exceeds this threshold, it is set to Vmax to prevent this particle from flying past the
desired solutions in each iteration. Equation (3.2) specifies how each particle’s position is
updated in the search space based on their movement over a time intervalΔt, which is usually
set to 1.

The advantage of the PSO algorithm is that it tends to find the global solution rather
than the local one, but improvements on its accuracy and speed of convergence are much
desired.

Zahara proposed a hybrid NM-PSO method that combines the NM method and the
PSO method, and applied this method to two study cases with excellent results [6]. This
paper describes a modified version of the hybrid NM-PSO method, the M-NM-PSO method,
with even better results.

3.3. The Proposed M-NM-PSO Method

Two algorithms are integrated in the conventional hybrid NM-PSO optimization method: a
conventional algorithm (the NM simplex search algorithm) and an evolutionary algorithm
(the PSO algorithm). The efficiency of the NM simplex search algorithm is high because it
converges rapidly, but it tends to converge to a local rather than a global optimal solution. On
the other hand, the PSO algorithm is capable of finding a global optimal solution, but a large
size of particle population and thus great amounts of memory storage and computation time
are required during the optimization process.

Based on the above reasoning, the conventional hybrid NM-PSO method was pro-
posed to overcome the shortcomings of the PSO algorithm and the NM algorithm, and to
find the global optimal solution accurately and efficiently.

The conventional NM-PSO method was developed by Zahara and Liu [6]. In this
method, n optimal particles are reserved, and the NM operator is applied to the first n + 1
particles and to update the (n + 1)th particle. While the conventional NM-PSO method
updates only the remaining (N−(n+1)) particles, the proposedM-NM-PSOmethod updates
all the N particles and thus converges towards the optimal solution more accurately and
faster, and increases the possibility of finding a better solution. Figure 3 shows the schematic
representation of the proposed M-NM-PSO method.

The procedures to implement the proposed M-NM-PSO method are as follows, and
the pseudo codes of the proposed M-NM-PSO algorithm are shown in Pseudocode 1. Let the
dimension of the problem to be solved is n. First, N particles (N > n + 1) are generated as a
swarm. Next, the objective functions are arranged in the order from good to bad, and the N
particles are divided accordingly into three groups: the first n particles, the (n + 1)th particle,
and the remaining N − (n + 1) particles. Then, the function values of the first n particles
and the (n + 1)th particle are calculated using the NM simplex method to find the updated
best particle. After the PSO method examines the positions of the (n + 1) best particles and
readjusts the N particles, the global optimal particle of the population is determined by the
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Figure 3: Schematic representation of the proposed M-NM-PSO method.

(1) Initialization
Generate particles of population size N (N > (n+1 )).

(2) Solution identification
Arrange the particles in the order from good to bad.

(3) NMMethod
Apply NM operator to the first n+1 particles and update the (n+1 )th particle.

(4) PSOMethod
Apply PSO operator to update the N particles.
(4.1) Selection
Select the global best particle and the neighborhood best particle from the population.
(4.2) Velocity Update
Apply velocity updates to the N particles.

(5) Go to step 2
If the condition is not satisfied. Otherwise stop.

PSEUDOCODE 1: Pseudo Codes of the proposed M-NM-PSO algorithm.

sorted fitness values. The above optimization procedures are repeated until the termination
conditions are satisfied.

4. Numerical Simulations and Comparisons

In this paper, the proposed M-NM-PSO method is applied to solve three well-known
problems [4–9]. The results obtained are compared with those in the cited papers [4–9]. To
demonstrate the superiority of the proposed M-NM-PSO method, only a population of 21
particles is used to find the solutions of the three cases. The method is implemented with
Matlab, and the programs are run on a PC with a 3.2GHz dual-core Intel processor and 4GB
memory capacity.
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Table 1: Data of Case 1 (An enzyme effusion problem).

t y1 t y1 t y1 t y1

0.1 27.8 21.3 331.9 42.4 62.3 81.1 23.5
2.5 20.0 22.9 243.5 44.4 58.7 91.1 24.8
3.8 23.5 24.9 212.0 47.9 41.9 101.9 26.1
7.0 63.6 26.8 164.1 53.1 40.2 115.4 33.3
10.9 267.5 30.1 112.7 59.0 31.3 138.7 17.8
15.0 427.8 34.1 88.1 65.1 30.0 163.2 16.8
18.2 339.7 37.8 76.2 73.1 30.6 186.7 16.8

Case 1 (an enzyme effusion problem). The mathematical model of an enzyme effusion prob-
lem can be represented as

y′
1 = p1

(
27.8 − y1

)
+

p4
2.6

(
y2 − y1

)
+

4991

t
√
2π

exp

(

−0.5
(
ln(t) − p2

p3

)2
)

,

y′
2 =

p4
2.7

(
y1 − y2

)
.

(4.1)

The experiment data are listed in Table 1, and initial conditions are used by theM-NM-
PSO method to solve (4.1) and to estimate the values of the four parameters p1, p2, p3, and p4
in the model.

The results obtained by the M-NM-PSOmethod using a population of just 21 particles
along with those by Scitovski and Jukić [4], GA [5], RGA [7, 8], PSO [6], MDE [9], and
conventional NM-PSO [6] are listed in Table 2.

The fact that the results of theM-NM-PSOmethod are reached after only 150 iterations
with an SSE value of 3963.0 validates the superiority of the M-NM-PSO method. The results
in Table 2 also show that the M-NM-PSO method yields better estimates and has smaller SSE
than those of GA, RGA, PSO, and conventional NM-PSO. Figure 4 shows the plots of the
estimated and measured data of y1, which demonstrate the excellent fitness of the estimated
data to the measured data. Figure 5 shows the plots of the estimated data of y2.

Case 2. A mathematical model may be represented by a second-order ordinary differential
equation (ODE)

y
(
t, p

)
= p1 exp

(
p3t

)
+ p2 exp

(
p4t

)
. (4.2)

The values of the parameters p1, p2, p3, and p4 in (4.2) are to be estimated from the
data in Table 3, and the results are listed in Table 4. Note that given the estimated values of
the parameters p1, p2, p3, and p4, the SSE values of the RGA [7] should be 0.4315 rather than
0.3204, and 0.3969 rather than 0.2827, as listed in Table 4.

As expected, the M-NM-PSO method yields better estimated results and lower SSE
values than those of the GA, RGA, PSO, and conventional NM-PSO methods. It yields the
same results as the NM-PSO method but with less iteration. Figure 6 shows the plots of the
estimated andmeasured data of y in the given range, which demonstrates the excellent fitness
of the estimated data to the measured data.
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Table 2: Results of Case 1 (An enzyme effusion problem).

Method P1 P2 P3 P4 y1 at 0.1 y2 at 0.1 Population size Iterations SSE

Ref. [4] 0.3180 2.6900 0.4188 0.1035 22 38 28 — 5301.2
Ref. [4] 0.3793 2.7211 0.4199 0.1030 22.9 40 68 — 5250.3
Ref. [4] 0.3190 2.7010 0.4190 0.1031 22 39 128 — 5076.6
GA [5] 0.3194 2.7010 0.3892 0.0782 21.00 38.75 — 100 5229.7
GA [5] 0.3050 2.6987 0.4005 0.1166 22.02 39.44 — 200 4547.3
GA [5] 0.2845 2.6717 0.3927 0.1614 23.99 40.14 — 500 4068.4
RGA [7] 0.2454 2.6092 0.3326 0.3217 22.005 38.608 60 100 4431.5
RGA [7] 0.2561 2.6269 0.3449 0.2696 22.043 38.403 60 200 4193.9
RGA [7] 0.2619 2.6336 0.3524 0.2575 21.986 38.704 60 300 4136.7
RCGA [8] 0.2624 2.6378 0.3599 0.2212 28.5443 0.2339 100 3068
RCGA [8] 0.2710 2.6442 0.3676 0.2429 28.5203 0.2566 500 3120
PSO [6] 0.2667 2.6437 0.3636 0.2282 28.5443 0.2339 20 100 3982.0
PSO [6] 0.2668 2.6440 0.3635 0.2280 28.5443 0.2339 20 200 3981.9
PSO [6] 0.2713 2.6513 0.3690 0.2079 28.5443 0.2339 20 300 3971.2
DE [9] 23.4543 37.3712 0.2726 2.6527 0.3643 0.2064 100 4048.7
DE [9] 23.2648 37.0019 0.2728 2.6535 0.3648 0.2095 300 4044.5
DE [9] 23.2548 37.0000 0.2728 2.6536 0.3649 0.2093 500 4044.5
MDE [9] 23.2437 37.0013 0.2729 2.6537 0.3650 0.2091 100 4044.5
MDE [9] 23.2543 37.0000 0.2728 2.6536 0.3649 0.2093 300 4044.5
MDE [9] 23.2543 37.0000 0.2728 2.6536 0.3649 0.2093 500 4044.5
NM-PSO [6] 0.2711 2.6504 0.3686 0.2098 28.5443 0.2339 21 149 3968.9

M-NM-PSO 0.2729 2.6539 0.3710 0.2004 27.8000 0.2339 21 150 3963.0
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Figure 4: The plots of the estimated and measured data of y1 in Case 1 (149 iterations).
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Figure 5: The plots of the estimated data of y2 in Case 1 (149 iterations).

Table 3: Data of Case 2 (A second-order system).

t −1 −2/3 −1/3 0 1/3 2/3 1
y 64.0 66.0 69.5 74.0 80.8 91.0 103.5

Table 4: Results of Case 2 (A second-order system).

Method P1 P2 P3 P4 Population size Iterations SSE

GA [5] 43.2233 30.8774 0.6170 −0.2812 — 100 0.4396
GA [5] 40.8112 33.3234 0.6400 −0.2464 — 200 0.3859
GA [5] 37.7414 36.3533 0.6753 −0.2123 — 500 0.3347
RGA [7] 42.5032 31.5469 0.6265 −0.2749 80 100 0.4315 (0.3204)∗

RGA [7] 41.4371 32.6713 0.6346 −0.2563 80 200 0.3969 (0.2827)∗

DE [9] 36.0250 38.1356 0.6933 −0.1895 — 100 0.3260
DE [9] 34.1450 39.9841 0.7155 −0.1702 — 300 0.2963
DE [9] 34.1266 40.0000 0.7157 −0.1699 — 500 0.2960
MDE [9] 35.4350 38.6848 0.6987 −0.1823 — 100 0.3142
MDE [9] 34.1266 40.0000 0.7157 −0.1699 — 300 0.2960
MDE [9] 34.1266 40.0000 0.7157 −0.1699 — 500 0.2960
PSO [6] 30.0761 44.0683 0.7680 −0.1279 20 100 0.2851
PSO [6] 30.7589 43.3814 0.7587 −0.1348 20 200 0.2847
NM-PSO [6] 30.5386 43.6025 0.7617 −0.1326 21 60 0.2847

M-NM-PSO 30.8616 43.2783 0.7573 −0.1358 21 53 0.2847
∗
Given the estimated values of P1, P2, P3, and P4, the SSE values of the RGA [7] should be 0.4315 and 0.3969, rather than

0.3204 and 0.2827, respectively.
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Case 3 (an isothermal continuously stirred tank reactor (CSTR) problem). A seven-dimen-
sional isothermal CSTR problem [7, 16] is represented by the equations

x′
1 = u4 − qx1 − 17.6x1x2 − 23.0x1x6u3,

x′
2 = u1 − qx2 − 17.6x1x2 − 146.0x2x3,

x′
3 = u2 − qx3 − 73.0x2x3,

x′
4 = − qx4 + 35.2x1x2 − 51.3x4x5,

x′
5 = − qx5 + 219.0x2x3 − 51.3x4x5,

x′
6 = − qx6 + 102.6x4x5 − 23x1x6u3,

x′
7 = − qx7 + 46.0x1x6u3,

(4.3)

where

q = u4 + u1 + u2. (4.4)

This case is different from the previous two cases. The problem is to find the optimal
parameter values u1, u2, u3, and u4 that maximize the performance index (PI) or x8(t):

PI = x8(t)

=
∫0.2

0

(
5.8

(
qx1 − u4

) − 3.7u1 − 4.1u2 − 5u2
3 + q(23x4 + 11x5 + 28x6 + 35x7) − 0.099

)
dt.

(4.5)
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Table 5: Results of Case 3 (An isothermal CSTR problem).

Method u1 u2 u3 u4 Population size Iterations PI (the larger the better)
RGA [7] 11.455 4.5222 0.6865 set u4 = 6.0 50 100 19.0437
NM-PSO 11.5891 4.9420 0.7118 set u4 = 6.0 21 52 19.0597
M-NM-PSO 11.5891 4.9420 0.7118 set u4 = 6.0 21 45 19.0597
M-NM-PSO 11.7618 3.4781 0.8401 12.0752 21 53 19.9404
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Figure 7: The plots of the seven states in Case 3 (An isothermal CSTR problem).

A first-order differential equation is used to find the optimal parameter vector U =
[u1, u2, u3, u4].

The initial starting point x(0) is given by the vector [0.1883, 0.2507, 0.0467, 0.0899,
0.1804, 0.1394, 0.1046], and the bounds of the unknown parameter u1, u2, u3,u4 are

0 ≤ u1 ≤ 20, 0 ≤ u2 ≤ 6, 0 ≤ u3 ≤ 4, 0 ≤ u4 ≤ 20. (4.6)

This seven-dimensional system has a PI function with four control parameters and
appears to be a difficult task for the proposed M-NM-PSO method. The results with u4 fixed
at 6.0 are shown in Table 5 for comparison. Compared with the RGA [7]method, the M-NM-
PSO method uses a smaller particle population and yields better estimates and a larger PI.
Compared with the conventional NM-PSO method, M-NM-PSO yields the same results in
less iteration.

The M-NM-PSO method can still be applied using 21 particles even if the value of u4

is not fixed, and the results are reached in 53 iterations: PI = 19.9404, U = [11.7618, 3.4781,
0.8401, 12.0752], which are also shown in Table 5. As expected, the M-NM-PSO method not
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only yields better results but also requires less iteration than the other methods. The plots of
the seven states (x1 ∼ x7) are shown in Figure 7.

5. Conclusion

All of the results of the three cases indicate that the proposed M-NM-PSO method can be
applied efficiently to solve the estimation problems of unknown parameters in mathematical
models. The application of the proposed M-NM-PSOmethod is demonstrated by three study
cases. The results indicate that the proposed M-NM-PSO method is indeed more accurate,
reliable, and efficient in finding global optimal solutions than the other alternative algorithms
or methods. Furthermore, the proposed M-NM-PSO method converges accurately as well as
quickly, thus greatly improves the efficiency of solving the parameter estimation problems.
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