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Following a recent paper of Zand and Nezhad (2011), we establish some fixed point results in
GP-metric spaces. The presented theorems generalize and improve several existing results in the
literature. Also, some examples are presented.

1. Introduction

Partial metric space is a generalized metric space introduced by Matthews [1] in which
each object does not necessarily have to have a zero distance from itself. A motivation is
to introduce this space to give a modified version of the Banach contraction principle [2].
Subsequently, several authors studied the problem of existence and uniqueness of a fixed
point for mappings satisfying different contractive conditions, see [3–23].

On the other hand, in 2006 Mustafa and Sims [24] introduced a new notion of
generalized metric spaces called G-metric spaces. Based on the notion of a G-metric space,
many fixed point results for different contractive conditions have been presented, for more
details see [25–42].

Recently, based on the two above notions, Zand and Nezhad [43] introduced a new
generalized metric space as both a generalization of a partial metric space and a G-metric
space. It is given as follows.

Definition 1.1 (see [43]). Let X be a nonempty set. A function Gp : X × X × X → [0,+∞) is
called a GP -metric if the following conditions are satisfied:

(GP1) x = y = z if Gp(x, y, z) = Gp(z, z, z) = Gp(y, y, y) = Gp(x, x, x);
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(GP2) 0 ≤ Gp(x, x, x) ≤ Gp(x, x, y) ≤ Gp(x, y, z) for all x, y, z ∈ X;

(GP3) Gp(x, y, z) = Gp(x, z, y) = Gp(y, z, x) = · · · , symmetry in all three variables;

(GP4) Gp(x, y, z) ≤ Gp(x, a, a) +Gp(a, y, z) −Gp(a, a, a) for any x, y, z, a ∈ X.

Then the pair (X,G) is called a GP -metric space.

Example 1.2 (see [43]). LetX = [0,∞) and defineGp(x, y, z) = max{x, y, z}, for all x, y, z ∈ X.
Then (X,Gp) is a GP -metric space.

Proposition 1.3 (see [43]). Let (X,Gp) be a GP -metric space, then for any x, y, z and a ∈ X it
follows that

(i) Gp(x, y, z) ≤ Gp(x, x, y) +Gp(x, x, z) −Gp(x, x, x);

(ii) Gp(x, y, y) ≤ 2Gp(x, x, y) −Gp(x, x, x);

(iii) Gp(x, y, z) ≤ Gp(x, a, a) +Gp(y, a, a) +Gp(z, a, a) − 2Gp(a, a, a);

(iv) Gp(x, y, z) ≤ Gp(x, a, z) +Gp(a, y, z) −Gp(a, a, a).

Proposition 1.4 (see [43]). Every GP -metric space (X,Gp) defines a metric space (X,DGp), where

DGp

(
x, y

)
= Gp

(
x, y, y

)
+Gp

(
y, x, x

) −Gp(x, x, x) −Gp

(
y, y, y

)
for all x, y ∈ X. (1.1)

Definition 1.5 (see [43]). Let (X,Gp) be aGP -metric space and let {xn} be a sequence of points
of X. A point x ∈ X is said to be the limit of the sequence {xn} or xn → x if

lim
m,m→∞

Gp(x, xm, xn) = Gp(x, x, x). (1.2)

Proposition 1.6 (see [43]). Let (X,Gp) be a GP -metric space. Then, for any sequence {xn} in X,
and a point x ∈ X the following are equivalent:

(A) {xn} is GP -convergent to x;
(B) Gp(xn, xn, x) → Gp(x, x, x) as n → ∞;

(C) Gp(xn, x, x) → Gp(x, x, x) as n → ∞.

Definition 1.7 (see [43]). Let (X,Gp) be a GP -metric space.

(S1) A sequence {xn} is called aGP -Cauchy if and only if limm,n→∞Gp(xn, xm, xm) exists
(and is finite).

(S2) A GP -partial metric space (X,Gp) is said to be GP -complete if and only if every
GP -Cauchy sequence in X is GP -convergent to x ∈ X such that Gp(x, x, x) =
limm,n→∞Gp(xn, xm, xm).

Now, we introduce the following.

Definition 1.8. Let (X,Gp) be a GP -metric space.
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(M1) A sequence {xn} is called a 0-GP -Cauchy if and only if limm,n→∞Gp(xn, xm, xm) = 0;

(M2) A GP -metric space (X,Gp) is said to be 0-GP -complete if and only if every 0-GP -
Cauchy sequence is GP-convergent to a point x ∈ X such that Gp(x, x, x) = 0.

Example 1.9. Let X = [0,+∞) and define Gp(x, y, z) = max{x, y, z}, for all x, y, z ∈ X. Then
(X,Gp) is a GP -complete GP -metric space. Moreover, if X = Q ∩ [0,+∞) (where Q denotes
the set of rational numbers), then (X,Gp) is a 0-GP -complete GP -metric space.

Lemma 1.10. Let (X,Gp) be a GP -metric space. Then

(A) if Gp(x, y, z) = 0, then x = y = z;

(B) if x /=y, then Gp(x, y, y) > 0.

Proof. By (GP2)we have

Gp(x, x, x), Gp

(
y, y, y

)
, Gp

(
x, y, y

)
, Gp

(
x, x, y

) ≤ Gp

(
x, y, z

)
= 0. (1.3)

Then, by Proposition 1.4, we have DGp(x, y) = 0, that is, x = y. Similarly, we can obtain that
y = z. The assertion (A) is proved.

On the other hand, if x /=y and Gp(x, y, y) = 0, then by (A), x = y which is a
contradiction and so (B) holds.

In this paper, we establish some fixed point results in GP -metric spaces analogous to
results of Ilić et al. [44] which were proved in partial metric spaces. Also, some examples are
provided to illustrate our results. To our knowledge, we are the first to give some fixed point
results in GP -metric spaces, and so is the novelty and original contributions of this paper.
This opens the door to other possible fixed (common fixed) point results.

2. Main Results

We start by stating a fixed point result of Ilić et al. [44].

Theorem 2.1 (see [44]). Let (X, p) be a complete partial metric space. Let f be a self-mapping on X.
Suppose that for all x, y, z ∈ X the following condition holds:

p
(
fx, fy

) ≤ max
{
αp

(
x, y

)
, p(x, x), p

(
y, y

)}
, (2.1)

where 0 ≤ α < 1. Then

(1) the set XP = {y ∈ X : p(x, x) = infy∈Xp(y, y)} is nonempty;

(2) there is a unique u ∈ XP such that fu = u;

(3) for all x ∈ XP the sequence {fnx} converges to u with respect to the metric dp (where
dp(x, y) = p(x, y) − p(x, x) − p(y, y) for x, y ∈ X).

The analog of Theorem 2.1 in GP -metric spaces is given as follows.
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Theorem 2.2. Let (X,Gp) be aGP -completeGP -metric space. Let f be a self-mapping onX. Suppose
that for all x, y, z ∈ X the following condition holds:

Gp

(
fx, fy, fz

) ≤ max
{
rGp

(
x, y, z

)
, Gp(x, x, x), Gp

(
y, y, y

)
, Gp(z, z, z)

}
, (2.2)

where 0 ≤ r < 1. Then

(T1) the set XGp = {y ∈ X : Gp(x, x, x) = infy∈XGp(y, y, y)} is nonempty;

(T2) there is a unique x∗ ∈ XGp such that fx
∗ = x∗;

(T3) for all x ∈ XGP the sequence {fnx} converges to x∗ with respect to the metric DGp .

Proof. Let x ∈ X. By (2.2), we have

Gp

(
fx, fx, fx

) ≤ max
{
rGp(x, x, x), Gp(x, x, x)

}
= Gp(x, x, x). (2.3)

Hence, {Gp(fnx, fnx, fnx)}n≥0 is a nonincreasing sequence. Put

Sx := lim
n
Gp

(
fnx, fnx, fnx

)
= inf

n
Gp

(
fnx, fnx, fnx

)
, (2.4)

Γx :=
1

1 − r Gp

(
x, fx, fx

)
+Gp(x, x, x). (2.5)

We shall show that

Gp

(
fix, fjx, fjx

)
≤ 3Γx for all i, j ≥ 0. (2.6)

Again, by (2.2), we have for allm > n ≥ 0

Gp

(
fnx, fmx, fmx

) ≤ max
{
rGp

(
fn−1x, fm−1x, fm−1x

)
, Gp

(
fnx, fnx, fnx

)}
. (2.7)

At first

Gp

(
x, fjx, fjx

)
≤ Gp

(
x, fx, fx

)
+Gp

(
fx, fjx, fjx

)

≤ Gp

(
x, fx, fx

)
+max

{
rGp

(
x, fj−1x, fj−1x

)
, Gp(x, x, x)

}
.

(2.8)

Similarly

Gp

(
x, fj−1x, fj−1x

)
≤ Gp

(
x, fx, fx

)
+max

{
rGp

(
x, fj−2x, fj−2x

)
, Gp(x, x, x)

}
. (2.9)

Then we have

Gp

(
x, fjx, fjx

)
≤ Gp

(
x, fx, fx

)
+max

{
rGp

(
x, fx, fx

)
+ r2Gp

(
x, fj−2x, fj−2x

)
, Gp(x, x, x)

}
.

(2.10)
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By continuing this process, we get

Gp

(
x, fjx, fjx

)

≤ Gp

(
x, fx, fx

)
+max

{
rGp

(
x, fx, fx

)
+ · · · + rj−1Gp

(
x, fx, fx

)
, Gp(x, x, x)

}

≤ Gp

(
x, fx, fx

)
+max

{
r

1 − r Gp

(
x, fx, fx

)
, Gp(x, x, x)

}

≤ Gp

(
x, fx, fx

)
+

r

1 − r Gp

(
x, fx, fx

)
+Gp(x, x, x) = Γx.

(2.11)

Now, by Proposition 1.3 (ii), we have GP (fix, x, x) ≤ 2GP (x, fix, f ix) ≤ 2Γx. Hence

Gp

(
fix, f ix, fjx

)
≤ Gp

(
fix, x, x

)
+Gp

(
x, fjx, fjx

)
≤ 3Γx, (2.12)

that is, (2.6) holds. On the other hand, by (GP2), we have

Sx ≤ Gp

(
fnx, fnx, fnx

) ≤ Gp

(
fnx, fmx, fmx

)
. (2.13)

Given any ε > 0, by (2.4), there exists n0 ∈ N such that Gp(fn0x, fn0x, fn0x) < Sx + ε. Since
0 ≤ r < 1, so without loss of generality, we have 3Γxrn0 < Sx + ε. Therefore, for allm,n ≥ 2n0

Gp

(
fnx, fmx, fmx

) ≤ max

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

rGp

(
fn−1x, fm−1x, fm−1x

)
,

Gp

(
fn−1x, fn−1x, fn−1x

)
,

Gp

(
fm−1x, fm−1x, fm−1x

)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

≤ max

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

r2Gp

(
fn−2x, fm−2x, fm−2x

)
,

Gp

(
fn−2x, fn−2x, fn−2x

)
,

Gp

(
fm−2x, fm−2x, fm−2x

)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

≤ · · ·

≤ max

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

rn0Gp

(
fn−n0x, fm−n0x, fm−n0x

)
,

Gp

(
fn−n0x, fn−n0x, fn−n0x

)
,

Gp

(
fm−n0x, fm−n0x, fm−n0x

)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

< Sx + ε.

(2.14)

Then, Sx = limm,n→∞Gp(fnx, fmx, fmx) and so {fnx} is aGP -Cauchy sequence. Since (X,Gp)
is GP -complete, then there exists x∗ ∈ X such that {fnx} GP -converges to x∗, that is,

Gp(x∗, x∗, x∗) = lim
m,n→∞

Gp

(
fnx, fmx, fmx

)
. (2.15)
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Since {fnx}GP -converges to x∗, then Proposition 1.6 yields that

Gp(x∗, x∗, x∗) = lim
n→∞

Gp

(
x∗, fnx, fnx

)
= lim

n→∞
Gp

(
fnx, x∗, x∗). (2.16)

We obtain that

Sx = Gp(x∗, x∗, x∗) = lim
n→∞

Gp

(
x∗, fnx, fnx

)
(2.17)

= lim
n→∞

Gp

(
fnx, x∗, x∗) = lim

m,n→∞
Gp

(
fnx, fmx, fmx

)
. (2.18)

For all n ∈ N

Gp

(
x∗, fx∗, fx∗) ≤ Gp

(
x∗, fnx, fnx

)
+Gp

(
fnx, fx∗, fx∗) −Gp

(
fnx, fnx, fnx

)
. (2.19)

By taking the limit as n → ∞ in the above inequality, we get

Gp

(
x∗, fx∗, fx∗) ≤ lim

n→∞
Gp

(
fnx, fx∗, fx∗). (2.20)

On the other hand, from (2.2), we have

lim
n→∞

Gp

(
fnx, fx∗, fx∗) ≤ max

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

r lim
n→∞

Gp

(
fn−1x, x∗, x∗),

lim
n→∞

Gp

(
fn−1x, fn−1x, fn−1x

)
,

Gp(x∗, x∗, x∗)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

= Gp(x∗, x∗, x∗). (2.21)

Thus, Gp(x∗, fx∗, fx∗) ≤ Gp(x∗, x∗, x∗). By (GP2), we deduce that

Gp

(
x∗, fx∗, fx∗) = Gp(x∗, x∗, x∗). (2.22)

Now we show that XGp is nonempty. Let Ω = infy∈XGp(y, y, y). For all k ∈ N, pike xk ∈ X
with Gp(xk, xk, xk) < Ω + 1/k. Define x∗

n = fnx∗ for all n ≥ 1. Let us show that

lim
m,n→∞

Gp(x∗
n, x

∗
m, x

∗
m) = Ω. (2.23)

Given ε > 0, put n0 := [3/ε(1 − r)] + 1. If k ≥ n0, then we have

Ω ≤ Gp

(
fx∗

k, fx
∗
k, fx

∗
k

) ≤ Gp

(
x∗
k, x

∗
k, x

∗
k

)
= Sxk ≤ Gp(xk, xk, xk) < Ω +

1
k

< Ω +
1
n0

< Ω +
3

ε(1 − r)

≤ Gp

(
fx∗

k, fx
∗
k, fx

∗
k

)
+

3
ε(1 − r) .

(2.24)
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Therefore, we have

Tk := Gp

(
x∗
k, x

∗
k, x

∗
k

) −Gp

(
fx∗

k, fx
∗
k, fx

∗
k

)
<

3
ε(1 − r) . (2.25)

On the other hand, if k ≥ n0, then Gp(x∗
k
, x∗

k
, x∗

k
) = Sxk < Ω + 1/n0. It follows that

Gp

(
x∗
k, x

∗
k, x

∗
k

)
< Ω +

3
ε(1 − r) . (2.26)

By (GP4), (2.22), and (2.25), we can obtain

Gp(x∗n, x
∗
m, x

∗
m) ≤ Gp

(
x∗
n, fx

∗
n, fx

∗
n

)
+Gp

(
fx∗

n, x
∗
m, x

∗
m

) −Gp

(
fx∗

n, fx
∗
n, fx

∗
n

)

= Tn +Gp

(
fx∗

n, x
∗
m, x

∗
m

)
,

Gp

(
fx∗

n, x
∗
m, x

∗
m

) ≤ Gp

(
fx∗

n, fx
∗
m, fx

∗
m

)
+Gp

(
fx∗

m, x
∗
m, x

∗
m

) −Gp

(
fx∗

m, fx
∗
m, fx

∗
m

)

= Gp

(
fx∗

n, fx
∗
m, fx

∗
m

)
+ Tm.

(2.27)

Thus

Gp(x∗
n, x

∗
m, x

∗
m) ≤ Tm + Tn +Gp

(
fx∗

n, fx
∗
m, fx

∗
m

)

≤ Tm + Tn +max
{
rGp(x∗

n, x
∗
m, x

∗
m), Gp(x∗

n, x
∗
n, x

∗
n), Gp(x∗

m, x
∗
m, x

∗
m)

}
.

(2.28)

Now, by (2.25) and (2.26), we have

Ω ≤ Gp(x∗
n, x

∗
m, x

∗
m) ≤ max

{
2
3
ε,

2
3
ε(1 − r) +Gp(x∗

n, x
∗
n, x

∗
n),

2
3
ε(1 − r) +Gp(x∗

m, x
∗
m, x

∗
m)

}

≤ max
{
2
3
ε,Ω + ε(1 − r)

}
< Ω + ε,

(2.29)

that is, (2.23) holds. Again, Since (X,Gp) is GP -complete, then there exists y ∈ X such that

Gp

(
y, y, y

)
= lim

n→∞
Gp

(
y, x∗

n, x
∗
n

)
= lim

n→∞
Gp

(
x∗
n, y, y

)
= lim

m,n→∞
Gp(x∗

n, x
∗
m, x

∗
m) = Ω. (2.30)

This leads that y ∈ XGp , so XGp is nonempty.
Let x ∈ X. By (2.22), we get

Ω ≤ Gp

(
fx∗, fx∗, fx∗) ≤ Gp

(
x∗, fx∗, fx∗) = Gp(x∗, x∗, x∗) = Sx = Ω. (2.31)
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From (GP1), it follows that x∗ = fx∗. By (2.17), we have

lim
n→∞

DGp

(
fnx, x∗) = lim

n→∞
Gp

(
fnx, x∗, x∗) + lim

n→∞
Gp

(
x∗, fnx, fnx

)

− lim
n→∞

Gp

(
fnx, fnx, fnx

) −Gp(x∗, x∗, x∗)

= 0.

(2.32)

Therefore, for all x ∈ XP the sequence {fnx} converges with respect to the metric DGp to x
∗.

The uniqueness of the fixed point follows easily from (2.2).

We illustrate Theorem 2.2 by the following examples.

Example 2.3. Let X = [0,∞) and define Gp(x, y, z) = max{x, y, z}, for all x, y, z ∈ X. Then
(X,Gp) is a complete GP -metric space. Clearly, (X,G) is not a G-metric space. Consider f :
X → X defined by fx = x2/(1 + x). Without loss of generality, take x ≤ y ≤ z. We have

Gp

(
fx, fy, fz

)
=

z2

1 + z

≤ z = max
{
Gp(x, x, x), Gp

(
y, y, y

)
, Gp(z, z, z)

}

= max
{
rGp

(
x, y, z

)
, Gp(x, x, x), Gp

(
y, y, y

)
, Gp(z, z, z)

}
,

(2.33)

for all r ∈ [0, 1). So, (2.2) holds. Here, u = 0 is the unique fixed point of f .

Example 2.4. Let X = [0,∞). Define Gp : X3 → [0,∞) by Gp(x, y, z) = max{x, y, z}. Clearly,
(X,Gp) is a GP -metric space. Define f : X → X by

fx =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2, 0 ≤ x ≤ 1
3

(1 − x)
2

,
1
3
< x ≤ 1

2

1
(2x + 1)

x >
1
2
.

(2.34)

Then, the inequality (2.2) of Theorem 2.2 holds. Here, u = 0 is the unique fixed point
of f .

Proof. Clearly,M(x, y, z) :=max{rGp(x, y, z), Gp(x, x, x), Gp(y, y, y), Gp(z, z, z)} =max {x, y,
z}, for all r ∈ (0, 1). We have the following cases.
Case 1 (0 ≤ x, y, z ≤ 1/3).

Consider the following:

Gp

(
fx, fy, fz

)
= max

{
x2, y2, z2

}
≤ max

{
x, y, z

}
=M

(
x, y, z

)
. (2.35)
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Case 2 (1/3 < x, y, z ≤ 1/2).
Consider the following:

Gp

(
fx, fy, fz

)
= max

{
(1 − x)

2
,

(
1 − y)

2
,
(1 − z)

2

}

≤ max
{
x, y, z

}
=M

(
x, y, z

)
. (2.36)

Case 3 (x, y, z > 1/2).
Consider the following:

Gp

(
fx, fy, fz

)
= max

{
1

(2x + 1)
,

1
(
2y + 1

) ,
1

(2z + 1)

}

≤M(
x, y, z

)
. (2.37)

Case 4 (0 ≤ x ≤ 1/3, 1/3 < y ≤ 1/2 and z > 1/2).
Consider the following:

Gp

(
fx, fy, fz

)
= max

{

x2,

(
1 − y)

2
,

1
(2z + 1)

}

≤M(
x, y, z

)
. (2.38)

Case 5 (0 ≤ x, y ≤ 1/3, 1/3 < z ≤ 1/2).
Consider the following:

Gp

(
fx, fy, fz

)
= max

{
x2, y2,

(1 − x)
2

}
≤M(

x, y, z
)
. (2.39)

Case 6 (0 ≤ x, y ≤ 1/3, z > 1/2).
Consider the following:

Gp

(
fx, fy, fz

)
= max

{
x2, y2,

1
(2x + 1)

}
≤M(

x, y, z
)
. (2.40)

Case 7 (1/3 < x, y ≤ 1/2, 0 ≤ z ≤ 1/3).
Consider the following:

Gp

(
fx, fy, fz

)
= max

{
(1 − x)

2
,

(
1 − y)

2
, z2

}

≤M(
x, y, z

)
. (2.41)

Case 8 (1/3 ≤ x, y ≤ 1/2, z > 1/2).
Consider the following:

Gp

(
fx, fy, fz

)
= max

{
(1 − x)

2
,

(
1 − y)

2
,

1
(2z + 1)

}

≤M(
x, y, z

)
. (2.42)
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Case 9 (x, y > 1/2, 0 ≤ z ≤ 1/3).
Consider the following:

Gp

(
fx, fy, fz

)
= max

{
1

(2x + 1)
,

1
(
2y + 1

) , z2
}

≤M(
x, y, z

)
. (2.43)

Case 10 (x, y > 1/2, 1/3 < z ≤ 1/2).
Consider the following:

Gp

(
fx, fy, fz

)
= max

{
1

(2x + 1)
,

1
(
2y + 1

) ,
(1 − z)

2

}

≤M(
x, y, z

)
. (2.44)

Thus, the inequality (2.2) holds. Applying Theorem 2.2, we get u = 0 is the unique
point fixed point of f .

Also, Ilić et al. [44] proved the following result.

Theorem 2.5 (see [44]). Let (X, P) be a complete partial metric space. Let f be a self-mapping onX.
Suppose that for all x, y, z ∈ X the following condition holds:

p
(
fx, fy

) ≤ max

{

αp
(
x, y

)
,
p(x, x) + p

(
y, y

)

2

}

, (2.45)

where 0 ≤ α < 1. Then

(i) the set XP = {y ∈ X : p(x, x) = infy∈Xp(y, y)} is nonempty;

(ii) there is a unique x∗ ∈ XP such that fx∗ = x∗;

(iii) for all x ∈ XP , the sequence {fnx} converges to x∗ with respect to the metric dp.

The analog of Theorem 2.5 in GP -metric spaces is stated as follows.

Theorem 2.6. Let (X,Gp) be aGP -completeGP -metric space. Let f be a self-mapping onX. Suppose
that for all x, y, z ∈ X the following condition holds:

Gp

(
fx, fy, fz

) ≤ max

{

rGp

(
x, y, z

)
,
Gp(x, x, x) +Gp

(
y, y, y

)
+Gp(z, z, z)

3

}

, (2.46)

where 0 ≤ r < 1. Then

(R1) the set XP = {y ∈ X : Gp(x, x, x) = infy∈XGp(y, y, y)} is nonempty;

(R2) there is a unique x∗ ∈ XP such that fx∗ = x∗;

(R3) for all x ∈ XGP , the sequence {fnx} converges to x∗ with respect to the metric DGp .
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Proof. Since

Gp(x, x, x), Gp

(
y, y, y

)
, Gp(z, z, z)

≤ max
{
rGp

(
x, y, z

)
, Gp(x, x, x), Gp

(
y, y, y

)
, Gp(z, z, z)

}
,

(2.47)

then

Gp(x, x, x) +Gp

(
y, y, y

)
+Gp(z, z, z)

3

≤ max
{
rGp

(
x, y, z

)
, Gp(x, x, x), Gp

(
y, y, y

)
, Gp(z, z, z)

}
.

(2.48)

Thus

Gp

(
fx, fy, fz

) ≤ max
{
rGp

(
x, y, z

)
, Gp(x, x, x), Gp

(
y, y, y

)
, Gp(z, z, z)

}
. (2.49)

Then, the conditions of Theorem 2.1 hold. Hence, it follows that (R1), (R2), and (R3) hold.

Example 2.7. Let X = [0, 1] and define Gp(x, y, z) = max{x, y, z}, for all x, y, z ∈ X. We have
(X,Gp) is a complete GP -metric space. Take fx = x2/2 and r = 1/2. For all x ≤ y ≤ z, we
have

Gp

(
fx, fy, fz

)
=
z2

2

≤ rGp

(
x, y, z

)

≤ max
{
rGp

(
x, y, z

)
, Gp(x, x, x), Gp

(
y, y, y

)
, Gp(z, z, z)

}
,

(2.50)

that is, (2.2) holds. Here, u = 0 is the unique fixed point of f .

Similarly, we have the following.

Theorem 2.8. Let (X,Gp) be aGP -completeGP -metric space. Let f be a self-mapping onX. Suppose
that for all x, y, z ∈ X the following condition holds:

Gp

(
fx, fy, fz

)3 ≤ rGp(x, x, x)Gp

(
y, y, y

)
Gp(z, z, z), (2.51)

where 0 ≤ r < 1. Then

(N1) the set XGp = {y ∈ X : Gp(x, x, x) = infy∈XGp(y, y, y)} is nonempty;

(N2) there is a unique x∗ ∈ XGp such that fx
∗ = x∗;

(N3) for all x ∈ XGp , the sequence {fnx} converges with respect to the metric DGp to x
∗.

The following lemma is useful.
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Lemma 2.9. Let (X,Gp) be a GP -metric space and {xn} be a sequence in X. Assume that {xn}GP
converges to a point x ∈ X with Gp(x, x, x) = 0. Then limn→+∞Gp(xn, y, y) = Gp(x, y, y) for all
y ∈ X. Moreover, limm,n→+∞Gp(xn, xm, x) = 0.

Proof. By (GP4), we have

Gp

(
x, y, y

) −Gp(x, xn, xn) ≤ Gp

(
xn, y, y

) ≤ Gp(xn, x, x) +Gp

(
x, y, y

)
, (2.52)

and so limn→+∞Gp(xn, y, y) = P(x, y, y). Again by (GP4), we get

Gp(xn, xm, x) ≤ Gp(xn, x, x) +Gp(x, x, xm), (2.53)

and hence limm,n→+∞Gp(xn, xm, x) = 0.

Theorem 2.10. Let (X,Gp) be a 0-GP -complete GP -metric space and f be a self-mapping on X.
Assume that (1/3)Gp(x, fx, fx) < Gp(x, y, y) implies

Gp

(
fx, fy, fy

) ≤ αGp

(
x, y, y

)
+ βGp

(
x, fx, fx

)
+ γGp

(
y, fy, fy

)
(2.54)

for all x, y ∈ X, where α, β, γ ≥ 0 with α + β + γ < 1. Then f has a unique fixed point.

Proof. If x = fx, then x is a fixed point for f . Assume that x /= fx. So by Lemma 1.10, it follows
that Gp(x, fx, fx) > 0. Therefore, (1/3)Gp(x, fx, fx) < Gp(x, fx, fx) and so from (2.54), we
have

Gp

(
fx, f2x, f2x

)
≤ rGp

(
x, fx, fx

)
for all x ∈ X, r = α + β

1 − γ < 1. (2.55)

Let x0 ∈ X and define a sequence {xn} by xn = fnx0 for all n ∈ N. Now by (2.55), we can
obtain that

Gp

(
fnx0, f

n+1x0, f
n+1x0

)
≤ rGp

(
fn−1x0, fnx0, fnx0

)
≤ · · · ≤ rnGp

(
x0, fx0, fx0

)
. (2.56)
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Then, for anym > n, by (2.56), we get

Gp

(
fnx0, f

mx0, f
mx0

) ≤ Gp

(
fnx0, f

n+1x0, f
n+1x0

)
+Gp

(
fn+1x0, f

mx0, f
mx0

)

≤ Gp

(
fnx0, f

n+1x0, f
n+1x0

)
+Gp

(
fn+1x0, f

n+2x0, f
n+2x0

)

+Gp

(
fn+2x0, f

mx0, f
mx0

)

≤ Gp

(
fnx0, f

n+1x0, f
n+1x0

)
+Gp

(
fn+1x0, f

n+2x0, f
n+2x0

)

+Gp

(
fn+2x0, f

n+3x0, f
n+3x0

)
+ · · · +Gp

(
fm−1x0, fmx0, fmx0

)

≤ rn

1 − r Gp

(
x0, fx0, fx0

)
.

(2.57)

It implies that limm,n→∞Gp(fnx0, fmx0, fmx0) = 0; that is, {xn} is a 0-GP -Cauchy sequence.
Since X is 0-GP -complete, so {xn} GP converges to some point z ∈ X with Gp(z, z, z) = 0,
that is,

lim
n→+∞

Gp(xn, z, z) = lim
n→∞

Gp(xn, xn, z) = GP (z, z, z) = 0. (2.58)

Now, we suppose that the following inequality holds:

1
3
Gp

(
x, fx, fx

) ≥ Gp

(
x, y, y

)
,

1
3
Gp

(
fx, f2x, f2x

)
≥ Gp

(
fx, y, y

)
, (2.59)

for some x, y ∈ X. Then, by Proposition 1.3 (iii) and (2.55), we have

Gp

(
x, fx, fx

) ≤ Gp

(
x, y, y

)
+ 2Gp

(
fx, y, y

)

≤ 1
3
Gp

(
x, fx, fx

)
+
2
3
Gp

(
fx, f2x, f2x

)

≤ 1
3
Gp

(
x, fx, fx

)
+
2r
3
Gp

(
x, fx, fx

)
< Gp

(
x, fx, fx

)

(2.60)

which is a contradiction. Thus, for all x, y ∈ X, either

1
3
Gp

(
x, fx, fx

)
< Gp

(
x, y, y

)
or

1
3
Gp

(
fx, f2x, f2x

)
< Gp

(
fx, y, y

)
(2.61)

holds. Therefore, either

1
3
Gp(x2n, x2n+1, x2n+1) ≤ Gp(x2n, z, z) or

1
3
Gp(x2n+1, x2n+2, x2n+2) ≤ Gp(x2n+1, z, z) (2.62)

holds for every n ∈ N.
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On the other hand, by (2.54), it follows that

Gp

(
x2n+1, fz, fz

) ≤ αGp(x2n, z, z) + βGp(x2n, x2n+1, x2n+1) + γGp

(
z, fz, fz

)
,

Gp

(
x2n+2, fz, fz

) ≤ αGp(x2n+1, z, z) + βGp(x2n+1, x2n+2, x2n+2) + γGp

(
z, fz, fz

)
.

(2.63)

If we take the limit as n → ∞ in each of these inequalities, having in mind (2.58), (2.62), and
applying Lemma 2.9, then we get (1 − γ)Gp(z, fz, fz) ≤ 0, that is, z = fz. The uniqueness of
the fixed point follows easily from (2.54).

As a consequence of Theorem 2.10, we may state the following corollaries.

Corollary 2.11. Let (X,Gp) be a 0-GP -complete GP -metric space and f be a self-mapping on X.
Assume that

1
3
Gp

(
x, fx, fx

)
< Gp

(
x, y, y

)
implies Gp

(
fx, fy, fy

) ≤ rGp

(
x, fx, fx

)
(2.64)

for all x, y ∈ X, where 0 ≤ r < 1. Then f has a unique fixed point.

Corollary 2.12. Let (X,Gp) be a 0-GP -complete GP -metric space and f be a self-mapping on X.
Assume that

1
3
Gp

(
x, fx, fx

)
< Gp

(
x, y, y

)
implies Gp

(
fx, fy, fy

) ≤ rGp

(
y, fy, fy

)
(2.65)

for all x, y ∈ X, where 0 ≤ r < 1. Then f has a unique fixed point.

3. Conclusion

In [43], Zand and Nezhad initiated the notion of a GP -metric space. Also, they studied fully
its topology. Based on this new space, in this paper we present some fixed point results for self
mappings involving different contractive conditions. They are illustrated by some examples.
The presented theorems are the first results in fixed point theory on GP -metric spaces.
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