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The problem of robust stability of switched delay systems with average dwell time under
asynchronous switching is investigated. By taking advantage of the average dwell-time method
and an integral inequality, two sufficient conditions are developed to guarantee the global
exponential stability of the considered switched system. Finally, a numerical example is provided
to demonstrate the effectiveness and feasibility of the proposed techniques.

1. Introduction

In recent years, there has been increasing interest in the analysis and switched systems
because of its applications in a variety of areas such as signal processing, signal estimation,
pattern recognition, communications, control application, and many practical control
systems. Switched linear systems comprise a collection of linear subsystems described by
differential or difference equations and a switching law to specify the switching among
these subsystems. A switched system is a combination of discrete and continuous dynamical
systems. All of these systems arise as models for phenomena which cannot be described
by exclusively continuous or exclusively discrete processes. Most recently, on the basis
of Lyapunov functions and other analysis tools, the stability or stabilization for linear or
nonlinear switched systems has been further investigated, and many valuable results have
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been obtained, for a recent survey on this topic and related questions has attracted increasing
attention [1–10]. The average dwell-time is an effective method for the switched systems
which do not exist common Lyapunov function. Time delay commonly exists in engineering.
Because of time delay, the system can become unstable or less capable, it is significant to
study time delay. There are two kinds of stability for switched systems with time delay: time
delay-independent stability and time delay-dependent stability. The time delay-independent
stability is obviously conservative to the bounded time delay or small time delay, many
results are obtained [11–13]. At present, there has been increasing interest in time-delay
switched systems, and many valuable results have been obtained [14–18].

It is worth noting that the aforementioned results are all based on the basic assumption
that the switching instants are simultaneous with those of the system. However, in actual
operation, there inevitably exists asynchronous switching between the controllers and the
practical subsystems, that is to say, the real switching instants of the controller exceed
or lag behind those of the system, which will deteriorate performance of the systems. In
fact, the necessity of taking into consideration the asynchronous switching is shown in
efficient controller design in many mechanical and chemical systems. There are some results
presented on control synthesis under asynchronous switching which have been proposed
[19–28]. However, to the best of our knowledge, the issue of switched delay systems under
asynchronous switching has not fully been investigated, which motivated this study for us.

In this paper, we deal with the problem of robust stability and L2-gain of switched
delay systems under asynchronous switching. In terms of the average dwell-time method
and an integral inequality, two sufficient conditions are developed to guarantee the global
exponential stability of the considered switched system. Finally, a numerical example is
provided to illustrate the effectiveness and feasibility.

Notations. Throughout this paper, �n denotes the n-dimensional Euclidean space and �n×n

refers to the set of all n ×m real matrices. For real symmetric matrices X and Y , the notation
X ≥ Y (resp., X > Y )mean that the matrix X, Y are positive semidefinite, (resp., and positive
definite). I is the identity matrix with appropriate dimensions. ∗ represents the elements
below the main diagonal of a symmetric matrix. The superscripts ᵀ and −1 stand for matrix
transposition and matrix inverse, respectively; ‖ · ‖c denotes the Euclidean norm. λmax(P)
and λmin(P) denote the maximum and minimum eigenvalues of matrix P , respectively. The
shorthand diag{M1, . . . ,Mn} denotes a block diagonal matrix with diagonal blocks being the
matrices M1, . . . ,Mn. In this paper, if not explicit, matrices are assumed to have compatible
dimensions.

2. Preliminaries

In this paper, we consider the following time-delay system described by

ẋ(t) = Aσ(t)x(t) +Aτσ(t)x(t − τ(t)) + Bσ(t)ω(t),
z(t) = Cσ(t)x(t) +Dσ(t)ω(t),

x(t) = φ(t), t ∈ [−τM, 0],
(2.1)

where x(t) ∈ Rn is the state of the system,ω(t) ∈ Rq is the noise signal. Switching signal σ(t) is
a piecewise constant function of time t, andwe take values in a finite set P = {1, 2, . . . , r}, r > 0
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denotes the number of subsystems. σ(t) = i ∈ P means the ith subsystem is active, and the
corresponding subsystem matrices are denoted by known constant matrices Ai, Aτi, Bi, Ci,
and Di with appropriate dimensions and τ(t) is the unknown time-varying delay satisfying

τ0 ≤ τ(t) ≤ τM, τ̇(t) ≤ τ, (2.2)

where τ0, τM, and τ are constants; A, Aτ , and Ci are known real constant matrices; φ(t) is a
compatible vector-valued initial function on [−τM, 0].

The switching signal σ(t) : �+ → P = {1, 2, . . . , r} discussed in this paper is time
dependent, that is, σ(t) : {(t0, σ(t0)), (t1, σ(t1)), . . . , (t	, σ(t	))}, where t0 is the initial instant.
In this paper, we denote t	 represent the 	th switching instant. for convenience, σ(t) is used
to denote the practical switching signal which can be written as

σ(t) : {(t0 + Δ0, σ(t0)), (t1 + Δ1, σ(t1)), . . . , (t	 + Δ	, σ(t	))}, (2.3)

where Δ	 < inf	≥1|t	+1 − t	|, k = 0, 1, . . . . Then there exist a matched period time interval
[t	−1 + Δ	−1) and mismatched period time interval [t	, t	 + Δ	) because of asynchronous
switching. For simplicity, we assume that Δ	 > 0, 	 = 0, 1, . . . .

In this paper, we denote Λ1 and Λ2 as follows:

Λ1 =
{
x(t) ∈ �n | σ(t	) = i, σ(t	+1) = j, t ∈ [t	 + Δ	, t	+1), 	 = 0, 1, 2, . . .

}
,

Λ2 =
{
x(t) ∈ �n | σ(t	+1) = j, t ∈ [t	+1, t	+1 + Δ	+1), 	 = 0, 1, 2, . . .

}
.

(2.4)

Let

ϕ(t) = [xᵀ(t), xᵀ(t − τ(t)), xᵀ(t − τM), xᵀ(t − τ0), ωᵀ(t)]ᵀ. (2.5)

This way, system (2.1) can be rewritten as

ẋ(t) = Υσ(t) · ϕ(t),
z(t) = Cσ(t)x(t) +Dσ(t)ω(t),

x(t) = φ(t), t ∈ [−τM, 0],
(2.6)

where

Υσ(t) =
[
Aσ(t), Aτσ(t), 0, 0, Bσ(t)

]
. (2.7)

First of all, we will give some definitions and lemmas about system (2.6) which plays
an important role in the derivation of our result.
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Definition 2.1 (see [29]). The unforced system is said to be exponential stable if there exist
constants ν > 0 and ϑ > 0 such that

‖x(t)‖ ≤ ν sup
−τM≤ς≤0

∥
∥ϕ(ς)

∥
∥
ce

−ϑt. (2.8)

Definition 2.2 (see [30]). For γ > 0, the switched system (2.1) is said to have weighted L2-gain,
if under zero initial condition φ(t), t ∈ [−τM, 0], it holds that

∫∞

0
zᵀ(s)z(s)ds ≤ γ2

∫∞

0
ωᵀ(s)ω(s)ds. (2.9)

Definition 2.3 (see [30]). For any T2 > T1 ≥ 0, let Nσ(T1, T2) denote the switching number of
discontinuities of σ(t) during on an intercal (T1, T2). If Nσ(T1, T2) ≤ N0 + (T2 − T1)/Ta holds
for N0 ≥ 0 and Ta > 0, then N0 and Ta are called chattering bound and average dwell time,
respectively. Here we assumeN0 = 0 for simplicity as commonly used in the literature.

Lemma 2.4 (see [29]). For any given symmetric positive definite matrix X ∈ �n×n, and scalars
α > 0, 0 ≤ d1 < d2, if there exists a vector function ẋ(t) : [−d2, 0] → �n such that the following
integration is well defined, then

−
∫−d1

−d2
ẋ(t + θ)ᵀeαθXẋ(t + θ)dθ

≤ α

eαd1 − eαd2
[
x(t − d1)
x(t − d2)

]ᵀ[
X −X
−X X

][
x(t − d1)
x(t − d2)

]
.

(2.10)

Lemma 2.5 (see [28]). Let � ≥ 0 and θ > δ > 0. If there exists a real-value continuous function
x(t) ≥ 0, t ≥ t0, such that the differential inequality

dx(t)
dt

≤ −θx(t) + δ sup
t−�≤s≤t

x(s), t ≥ t0 (2.11)

holds, then

x(t) ≤ sup
−�≤s≤0

x(t0 + s)e−μ(t−t0), t ≥ t0, (2.12)

where μ > 0, and satisfies μ − θ + δeμ� = 0.

Lemma 2.6 (see [9]). If a real scalar function x(t) satisfies the following differential inequality:

ẋ(t) ≤ −ςx(t) + ηυ(t), (2.13)
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where ς > 0, η > 0, then

x(t) ≤ e−ςtx(0) + η
∫ t

0
e−ςsυ(t − s)ds. (2.14)

3. Main Results

The following theorem presents a sufficient stability condition for system (2.1). We first
present conditions ω(t) = 0, the corresponding closed-loop system is given by

ẋ(t) = Υ̃σ(t) · ψ(t),
x(t) = φ(t), t ∈ [−τM, 0],

(3.1)

where

Υσ(t) =
[
Aσ(t), Aτσ(t), 0, 0

]
, ϕ(t) = [xᵀ(t), xᵀ(t − τ(t)), xᵀ(t − τM), xᵀ(t − τ0)]ᵀ. (3.2)

Theorem 3.1. For given scalars 0 ≤ τ0 ≤ τM, α > 0, β > 0, then the system (2.1) is exponentially
stable, if there exist positive-definite matrices Pi, Pij , Qki, Qkij (k = 1, 2, 3), and Rli, Rlij (l = 1, 2)
such that the following LMIs hold:

Ξ̃i =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Ξ̃1,1 Ξ̃1,2 − α

1 − eατM R1i 0

∗ Ξ̃2,2 − α

eατ0 − eατM R2i − α

eατ0 − eατM R2i

∗ ∗ Ξ̃3,3 0

∗ ∗ ∗ −e−ατ0Q3i +
α

eατ0 − eατM R2i

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0, (3.3)

Ξi =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Ξ1,1 Ξ1,2
β

1 − e−βτM R1ij 0

∗ Ξ2,2
β

e−βτ0 − e−βτM R2ij
β

e−βτ0 − e−βτM R2ij

∗ ∗ Ξ3,3 0

∗ ∗ ∗ −eβτ0Q3ij −
β

e−βτ0 − e−βτM R2ij

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0 (3.4)
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with

Ξ̃1,1 = Q1i +Q2i +Q3i + PiAi +A
ᵀ
i Pi + αPi +

α

1 − eατM R1i + τMA
ᵀ
i R1iAi

+ (τM − τ0)Aᵀ
i R2iAi,

Ξ̃1,2 = PiAτi + τMA
ᵀ
i R1iAτi + (τM − τ0)Aᵀ

i R2iAτi,

Ξ̃2,2 = − (1 − τ)e−ατMQ1i + 2
α

eατ0 − eατM R2i + τMA
ᵀ
τiR1iAτi + (τM − τ0)Aᵀ

τiR2iAτi,

Ξ̃3,3 = − e−ατMQ2i +
α

1 − eατM R1i +
α

eατ0 − eατM R2i,

Ξ1,1 = Q1ij +Q2ij +Q3ij + PijAi +A
ᵀ
i Pij − βPij +

−β
1 − e−βτM R1ij + τMA

ᵀ
i R1ijAi

+ (τM − τ0)Aᵀ
i R2ijAi,

Ξ1,2 = PijAτi + τMA
ᵀ
i R1ijAτi + (τM − τ0)Aᵀ

i R2ijAτi,

Ξ2,2 = − (1 − τ)eβτMQ1ij − 2
β

e−βτ0 − e−βτM R2ij + τMA
ᵀ
τiR1ijAτi + (τM − τ0)Aᵀ

τiR2ijAτi,

Ξ3,3 = − eβτMQ2ij −
β

1 − e−βτM R1ij −
β

e−βτ0 − e−βτM R2ij .

(3.5)

In this case, for any switching signal with the average dwell-time satisfying

Ta > T
∗
a =

lnμ2μ1

κ
, (3.6)

T+(t0, t)
T−(t0, t)

≥ β + κ
α − κ, 0 ≤ κ < α. (3.7)

System (3.1) is exponentially stable with μl ≥ 1 (l = 1, 2) satisfying that

Pj ≤ μ1Pij , Pij ≤ μ2Pi, Qkj ≤ μ1Qkij , Qkij ≤ μ2Qki (k = 1, 2, 3),

Rlj ≤ μ1Rlij , Rlij ≤ μ2Rli (l = 1, 2), ∀i /= j, i, j ∈ P.
(3.8)

Proof. When t ∈ Λ1, we consider the following Lyapunov-Krasovskii functional:

Vi(t, x(t)) = V1i(t, x(t)) + V2i(t, x(t)) + V3i(t, x(t)), (3.9)
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where

V1i(t, x(t)) = xᵀ(t)Pix(t),

V2i(t, x(t)) =
∫ t

t−τ(t)
e−α(t−s)xᵀ(s)Q1ix(s)ds +

∫ t

t−τM
e−α(t−s)xᵀ(s)Q2ix(s)ds

+
∫ t

t−τ0
e−α(t−s)xᵀ(s)Q3ix(s)ds,

V3i(t, x(t)) =
∫0

−τM

∫ t

t+θ
e−α(t−s)ẋᵀ(s)R1iẋ(s)dsdθ +

∫−τ0

−τM

∫ t

t+θ
e−α(t−s)ẋᵀ(s)R2iẋ(s)dsdθ.

(3.10)

Taking the time derivative of Vi(t, x(t)) for t ∈ [0,∞) along the trajectory of the system
(2.1) turns out to be

V̇1i(t, x(t)) = 2xᵀ(t)PiΥ̃iψ(t),

V̇2i(t, x(t)) ≤ −αV2i(t, x(t)) + xᵀ(t)(Q1i +Q2i +Q3i)x(t)

− (1 − τ)e−ατMxᵀ(t − τ(t))Q1ix(t − τ(t))
− e−ατMxᵀ(t − τM)Q2ix(t − τM) − e−ατ0xᵀ(t − τ0)Q3ix(t − τ0),

V̇3i(t, x(t)) ≤ −αV3i(t, x(t)) + τMψᵀ(t)Υ̃ᵀ
i R1iΥ̃iψ(t)

+ (τM − τ0)ψᵀ(t)Υ̃ᵀ
i R2iΥ̃iψ(t)

−
∫ t

t−τM
ẋᵀ(s)e−α(t−s)R1iẋ(s)ds −

∫ t−τ0

t−τM
ẋᵀ(s)e−α(t−s)R2iẋ(s)ds.

(3.11)

On the other hand, according to Lemma 2.4, we get that

−
∫ t

t−τM
ẋᵀ(s)e−α(t−s)R1iẋ(s)ds ≤ α

1 − eατM
[

x(t)
x(t − τM)

]ᵀ[
R1i −R1i

−R1i R1i

][
x(t)

x(t − τM)

]
,

−
∫ t−τ0

t−τM
ẋᵀ(s)e−α(t−s)R2iẋ(s)ds

≤ −
∫ t−τ0

t−τ(t)
ẋᵀ(s)e−α(t−s)R2iẋ(s)ds −

∫ t−τ(t)

t−τM
ẋᵀ(s)e−α(t−s)R2iẋ(s)ds

≤ α

eατ0 − eατM
[
x(t − τ0)
x(t − τ(t))

]ᵀ[
R2i −R2i

−R2i R2i

][
x(t − τ0)
x(t − τ(t))

]

+
α

eατ0 − eατM
[
x(t − τ(t))
x(t − τM)

]ᵀ[
R2i −R2i

−R2i R2i

][
x(t − τ(t))
x(t − τM)

]
.

(3.12)
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Then we can get

V̇i(t, x(t)) + αVi(t, x(t)) ≤ ψᵀ(t)Ξ̃iψ(t), (3.13)

where

Ξ̃i = τMΥ̃ᵀ
i R1iΥ̃i + (τM − τ0)Υ̃ᵀ

i R2iΥ̃i

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ξ̃0
1,1 PiAτi − α

1 − eατM R1i 0

∗ Ξ̃0
2,2 − α

eατ0 − eατM R2i − α

eατ0 − eατM R2i

∗ ∗ Ξ̃3,3 0

∗ ∗ ∗ −e−ατ0Q3i +
α

eατ0 − eατM R2i

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.14)

with

Ξ̃0
1,1 = Q1i +Q2i +Q3i + PiAi +A

ᵀ
i Pi +

α

1 − eατM R1i + αPi,

Ξ̃0
2,2 = −(1 − τ)e−ατMQ1i + 2

α

eατ0 − eατM R2i.
(3.15)

In view of Schur complement, (3.3) implies that Ξ̃i < 0. Then we have V̇i(t, x(t)) +
αVi(t, x(t)) < 0 for all ψ(t)/= 0.

Then during the matched period, by Lemma 2.5, Vi(t, x(t)) satisfy

Vi(t, x(t)) ≤ e−α(t−t0)Vi(t0, xt0), t0 ≤ t < t1,
Vi(t, x(t)) ≤ e−α(t−t	−1−Δ	−1)Vi(t	−1 + Δ	−1, xt	−1+Δ	−1), t	−1 + Δ	−1 ≤ t < t	, 	 = 2, 3, . . . .

(3.16)

When t ∈ Λ2, we consider the following Lyapunov-Krasovskii functional:

Vij(t, x(t)) = V1ij(t, x(t)) + V2ij(t, x(t)) + V3ij(t, x(t)), (3.17)

where

V1ij(t, x(t)) = xᵀ(t)Pijx(t),

V2ij(t, x(t)) =
∫ t

t−τ(t)
eβ(t−s)xᵀ(s)Q1ijx(s)ds +

∫ t

t−τM
eβ(t−s)xᵀ(s)Q2ijx(s)ds

+
∫ t

t−τ0
eβ(t−s)xᵀ(s)Q3ijx(s)ds,

V3ij(t, x(t)) =
∫0

−τM

∫ t

t+θ
eβ(t−s)ẋᵀ(s)R1ij ẋ(s)dsdθ +

∫−τ0

−τM

∫ t

t+θ
eβ(t−s)ẋᵀ(s)R2ij ẋ(s)dsdθ,

(3.18)

where β > 0.
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Similarly we have that

V̇ij(t, x(t)) − βVij(t, x(t)) ≤ ψᵀ(t)Ξiψ(t), (3.19)

where

Ξ1i = τMΥ̃ᵀ
i R1ij Υ̃i + (τM − τ0)Υ̃ᵀ

i R2ij Υ̃i

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎣

Ξ0
1,1 PijAτi

β

1 − e−βτM R1ij 0

∗ Ξ0
2,2

β

e−βτ0 − e−βτM R2ij
β

e−βτ0 − e−βτM R2ij

∗ ∗ Ξ3,3 0

∗ ∗ ∗ −eβτ0Q3ij −
β

e−βτ0 − e−βτM R2ij

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎦

(3.20)

with

Ξ0
1,1 = Q1ij +Q2ij +Q3ij + PijAi +A

ᵀ
i Pij −

β

1 − e−βτM R1ij − βPij ,

Ξ0
2,2 = −(1 − τ)eβτMQ1ij − 2

β

e−βτ0 − e−βτM R2ij .

(3.21)

Through Lemma 2.5, we also have

Vij(t, x(t)) ≤ eβ(t−t	)Vij(t	, xt	), t	 ≤ t ≤ t	 + Δ	, 	 = 1, 2, . . . . (3.22)

When t ∈ [t	, t	 + Δ	), 	 = 1, 2, . . ., we have the relationshipNσ(t)(t0, t) < Nσ(t)(t0, t),
and it follows that

V (t, x(t)) = Vσ(t	−1+Δ	−1)σ(t	)(t) ≤ Vσ(t	−1+Δ	−1)σ(t	)(t	)e
β(t−t	)

≤ μ2Vσ(t	−1)
(
t−	
)
eβ(t−t	) ≤ μ2Vσ(t	−1)(t	−1 + Δ	−1)eβ(t−t	)−α(t	−t	−1−Δ	−1)

≤ μ2μ1Vσ(t	−2+Δ	−2)
(
t−	
)
eβ(t−t	)−α(t	−t	−1−Δ	−1) ≤ · · ·

≤ (
μ2μ1

)Nσ(t)(t0,t)μ−1
1 Vσ(t0)(t0)e

βT−(t0,t)−αT+(t0,t).

(3.23)

From (3.7), we can obtain

T−(t0, t)β − T+(t0, t)α ≤ −κ(t − t0). (3.24)

Then through (3.23) and (3.24), we can easily get

V (t, x(t)) ≤ μ−1
1

(
μ2μ1

)(t−t0)/TaVσ(t0)e
−κ(t−t0) ≤ μ−1

1 Vσ(t0)e
−(κ−(lnμ2μ1)/Ta)(t−t0). (3.25)
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By (3.9) and (3.25), then we have

λmin(Pi)‖x(t)‖2 ≤ V (t, x(t)) ≤ μ−1
1

[

max
∀i∈P

λmax(Pi) +
2∑

k=1

τMmax
∀i∈P

λmax(Qki)

+ τ0max
∀i∈P

λmax(Q3i) +
τ2M
2

max
∀i∈P

λmax(R1i)

+

(
τ2M − τ20

)

2
max
∀i∈P

λmax(R2i)

]

‖xt0‖2e−(κ−(lnμ2μ1)/Ta)(t−t0),

(3.26)

which means

‖x(t)‖ ≤ μ−1/2
1

√
a1
b1

‖xt0‖e−(1/2)(κ−lnμ2μ1/Ta)(t−t0), (3.27)

where

a1 = max
∀i∈P

λmax(Pi) +
2∑

k=1

τMmax
∀i∈P

λmax(Qki) + τ0max
∀i∈P

λmax(Q3i)

+
τ2M
2

max
∀i∈P

λmax(R1i) +

(
τ2M − τ20

)

2
max
∀i∈P

λmax(R2i),

b1 = λmin(Pi).

(3.28)

Similarly, when t ∈ Λ1, we can also have

‖x(t)‖ ≤ μ−1/2
1

√
a2
b2

‖xt0‖e−(1/2)(κ−lnμ2μ1/Ta)(t−t0), (3.29)

where

a2 = max
∀i,j∈P

λmax
(
Pij

)
+

2∑

k=1

τMmax
∀i,j∈P

λmax
(
Qkij

)
+ τ0max

∀i,j∈P

λmax
(
Q3ij

)

+
τ2M
2

max
∀i,j∈P

λmax
(
R1ij

)
+

(
τ2M − τ20

)

2
max
∀i,j∈P

λmax
(
R2ij

)
,

b2 = λmin
(
Pij

)
.

(3.30)

For convenience, let a = max{a1, a2}, b = mini /= j,i,j∈Pλmin(Pi, Pij), through (3.27) and
(3.29), we have

∥∥ηt
∥∥ ≤ μ−1/2

1

√
a

b

∥∥ηt0
∥∥e−(1/2)(κ−lnμ2μ1/Ta)(t−t0). (3.31)



Journal of Applied Mathematics 11

Theorem 3.2. For given scalars 0 ≤ τ0 ≤ τM, α > 0, β > 0, then the system (2.1) is exponentially
stable with L2-gain, if there exist positive-definite matrices Pi, Pij , Qki, Qkij (k = 1, 2, 3), and Rli,
Rlij (l = 1, 2) such that the following LMIs hold:

Σ̃1i =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Σ̃1,1 Ξ̃1,2 − α

1 − eατM R1i 0 Σ̃1,5

∗ Ξ̃2,2 − α

eατ0 − eατM R2i − α

eατ0 − eατM R2i Σ̃2,5

∗ ∗ Ξ̃3,3 0 0

∗ ∗ ∗ −e−ατ0Q3i +
α

eατ0 − eατM R2i 0

∗ ∗ ∗ ∗ Σ̃5,5

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.32)

Σ1i =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Σ1,1 Ξ1,2
β

1 − e−βτM R1ij 0 Σ1,5

∗ Ξ2,2
β

e−βτ0 − e−βτM R2ij
β

e−βτ0 − e−βτM R2ij Σ2,5

∗ ∗ Ξ3,3 0 0

∗ ∗ ∗ −eβτ0Q3ij −
β

e−βτ0 − e−βτM R2ij 0

∗ ∗ ∗ ∗ Σ5,5

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0 (3.33)

with

Σ̃1,1 = Q1i +Q2i +Q3i + PiAi +A
ᵀ
i Pi +

α

1 − eατM R1i + τMA
ᵀ
i R1iAi

+ (τM − τ0)Aᵀ
i R2iAi + C

ᵀ
i Ci,

Σ̃1,5 = PiBi + τMA
ᵀ
i R1iBi + (τM − τ0)Aᵀ

i R2iBi + C
ᵀ
i Di,

Σ̃2,5 = τMA
ᵀ
τiR1iBi + (τM − τ0)Aᵀ

τiR2iBi,

Σ̃5,5 = τMB
ᵀ
i R1iBi + (τM − τ0)Bᵀ

i R2iBi +D
ᵀ
i Di − γ2I,

Σ1,1 = Q1ij +Q2ij +Q3ij + PijAi +A
ᵀ
i Pij −

β

1 − e−βτM R1ij + τMA
ᵀ
i R1ijAi

+ (τM − τ0)Aᵀ
i R2ijAi + C

ᵀ
i Ci,

Σ1,5 = PijBi + τMA
ᵀ
i R1ijBi + (τM − τ0)Aᵀ

i R2ijBi + C
ᵀ
i Di,

Σ2,5 = τMA
ᵀ
τiR1ijBi + (τM − τ0)Aᵀ

τiR2ijBi,

Σ5,5 = τMB
ᵀ
i R1ijBi + (τM − τ0)Bᵀ

i R2ijBi +D
ᵀ
i Di − γ2I.

(3.34)
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Proof. For all nonzero ω(t) ∈ L2[0,∞) and a scalar γ > 0, then we establish system (2.1)
with L2-gain performance ‖z̃(t)‖2 ≤ γ‖ω(t)‖. For convenience, denoting Π(t) = z̃ᵀ(t)z̃(t) −
γ2ωᵀ(t)ω(t).

When t ∈ [t0, t1) ∪ [t	−1 + Δ	−1, t	), k = 2, 3, . . ., by the system (2.1), we can obtain

V̇ (t, x(t)) + αVi(t, x(t)) + Π(t) = ϕᵀ(t)Σ̃iϕ(t). (3.35)

From (3.32), we can easily get

V̇i
(
t, ηt

)
+ αVi

(
t, ηt

)
+ Π(t) < 0. (3.36)

Integrate this inequality during [t0, t], it is known that

Vi(t, x(t)) ≤ e−α(t−t0)Vi(t0, xt0) −
∫ t

t−t0
e−α(t−s)Π(s)ds, t0 ≤ t < t1,

Vi(t, x(t)) ≤ e−α(t−t	−1−Δ	−1)Vi(t	−1 + Δ	−1, xt	−1+Δ	−1)

−
∫ t

t	−1+Δ	−1
e−α(t−s)Π(s)ds, t	−1 + Δ	−1 ≤ t < t	, 	 = 2, 3, . . . .

(3.37)

When t ∈ [t	, t	+Δ	), 	 = 2, 3, . . ., by the system (2.1), by the sameway, we can obtain

V̇ (t, x(t)) − βVi(t, x(t)) + Π(t) = ϕᵀ(t)Σiϕ(t) < 0. (3.38)

Then we have

Vij(t, x(t)) ≤ Vij(t	, xt	)eβ(t−t	) −
∫ t

t	
eβ(t−s)Π(s)ds, t	 ≤ t	 + Δ	, 	 = 1, 2, . . . .

(3.39)
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When t ∈ [t	, t	 + Δ	), 	 = 1, 2, . . ., it follows that

V (t, x(t)) = Vσ(t	−1+Δ	−1)σ(t	)(t	)e
βT−(t	,t)−αT+(t	,t) −

∫ t

t	
eβT

−(t	,t)−αT+(t	,t)Π(s)ds

≤ μ2Vσ(t	−1)
(
t−	
)
eβT

−(t	,t)−αT+(t	,t) −
∫ t

t	
eβT

−(t	,t)−αT+(t	,t)Π(s)ds

≤ μ2μ1Vσ(t	−2+Δ	−2)σ(t	−1)(t	−1)eβT
−(t	−1,t)−αT+(t	−1,t)

− μ2μ1

∫ t	−1−Δ	−1

t	−1
eβT

−(t	,t)−αT+(t	,t)Π(s)ds

− μ2

∫ t	

t	−1+Δ	−1
eβT

−(t	,t)−αT+(t	,t)Π(s)ds −
∫ t

t	
eβT

−(t	,t)−αT+(t	,t)Π(s)ds ≤ · · ·

≤ −
∫ t

t0

μ
Nσ(t)(s,t)
2 μ

Nσ(t)(s,t)
1 eβT

−(s,t)−αT+(s,t)Π(s)ds

+ μNσ(t)(t0,t)
2 μ

Nσ(t)(t0,t)
1 Vσ(t0)(t0)e

βT−(t	,t)−αT+(t	,t).

(3.40)

Under the zero initial condition, Let t0 = 0, (3.40) implies

∫ t

0
μ
Nσ(t)(s,t)
2 μ

Nσ(t)(s,t)
1 eβT

−(s,t)−αT+(s,t)Λ(s)ds ≤ 0. (3.41)

Integrate (3.41) during [0,∞), then we can obtain

∫∞

0

∫ t

0
e[Nσ(t)(0,s) lnμ2+Nσ(t)(0,s) lnμ1]eβT

−(s,t)−αT+(s,t)Π(s)dsdt

<

∫∞

0
e[Nσ(t)(0,s) lnμ2+Nσ(t)(0,s) lnμ1]Π(s)

(∫∞

s

e−κ(t−s)dt
)
ds ≤

∫∞

0
Π(s)ds ≤ 0.

(3.42)

When t ∈ [t0, t1) ∪ [t	−1 + Δ	−1, t	), 	 = 2, 3, . . ., by the same mathematical operations,
we have

∫∞
t0
Π(s)ds < 0.

From which we can get ‖z̃(t)‖2 ≤ ‖ω(t)‖2. This proof is completed.

Remark 3.3. If μ1 = μ2 = 0, which implies that Pi = Pij = P, Qki = Qkij = Qk, Rli =
Rlij = Rl, i, j ∈ P, by (3.3)-(3.4) and (3.32)-(3.33), we have Ta = 0, then it requires a
common Lyapunov functional for all subsystems, and the switching signals can be arbitrary.
If μk → ∞ (k = 1, 2), we get from (3.3)-(3.4) and (3.32)-(3.33) that there is no switching, that
is, switching signal will have a great dwell-time on the average.

4. Illustrative Example

In this section, a numerical example is given to illustrate the effectiveness of the obtained
results.
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Table 1: Different Ta and τM for α = 0.25, β = 0.2.

μ1μ2 1.0 1.5 2.0
Ta 0.0521 2.1022 5.2454
τM 1.2036 1.5415 1.7154

2.5

2

1.5

1

0.5
0 1 2 3 4 5 6

Figure 1: Switching signal with ADT.

Example 4.1. Consider the system (2.1)with parameters as follows:

A1 =
[−1.5 0.3

0 −2.4
]
, A2 =

[−1.4 0.8
0.6 −2.4

]
, Aτ1 =

[−2.2 −0.3
0 −1.6

]
,

Aτ2 =
[
1.2 0
0 −1.8

]
, C1 =

[−0.4 0.2
0.2 0.1

]
, C2 =

[
0.2 0.3
0.1 0.35

]
, B1 =

[−0.35
0.28

]
,

B2 =
[−0.66
0.25

]
, D1 =

[−0.35
−0.15

]
, D2 =

[
0.57
−0.48

]
.

(4.1)

τ0 is fixed and assumed to be 0.2. The initial condition is assumed to be x(0) = [9, −9]ᵀ,
ω(t) = 0.5 sin t. Then by solving the LMIs in Theorem 3.2, different Ta and τM for different
μ1μ2, α, and β can be obtained in Table 1. It can be seen that, for the given τ0, the upper
bounds of the time delay τM and the minimal average dwell-time Ta are dependent on α,
β, and μ1μ2. Then the simulation result of the system is shown in Figures 1, 2, and 3. The
switching signal σ(t) with average dwell-time Ta is shown in Figure 1. Figures 2–3 indicate
that the state response of the switched system without asynchronous switching and with
asynchronous switching, respectively.

5. Conclusions

In terms of the LMI approach, the problem of robust stabilization of switched delay systems
with average dwell-time under asynchronous switching has been considered. Two sufficient
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Figure 2: The state response without asynchronous switching.

0 1 2 3 4 5 6

0
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Figure 3: The state response with asynchronous switching.

conditions are developed to guarantee the global exponential stability of the considered
switched system. At last, a numerical example is provided to demonstrate the effectiveness
and feasibility of the proposed techniques.
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