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We answer the question: for any p, q ∈ R with p /= q and p /= − q, what are the greatest value
λ = λ(p, q) and the least value μ = μ(p, q), such that the double inequality Mλ(a, b) <√
Mp(a, b)Mq(a, b) < Mμ(a, b) holds for all a, b > 0 with a/= b? Where Mp(a, b) is the pth power

mean of two positive numbers a and b.

1. Introduction

For p ∈ R, the pth power mean Mp(a, b) of two positive numbers a and b is defined by

Mp(a, b) =

⎧
⎪⎪⎨
⎪⎪⎩

(
ap + bp

2

)1/p

, p /= 0,

√
ab, p = 0.

(1.1)

It is well known that Mp(a, b) is continuous and strictly increasing with respect to
p ∈ R for fixed a, b > 0 with a/= b. Many classical means are special case of the power
mean, for example, M−1(a, b) = H(a, b) = 2ab/(a + b), M0(a, b) = G(a, b) =

√
ab, and

M1(a, b) = A(a, b) = (a + b)/2 are the harmonic, geometric, and arithmetic means of a
and b, respectively. Recently, the power mean has been the subject of intensive research. In
particular, many remarkable inequalities and properties for the power mean can be found in
literature [1–15].
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Let L(a, b) = (a − b)/(loga − log b) and I(a, b) = 1/e(aa/bb)1/(a−b) be the logarithmic
and identric means of two positive numbers a and b with a/= b, respectively. Then it is well
known that

H(a, b) = M−1(a, b) < G(a, b) = M0(a, b) < L(a, b) < I(a, b) < A(a, b) = M1(a, b) (1.2)

for all a, b > 0 with a/= b.
In [16–22], the authors presented the sharp power mean bounds for L, I, (IL)1/2, and

(L + I)/2 as follows:

M0(a, b) < L(a, b) < M1/3(a, b), M2/3(a, b) < I(a, b) < Mlog 2(a, b),

M0(a, b) <
√
L(a, b)I(a, b) < M1/2(a, b),

1
2
(L(a, b) + I(a, b)) < M1/2(a, b)

(1.3)

for all a, b > 0 with a/= b.
Alzer and Qiu [12] proved that the inequality

1
2
(L(a, b) + I(a, b)) > Mp(a, b) (1.4)

holds for all a, b > 0 with a/= b if and only if p ≤ log 2/(1 + log 2) = 0.40938 . . ..
The following sharp bounds for the sum αA(a, b) + (1 − α)L(a, b), and the products

Aα(a, b)L1−α(a, b) and Gα(a, b)L1−α(a, b) in terms of power means were proved in [5, 8] as
follows:

Mlog 2/(log 2−logα)(a, b) < αA(a, b) + (1 − α)L(a, b) < M(1+2α)/3(a, b),

M0(a, b) < Aα(a, b)L1−α(a, b) < M(1+2α)/3(a, b),

M0(a, b) < Gα(a, b)L1−α(a, b) < M(1−α)/3(a, b)

(1.5)

for any α ∈ (0, 1) and all a, b > 0 with a/= b.
In [2, 7], the authors answered the question: for any α ∈ (0, 1), what are the greatest

values p1 = p1(α), p2 = p2(α), p3 = p3(α), and p4 = p4(α), and the least values q1 = q1(α),
q2 = q2(α), q3 = q3(α), and q4 = q4(α), such that the inequalities

Mp1(a, b) < Pα(a, b)L1−α(a, b) < Mq1(a, b),

Mp2(a, b) < Aα(a, b)G1−α(a, b) < Mq2(a, b),

Mp3(a, b) < Gα(a, b)H1−α(a, b) < Mq3(a, b),

Mp4(a, b) < Aα(a, b)H1−α(a, b) < Mq4(a, b)

(1.6)

hold for all a, b > 0 with a/= b?
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In [4], the authors presented the greatest value p = p(α, β) and the least value q =
q(α, β) such that the double inequality

Mp(a, b) < Aα(a, b)Gβ(a, b)H1−α−β(a, b) < Mq(a, b) (1.7)

holds for all a, b > 0 with a/= b and α, β > 0 with α + β < 1.
It is the aim of this paper to answer the question: for any p, q ∈ R with p /= q and p /= −q,

what are the greatest value λ = λ(p, q) and the least value μ = μ(p, q), such that the double
inequality

Mλ(a, b) <
√
Mp(a, b)Mq(a, b) < Mμ(a, b) (1.8)

holds for all a, b > 0 with a/= b?

2. Main Result

In order to establish our main result, we need a lemma which we present in this section.

Lemma 2.1. Let p, q /= 0, p /= q and x > 1. Then

Mp(x, 1)Mq(x, 1) < M2
(p+q)/2(x, 1) (2.1)

for p + q > 0, and

Mp(x, 1)Mq(x, 1) > M2
(p+q)/2(x, 1) (2.2)

for p + q < 0.

Proof. From (1.1), we have

log
[
Mp(x, 1)Mq(x, 1)

] − logM2
(p+q)/2(x, 1)

=
1
p
log

1 + xp

2
+
1
q
log

1 + xq

2
− 4
p + q

log
1 + x(p+q)/2

2
.

(2.3)

Let

f(x) =
1
p
log

1 + xp

2
+
1
q
log

1 + xq

2
− 4
p + q

log
1 + x(p+q)/2

2
, (2.4)

then simple computations lead to

f(1) = 0, (2.5)

f ′(x) =

(
1 − x(p+q)/2)(xp/2 − xq/2)2

x(1 + xp)(1 + xq)
(
1 + x(p+q)/2

) . (2.6)
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Equation (2.6) implies that

f ′(x) < 0 (2.7)

for p + q > 0, and

f ′(x) > 0 (2.8)

for p + q < 0.
Therefore, inequality (2.1) follows from (2.3)–(2.5) and inequality (2.7), and inequality

(2.2) follows from (2.3)–(2.5) and inequality (2.8).
Let

E0 =
{(

p, q
) ∈ R

2 : p = q
}
, E′

0 =
{(

p, q
) ∈ R

2 : p = −q
}
,

E1 =
{(

p, q
) ∈ R

2 : p, q > 0, p > q
}
, E′

1 =
{(

p, q
) ∈ R

2 : p, q > 0, p < q
}
,

E2 =
{(

p, q
) ∈ R

2 : p, q < 0, p > q
}
, E′

2 =
{(

p, q
) ∈ R

2 : p, q < 0, p < q
}
,

E3 =
{(

p, q
) ∈ R

2 : p > 0, q = 0
}
, E′

3 =
{(

p, q
) ∈ R

2 : p = 0, q > 0
}
,

E4 =
{(

p, q
) ∈ R

2 : p > 0, q < 0, p + q > 0
}
, E′

4 =
{(

p, q
) ∈ R

2 : p < 0, q > 0, p + q > 0
}
,

E5 =
{(

p, q
) ∈ R

2 : p = 0, q < 0
}
, E′

5 =
{(

p, q
) ∈ R

2 : p < 0, q = 0
}
,

E6 =
{(

p, q
) ∈ R

2 : p > 0, q < 0, p + q < 0
}
, E′

6 =
{(

p, q
) ∈ R

2 : p < 0, q > 0, p + q < 0
}
.

(2.9)

Then we clearly see that R
2 =

⋃6
i=0 Ei

⋃6
i=0 E

′
i, and it is not difficult to verify that the

identity
√
Mp(a, b)Mq(a, b) = M(p+q)/2(a, b) holds for all a, b > 0 if (p, q) ∈ E0

⋃
E′
0. Let

λ =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2pq(
p + q

) , (
p, q

) ∈ E1
⋃
E′
1,

(
p + q

)

2
,

(
p, q

) ∈ E2
⋃
E′
2
⋃
E5

⋃
E′
5
⋃
E6

⋃
E′
6,

0,
(
p, q

) ∈ E3
⋃
E′
3
⋃
E4

⋃
E′
4,

μ =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2pq(
p + q

) , (
p, q

) ∈ E2
⋃
E′
2,

(
p + q

)

2
,

(
p, q

) ∈ E1
⋃
E′
1

⋃
E3

⋃
E′
3
⋃
E4

⋃
E′
4,

0,
(
p, q

) ∈ E5
⋃
E′
5
⋃
E6

⋃
E′
6.

(2.10)

Then we have Theorem 2.2 as follows.
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Theorem 2.2. The double inequality

Mλ(a, b) <
√
Mp(a, b)Mq(a, b) < Mμ(a, b) (2.11)

holds for all a, b > 0 with a/= b, and Mλ(a, b) and Mμ(a, b) are the best possible lower and upper
power mean bounds for the geometric mean of Mp(a, b) and Mq(a, b).

Proof. From (1.1), we clearly see that Mp(a, b) is symmetric and homogenous of degree 1.
Without loss of generality, we assume that b = 1, a = x > 1 and p > q. We divide the proof of
inequality (2.11) into three cases.

Case 1. (p, q) ∈ E1
⋃
E2. Then from Lemma 2.1, we clearly see that

√
Mp(x, 1)Mq(x, 1) < M(p+q)/2(x, 1) (2.12)

for (p, q) ∈ E1, and

√
Mp(x, 1)Mq(x, 1) > M(p+q)/2(x, 1) (2.13)

for (p, q) ∈ E2.
From (1.1), we get

log
[
Mp(x, 1)Mq(x, 1)

] − logM2
2pq/(p+q)(x, 1)

=
1
p
log

1 + xp

2
+
1
q
log

1 + xq

2
− p + q

pq
log

1 + x2pq/(p+q)

2
.

(2.14)

Let

F(x) =
1
p
log

1 + xp

2
+
1
q
log

1 + xq

2
− p + q

pq
log

1 + x2pq/(p+q)

2
, (2.15)

then simple computations lead to

F(1) = 0, (2.16)

F ′(x) =
xqG(x)

x(1 + xp)(1 + xq)
(
1 + x2pq/(p+q)

) , (2.17)

where

G(x) = xp−q − x(2pq+p2−q2)/(p+q) + 2xp − x2pq/(p+q) − 2xq(p−q)/(p+q) + 1, (2.18)

G(1) = 0, (2.19)

G′(x) = x(pq−q2−p−q)/(p+q)H(x), (2.20)
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where

H(x) =
(
p − q

)
xp(p−q)/(p+q) − 2pq + p2 − q2

p + q
xp + 2px(p2+q2)/(p+q)

− 2pq
p + q

xq − 2q
(
p − q

)

p + q
,

(2.21)

H(1) =
2
(
p − q

)2
p + q

, (2.22)

H ′(x) =
p

p + q
xp−1I(x), (2.23)

where

I(x) =
(
p − q

)2
x−2pq/(p+q) + 2

(
p2 + q2

)
x−q(p−q)/(p+q) − 2q2x−(p−q) − 2pq − p2 + q2, (2.24)

I(1) = 2
(
p − q

)2
, (2.25)

I ′(x) =
2q

(
p − q

)

p + q
x(q2−pq−p−q)/(p+q)J(x), (2.26)

where

J(x) = −p(p − q
)
x−q + q

(
p + q

)
x−p(p−q)/(p+q) − p2 − q2, (2.27)

J(1) = −2p(p − q
)
, (2.28)

J ′(x) = pq
(
p − q

)
x−q−1

(
1 − x(q2−p2+2pq)/(p+q)

)
. (2.29)

If (p, q) ∈ E1, then (2.15), (2.18), (2.21), (2.22), (2.24), (2.25), (2.27), and (2.28) lead to

lim
x→+∞

F(x) = 0, (2.30)

lim
x→+∞

G(x) = −∞, (2.31)

lim
x→+∞

H(x) = −∞, (2.32)

H(1) > 0, (2.33)

lim
x→+∞

I(x) = −2pq − p2 + q2 < 0, (2.34)

I(1) > 0, (2.35)

lim
x→+∞

J(x) = −
(
p2 + q2

)
< 0, (2.36)

J(1) < 0. (2.37)
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We divide the discussion into two subcases.

Subcase 1.1. (p, q) ∈ E1. Then (2.26) and (2.29) together with inequalities (2.36) and (2.37)
imply that I(x) is strictly decreasing in [1,+∞). In fact, if (q2 − p2 + 2pq)/(p + q) ≥ 0, then
(2.29) and inequality (2.37) imply that J(x) < 0 for x ∈ [1,+∞). If (q2 − p2 + 2pq)/(p + q) < 0,
then (2.29) and inequality (2.36) lead to the conclusion that J(x) < 0 for x ∈ [1,+∞).

From inequalities (2.34) and (2.35) together with the monotonicity of I(x), we know
that there exists λ1 > 1 such that I(x) > 0 for x ∈ [1, λ1) and I(x) < 0 for x ∈ (λ1,+∞). Then
(2.23) leads to the conclusion thatH(x) is strictly increasing in [1, λ1] and strictly decreasing
in [λ1,+∞).

It follows from (2.32) and (2.33) together with the piecewise monotonicity of H(x)
that there exists λ2 > λ1 > 1 such that H(x) > 0 for [1, λ2] and H(x) < 0 for (λ2,+∞). Then
(2.20) leads to the conclusion that G(x) is strictly increasing in [1, λ2] and strictly decreasing
in [λ2,+∞).

From (2.17), (2.19) and (2.31) together with the piecewise monotonicity of G(x), we
clearly see that there exists λ3 > λ2 > 1 such that F(x) is strictly increasing in [1, λ3] and
strictly decreasing in [λ3,+∞).

Therefore,
√
Mp(x, 1)Mq(x, 1) > M2pq/(p+q)(x, 1) follows from (2.14)–(2.16) and (2.30)

together with the piecewise monotonicity of F(x).

Subcase 1.2. (p, q) ∈ E2. Then (2.30) and (2.35) again hold, and (2.18), (2.21), (2.22), and (2.28)
lead to

lim
x→+∞

G(x) = +∞, (2.38)

lim
x→+∞

H(x) = +∞, (2.39)

H(1) < 0, (2.40)

J(1) > 0. (2.41)

It follows from (2.29) and inequalities (q2−p2+2pq)/(p+q) < 0 and (2.41) that J(x) > 0
for x ∈ [1,+∞). Then (2.26) and inequality (2.35) lead to the conclusion that I(x) > 0 for
x ∈ [1,+∞). Therefore, H(x) is strictly increasing in [1,+∞) follows from (2.23).

It follows from (2.20) and (2.39) together with inequality (2.40) and the monotonicity
of H(x) that there exists μ1 > 1 such that G(x) is strictly decreasing in [1, μ1] and strictly
increasing in [μ1,+∞).

From (2.17), (2.19) and (2.38) together with the piecewise monotonicity of G(x), we
clearly see that there exists μ2 > μ1 > 1 such that F(x) is strictly decreasing in [1, μ2] and
strictly increasing in [μ2,+∞).

Therefore,
√
Mp(x, 1)Mq(x, 1) < M2pq/(p+q)(x, 1) follows from (2.14)–(2.16) and (2.30)

together with the piecewise monotonicity of F(x).

Case 2. (p, q) ∈ E3
⋃
E5. Clearly, we have M0(x, 1) <

√
Mp(x, 1)Mq(x, 1) for (p, q) ∈ E3 and

M0(x, 1) >
√
Mp(x, 1)Mq(x, 1) for (p, q) ∈ E5. Therefore, we need only to prove that

√
M0(x, 1)Mr(x, 1) < Mr/2(x, 1) (2.42)
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for r > 0, and

√
M0(x, 1)Mr(x, 1) > Mr/2(x, 1) (2.43)

for r < 0.
From (1.1), one has

log[M0(x, 1)Mr(x, 1)] − logM2
r/2(x, 1) =

1
2
logx +

1
r
log

1 + xr

2
− 4
r
log

1 + xr/2

2
. (2.44)

Let

f(x) =
1
2
logx +

1
r
log

1 + xr

2
− 4
r
log

1 + xr/2

2
, (2.45)

then simple computations lead to

f(1) = 0, (2.46)

f ′(x) = −
(
xr/2 − 1

)3
2x(1 + xr)

(
1 + xr/2

) . (2.47)

If r > 0 (or r < 0, resp.), then (2.47) leads to the conclusion that f(x) is strictly
decreasing (or increasing, resp.) in [1,+∞). Therefore, inequalities (2.42) and (2.43) follow
from (2.44)–(2.46) and the monotonicity of f(x).

Case 3. (p, q) ∈ E4
⋃
E6. Then from Lemma 2.1, we clearly see that M(p+q)/2(x, 1) >√

Mp(x, 1)Mq(x, 1) for (p, q) ∈ E4 and
√
Mp(x, 1)Mq(x, 1) > M(p+q)/2(x, 1) for (p, q) ∈ E6.

Therefore, we need only to prove that

√
Mp(x, 1)Mq(x, 1) > M0(x, 1) (2.48)

for (p, q) ∈ E4, and

√
Mp(x, 1)Mq(x, 1) < M0(x, 1) (2.49)

for (p, q) ∈ E6.
From (1.1), we get

log
[
Mp(x, 1)Mq(x, 1)

] − logM2
0(x, 1) =

1
p
log

1 + xp

2
+
1
q
log

1 + xq

2
− logx. (2.50)

Let

f(x) =
1
p
log

1 + xp

2
+
1
q
log

1 + xq

2
− logx, (2.51)
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then simple computations lead to

f(1) = 0, (2.52)

f ′(x) =
xp+q − 1

x(1 + xp)(1 + xq)
. (2.53)

If (p, q) ∈ E4 (or E6, resp.), then (2.53) implies that f(x) is strictly increasing (or
decreasing, resp.) in [1,+∞). Therefore, inequalities (2.48) and (2.49) follow from (2.50)–
(2.52) and the monotonicity of f(x).

Next, we prove that Mλ(a, b) and Mμ(a, b) are the best possible lower and upper
power mean bounds for the geometric mean of Mp(a, b) and Mq(a, b). We divide the proof
into six cases.

Case A. (p, q) ∈ E1. Then for any ε ∈ (0, (p + q)/2) and x > 0, from (1.1), one has

Mp(1 + x, 1)Mq(1 + x, 1) −M2
(p+q)/2−ε(1 + x, 1)

=
[
1 + (1 + x)p

2

]1/p[1 + (1 + x)q

2

]1/q
−
[
1 + (1 + x)(p+q)/2−ε

2

]4/(p+q−2ε)
,

(2.54)

lim
x→+∞

M2
2pq/(p+q)+ε(x, 1)

Mp(x, 1)Mq(x, 1)
= 2ε(p+q)

2/pq[2pq+ε(p+q)] > 1. (2.55)

Letting x → 0 and making use of Taylor expansion, we get

[
1 + (1 + x)p

2

]1/p[1 + (1 + x)q

2

]1/q
−
[
1 + (1 + x)(p+q)/2−ε

2

]4/(p+q−2ε)

=
ε

4
x2 + o

(
x2
)
.

(2.56)

Equations (2.54) and (2.56) together with inequality (2.55) imply that for any
ε ∈ (

0, p + q/2
)
, there exist δ1 = δ1(ε) > 0 and X1 = X1(p, q, ε) > 1 such that√

Mp(1 + x, 1)Mq(1 + x, 1) > M(p+q)/2−ε(1 + x, 1) for x ∈ (0, δ1) and
√
Mp(x, 1)Mq(x, 1) <

M2pq/(p+q)+ε(x, 1) for x ∈ (X1,+∞).

Case B. (p, q) ∈ E2. Then for ε ∈ (0,−(p + q)/2) and x > 0, making use of (1.1) and Taylor
expansion, we have

M2
(p+q)/2+ε(1 + x, 1) −Mp(1 + x, 1)Mq(1 + x, 1) =

ε

4
x2 + o

(
x2
)

(x −→ 0), (2.57)

lim
x→+∞

Mp(x, 1)Mq(x, 1)

M2
2pq/(p+q)−ε(x, 1)

= 2ε(p+q)
2/pq[2pq−ε(p+q)] > 1. (2.58)
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Equation (2.57) and inequality (2.58) imply that for any ε ∈ (0,−(p + q)/2), there
exist δ2 = δ2(ε) > 0 and X2 = X2(p, q, ε) > 1 such that M(p+q)/2+ε(1 + x, 1) >√
Mp(1 + x, 1)Mq(1 + x, 1) for x ∈ (0, δ2) and

√
Mp(x, 1)Mq(x, 1) > M2pq/(p+q)−ε(x, 1) for

x ∈ (X2,+∞).

Case C. (p, q) ∈ E3. Then for ε ∈ (0, p/2) and x > 0, making use of (1.1) and Taylor expansion,
we have

Mp(1 + x, 1)M0(1 + x, 1) −M2
p/2−ε(1 + x, 1) =

ε

4
x2 + o

(
x2
)

(x −→ 0),

lim
x→+∞

M2
ε(x, 1)

Mp(x, 1)M0(x, 1)
= +∞.

(2.59)

Equation (2.59) leads to the conclusion that for any ε ∈ (0, p/2), there exist δ3 = δ3(ε) >

0 and X3 = X3(p, ε) > 1 such that
√
Mp(1 + x, 1)M0(1 + x, 1) > Mp/2−ε(1 + x, 1) for x ∈ (0, δ3)

and Mε(x, 1) >
√
Mp(x, 1)M0(x, 1) for x ∈ (X3,+∞).

Case D. (p, q) ∈ E4. Then for ε ∈ (0, (p + q)/2) and x > 0, making use of (1.1) and Taylor
expansion, we have

Mp(1 + x, 1)Mq(1 + x, 1) −M2
(p+q)/2−ε(1 + x, 1) =

ε

4
x2 + o

(
x2
)

(x −→ 0),

lim
x→+∞

M2
ε(x, 1)

Mp(x, 1)Mq(x, 1)
= +∞.

(2.60)

Equation (2.60) implies that for any ε ∈ (0, (p + q)/2), there exist δ4 = δ4(ε) > 0 and

X4 = X4(p, q, ε) > 1 such that M(p+q)/2−ε(1 + x, 1) <
√
Mp(1 + x, 1)Mq(1 + x, 1) for x ∈ (0, δ4)

and Mε(x, 1) >
√
Mp(x, 1)Mq(x, 1) for x ∈ (X4,+∞).

Case E. (p, q) ∈ E5. Then for any ε ∈ (0,−q/2) and x > 0, making use of (1.1) and
Taylor expansion, one has

M2
q/2+ε(1 + x, 1) −M0(1 + x, 1)Mq(1 + x, 1) =

ε

4
x2 + o

(
x2
)

(x −→ 0),

lim
x→+∞

M0(x, 1)Mq(x, 1)

M2
−ε(x, 1)

= +∞.

(2.61)

Equation (2.61) leads to the conclusion that for any ε ∈ (0,−q/2), there exist δ5 =

δ5(ε) > 0 and X5 = X5(q, ε) > 1 such that Mq/2+ε(1 + x, 1) >
√
M0(1 + x, 1)Mq(1 + x, 1) for

x ∈ (0, δ5) and M−ε(x, 1) <
√
M0(x, 1)Mq(x, 1) for x ∈ (X5,+∞).
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Case F. (p, q) ∈ E6. Then for any ε ∈ (0,−(p + q)/2) and x > 0, making use of (1.1) and Taylor
expansion, one has

M2
(p+q)/2+ε(1 + x, 1) −Mp(1 + x, 1)Mq(1 + x, 1) =

ε

4
x2 + o

(
x2
)

(x −→ 0),

lim
x→+∞

Mp(x, 1)Mq(x, 1)

M2
−ε(x, 1)

= +∞.

(2.62)

Equation (2.62) shows that for any ε ∈ (0,−(p + q)/2), there exist δ6 = δ6(ε) > 0 and

X6 = X6(p, q, ε) > 1 such that M(p+q)/2+ε(1 + x, 1) >
√
Mp(1 + x, 1)Mq(1 + x, 1) for x ∈ (0, δ6)

and
√
Mp(x, 1)Mq(x, 1) > M2

−ε(x, 1) for x ∈ (X6,+∞).
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