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The dynamics of a system of two semiconductor lasers, which are delay coupled via a passive relay
within the synchronization manifold, are investigated. Depending on the coupling parameters,
the system exhibits synchronized Hopf bifurcation and the stability switches as the delay varies.
Employing the center manifold theorem and normal form method, an algorithm is derived for
determining the Hopf bifurcation properties. Some numerical simulations are carried out to
illustrate the analysis results.

1. Introduction

Systems of coupled semiconductor lasers (SLs) are receiving increasing interest, because
of their practical importance in more and more complex experimental devices, so coupled
system are studied by many researchers [1–3]. Moreover, they are important examples of
delay-coupled oscillators in general [4, 5]. The distance between the lasers always results
in a time delay in the coupling. In many situations, the time delay has been neglected.
However, for semiconductor lasers, this is not always justified due to their large bandwidth
and fast time scales of their dynamics. It is well known that delay effects can destabilize a
system, furthermore, delay may even result in chaotic dynamics as was shown in [6–8]. On
the other hand, time delay in the coupling can also be used to stabilize a chaotic system
[9–12]. Synchronization phenomena are common in coupled semiconductor lasers systems.
Research shows that even if several individual systems behave chaotically, in the case where
the systems are identical, by proper coupling, the systems can be made to evolve toward a
situation of isochronal synchronism [13–18].
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In this paper, we consider the Lang-Kobayashi rate equation [19–22]:

Ėj =
1
2
(1 + iα)njEj + keiϕEY

(
t − τ

2

)
,

Tṅj = p − nj −
(
1 + nj

)∣∣Ej
∣∣2, j = 1, 2,

(1.1)

which has already been analyzed by many authors during these years from the physics point
of views. Here, Ej and EY are the complex electric field amplitudes of the jth system and the
relay, respectively, nj is the excess carrier density, α is the linewidth enhancement factor, k is
the coupling strength, p is the pump current, and the time scale parameter T = τc/τp is the
ratio of the carrier and the photon lifetime, ϕ is the feedback phase, and all the parameters in
system (1.1) are constants.

In this paper, for the passive relay EY (realized through a semitransparent mirror,
which only receives, reflects, and passes part of the laser from E1 and E2), we consider the
algebraic equation:

EY (t) =
1
2

[
E1

(
t − τ

2

)
+ E2

(
t − τ

2

)]
. (1.2)

Noticing the coefficient of the relayEY , we found that since k, e, i, and ϕ are all positive
constants, so similar to [22], we choose the feedback phase ϕ = 0 for simplicity, whose results
are different from those of the system with ϕ/= 0 only by a constant multiple. Splitting the
complex electric field Ej = xj + iyj and using the vector Xj = (xj , yj , nj), j = 1, 2, we consider
the dynamics within the synchronization manifold (SM), that is, X1(t) = X2(t) = X(t), then
we have

EY
(
t − τ

2

)
= E(t − τ), (1.3)

and (1.1) can be written in the following form:

ẋ(t) =
n(t)
2

[
x(t) − αy(t)] + kx(t − τ),

ẏ(t) =
n(t)
2

[
αx(t) + y(t)

]
+ ky(t − τ),

Tṅ(t) = p − n(t) − [1 + n(t)]
[
x2(t) + y2(t)

]
.

(1.4)

It is found that, under certain conditions, the equilibrium of system (1.4) is unstable
when the delay τ varies from zero, and as τ passes through a critical value, the equilibrium
becomes asymptotically stable, and after that when τ passes through another critical value,
the equilibrium becomes unstable again, which means that there are stability switches as τ is
increasing. Hence, a Hopf bifurcation occurs at the equilibrium when τ equals to each critical
value, which means system (1.4) has periodic solutions and (1.1) exhibits synchronized
periodic oscillation. Since the delay is caused by the distance between the lasers and the
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receiver, we know that the variety of the distance may result in amplitude death (amplitude
tending to zero) or periodic oscillation in the complex electric field.

The paper is organized as follows. In Section 2, using the method presented in [23],
we study the stability and the existence of Hopf bifurcation of system (1.4) by analyzing the
distribution of the roots of the associated characteristic equation, which is a transcendental
equation. In Section 3, we use the normal form method and the center manifold theory
presented inHassard et al. [24] to analyze the direction, stability, and period of the bifurcating
periodic solution at critical values of τ . In Section 4, some numerical simulations are carried
out to illustrate the analytical results.

2. Stability Analysis

For (1.4), it is straightforward to see that E(0, 0, p) is an equilibrium. Linearizing equation
(1.4) around (0, 0, p), it follows that

ẋ(t) =
p

2
x(t) − αp

2
y(t) + kx(t − τ),

ẏ(t) =
αp

2
x(t) +

p

2
y(t) + ky(t − τ),

ṅ(t) = − n(t)
T

,

(2.1)

whose characteristic equation is given by

(
λ +

1
T

)[(
λ − p

2
− ke−λτ

)2
+
α2p2

4

]
= 0, (2.2)

which is equivalent to the following two equations:

λ +
1
T

= 0, (2.3)

(
λ − p

2
− ke−λτ

)2
+
α2p2

4
= 0. (2.4)

So λ = −(1/T) is always a negative root. Next, we study (2.4).
Obviously, (2.4) is equivalent to

λ − p

2
− ke−λτ = iαp

2
, (2.5)

λ − p

2
− ke−λτ = −iαp

2
. (2.6)

It is easy to see that the roots of (2.5) are conjugatives of (2.6), so we study (2.5) only.
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When τ = 0, we get the root of (2.5) easily

λ =
p

2
+ k + i

αp

2
, (2.7)

so we have

Lemma 2.1. The equilibrium E(0, 0, p) is unstable when τ = 0.

Let λ = iω(ω/= 0) be a root of (2.5) and substitute λ = iω into (2.5) yields

p

2
+ k cosωτ = 0,

ω + k sinωτ =
αp

2
,

(2.8)

which leads to

(
ω − αp

2

)2
= k2 − p2

4
. (2.9)

Then, one gets

ω± =
1
2

(
αp ±

√
4k2 − p2

)
. (2.10)

Hence,

cosω+τ =
−p
2k
, sinω+τ =

αp − 2ω+

2k
= −

√
4k2 − p2
2k

,

cosω−τ =
−p
2k
, sinω−τ =

αp − 2ω−
2k

=

√
4k2 − p2
2k

.

(2.11)

Consequently, for k > (p/2), one has

τ−j =
1
ω−

⎛
⎜⎝π − arcsin

√
4k2 − p2
2k

+ 2jπ

⎞
⎟⎠,

τ+j =
1
ω+

⎛
⎜⎝π + arcsin

√
4k2 − p2
2k

+ 2jπ

⎞
⎟⎠, j = 0, 1, 2, . . . .

(2.12)



Journal of Applied Mathematics 5

Let

λ(τ) = γ(τ) + iω(τ) (2.13)

be the root of (2.5) satisfying γ(τ±j ) = 0, ω(τ±j ) = ω±.
We have the following conclusion.

Lemma 2.2. It holds that

(i) γ ′
(
τ+j

)
> 0

(ii) γ ′
(
τ−j

)
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

< 0, when
p

2
< k <

√
1 + α2

2
p

> 0, when k >

√
1 + α2

2
p.

(2.14)

Proof. Substituting λ(τ) into (2.5) and taking the derivative with respect to τ , it follows that

dλ
dτ

+ λke−λτ + kτe−λτ
dλ
dτ

= 0. (2.15)

Therefore, noting that ke−λτ = λ − (p/2) − (i/2)αp, we have

dλ
dτ

=
−λ(λ − (

p/2
) − (i/2)αp

)

1 + τ
(
λ − (

p/2
) − (i/2)αp

) , (2.16)

and by a straight computation, we get

γ ′
(
τ±j

)
=
ω±
Δ

(
ω± −

αp

2

)
= ±ω±

Δ

√
k2 − p2

4
, (2.17)

whereΔ = (1 + (pτ/2))2+τ2(ω−(αp/2))2. Notice thatω− > 0 when (p/2) < k < (
√
1 + α2/2)p

and ω− < 0 when k > (
√
1 + α2/2)p, this completes the proof.

As to the order of the sequence {τ±j }, we have

Lemma 2.3. Suppose (p/2) < k < (αp/2π). Then, τ−0 < τ
+
0 , and there exists an integer m ≥ 0 such

that

τ−0 < τ
+
0 < τ

−
1 < · · · < τ−m < τ+m < τ+m+1 < τ

−
m+1. (2.18)
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Proof. Condition (p/2) < k < (αp/2π) implies that τ±j are well defined. So it is sufficient to
verify that τ−0 < τ

+
0 . From

arcsinx = x +
∞∑
n=1

(2n − 1)!!
(2n + 1)(2n)!!

x2n+1 =: x +A, x ∈ [−1, 1] (2.19)

and (2.12), we have

τ−0 =
1
ω−

⎛
⎜⎝π −

√
4k2 − p2
2k

−A

⎞
⎟⎠,

τ+0 =
1
ω+

⎛
⎜⎝π +

√
4k2 − p2
2k

+A

⎞
⎟⎠,

(2.20)

and if τ−0 < τ
+
0 , then

ω+

⎛
⎜⎝π −

√
4k2 − p2
2k

−A

⎞
⎟⎠ < ω−

⎛
⎜⎝π +

√
4k2 − p2
2k

+A

⎞
⎟⎠, (2.21)

which is equivalent to

(
αp +

√
4k2 − p2

)
⎛
⎜⎝π −

√
4k2 − p2
2k

−A

⎞
⎟⎠ <

(
αp −

√
4k2 − p2

)
⎛
⎜⎝π +

√
4k2 − p2
2k

+A

⎞
⎟⎠,

(2.22)

if and only if

π
√
4k2 − p2 < αp

⎛
⎜⎝

√
4k2 − p2
2k

+A

⎞
⎟⎠. (2.23)

So, from the condition above, we have

k <
αp

2π
=⇒ π

√
4k2 − p2 < αp

√
4k2 − p2
2k

< αp

⎛
⎜⎝

√
4k2 − p2
2k

+A

⎞
⎟⎠. (2.24)

This implies that τ−0 < τ
+
0 .
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From τ+j+1 − τ+j = (2π/ω+), τ−j+1 − τ−j = (2π/ω−), and ω+ > ω−, we have

τ+j+1 − τ+j < τ−j+1 − τ−j . (2.25)

Hence, the conclusion follows.

For convenience, we make the following assumption:

(H1) k ∈ (0, (p/2)) ∪ [(
√
1 + α2/2)p,∞),

(H2) (p/2) < k < (αp/2π).

From lemmas 2.1–2.3 and the fact that (αp/2π) < (
√
1 + α2/2)p, then by the Hopf

bifurcation theorem for functional differential equations [25], we have the following results
on stability and bifurcation to system (1.4).

Theorem 2.4. For system (1.4), the following hold.

(i) If (H1) is satisfied, then E is unstable for all τ ≥ 0.

(ii) If (H2) is satisfied, then system (1.4) undergoes a Hopf bifurcation at E when τ = τ±j ,
j = 0, 1, . . .. Particularly, there exists an integer m ≥ 0 such that E is unstable when
τ ∈ {0} ∪ (∪mj=0(τ+j−1, τ−j )) ∪ (τ+m,∞) with τ+−1 = 0, and asymptotically stable when τ ∈
∪mj=0(τ−j , τ+j ).

Remark 2.5. From Lemmas 2.1–2.3, we have that all other roots, except iω−(Res. iω+), of (2.5)
with τ = τ−j (resp., τ = τ+j ) have negative real parts for j = 0, 1, . . . , m when (H2) holds.

3. The Direction and Stability of Hopf Bifurcation

In Section 2, we obtained that, under the assumption (H2), system (1.4) undergoes a Hopf
bifurcation at some critical values of τ . In this section, we study the direction, stability, and
the period of the bifurcating periodic solutions. The method we used is based on the normal-
form method and the center manifold theory presented by Hassard et al. [24].

Transform E(0, 0, p) to the origin O(0, 0, 0) and rescale the time by t → (t/τ) to
normalize the delay so that system (1.4) can be written as the form

ẋ(t) = τ

[
p

2
[
x(t) − αy(t)] + kx(t − 1) +

n(t)
2

[
x(t) − αy(t)]

]
,

ẏ(t) = τ

[
p

2
[
αx(t) + y(t)

]
+ ky(t − 1) +

n(t)
2

[
αx(t) + y(t)

]]
,

ṅ(t) =
τ

T

[
−n(t) − (

1 + p + n(t)
)(
x2(t) + y2(t)

)]
.

(3.1)

Clearly, the phase space is C = C([−1, 0],R3). For convenience, let τ = τ0 + μ, μ ∈ R

and τ0 be taken in {τ+j } ∪ {τ−j }. From the analysis in Section 2, we know that μ = 0 is the
Hopf bifurcation value for system (3.1), and iω0τ0 is the root of the characteristic equation
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associated with the linearization of system (3.1) when τ = τ0, where either ω0 = ω+ or ω0 =
ω−. For φ = (φ1, φ2, φ3) ∈ C, let

Lμ
(
φ
)
=
(
τ0 + μ

)
Bφ(0) +

(
τ0 + μ

)
Cφ(−1), (3.2)

where

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

p

2
−αp

2
0

αp

2
p

2
0

0 0 − 1
T

⎞
⎟⎟⎟⎟⎟⎟⎠
, C =

⎛
⎝
k 0 0
0 k 0
0 0 0

⎞
⎠. (3.3)

By the Rieze representation theorem, there exists a 3 × 3 matrix, η(θ, μ)(−1 ≤ θ ≤ 0), whose
elements are of bounded variation functions such that

Lμ
(
φ
)
=
∫0

−1
dη

(
θ, μ

)
φ(θ), φ ∈ C. (3.4)

In fact, we can choose

η
(
θ, μ

)
=

⎧
⎪⎪⎨
⎪⎪⎩

(
τ0 + μ

)
B, θ = 0,

0, θ ∈ (−1, 0),
−(τ0 + μ

)
C, θ = −1.

(3.5)

Then, (3.1) is satisfied.
For φ ∈ C, define the operator A(μ) as

A
(
μ
)
φ(θ) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

dφ(θ)
dθ

, θ ∈ [−1, 0),
∫0

−1
dη

(
t, μ

)
φ(t), θ = 0,

(3.6)

and R(μ)φ as

R
(
μ
)
φ(θ) =

{
0, θ ∈ [−1, 0),
f
(
μ, φ

)
, θ = 0,

(3.7)
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where

f
(
μ, φ

)
=
(
τ0 + μ

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

φ1(0)φ3(0)
2

− αφ2(0)φ3(0)
2

αφ1(0)φ3(0)
2

+
φ2(0)φ3(0)

2
−1
T

(
1 + p + φ3(0)

)(
φ2
1(0) + φ

2
2(0)

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (3.8)

Then, system (3.1) is equivalent to the following operator equation:

u̇t = A
(
μ
)
ut + R

(
μ
)
ut, (3.9)

where u(t) = (x(t), y(t), n(t))T , ut = u(t + θ), for θ ∈ [−1, 0].
For ψ ∈ C1([0, 1],R3), define

A∗ψ(s) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

−dψ(s)
ds

, s ∈ (0, 1],

∫0

−1
ψ(−ξ)dη(ξ, 0), s = 0.

(3.10)

For φ ∈ C[−1, 0] and ψ ∈ C[0, 1], define the bilinear form

〈
ψ(s), φ(θ)

〉
= ψ(0)φ(0) −

∫0

−1

∫θ

0
ψ(ξ − θ)dη(θ)φ(ξ)dξ, (3.11)

where η(θ) = η(θ, 0). Then, A(0) and A∗ are adjoint operators.
Let q(θ), q∗(s) be the eigenvectors of A(0) and A∗ associated with iω0τ0 and −iω0τ0,

respectively. It is not difficult to verify that

q(θ) =
(
1, β, 0

)T
eiω0τ0θ, q∗(s) =

1

D
(1, ν, 0)eiω0τ0s, (3.12)

where

β =
−2
αp

(
iω0 −

p

2
− ke−iω0τ0

)
,

ν =
−2
αp

(
iω0 +

p

2
+ keiω0τ0

)
,

D =
(
1 + βν

)(
1 + kτ0e−iω0τ0

)
,

(3.13)

and 〈q∗(s), q(θ)〉 = 1, 〈q∗(s), q(θ)〉 = 0.
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Let ut be the solution of (3.9), and define

z(t) =
〈
q∗, ut

〉
, W(t, θ) = ut(θ) − 2Re

{
z(t)q(θ)

}
. (3.14)

On the center manifold C0, we have

W(t, θ) =W(z(t), z(t), θ), (3.15)

where

W(z, z, θ) =W20
z2

2
+W11zz +W02

z2

2
+ · · · , (3.16)

z and z are local coordinates for center manifold C0 in the direction of q∗ and q∗. Note thatW
is real if ut is real. We only consider real solutions.

For solution ut in C0, since μ = 0, we have

ż(t) = iω0τ0z +
〈
q∗(θ), f

(
0,W + 2Re

{
z(t)q(θ)

})〉

= iω0τ0z + q∗(0), f
(
0,W(z, z, 0) + 2Re

{
z(t)q(0)

})

= iω0τ0z + q∗(0)f0(z, z).

(3.17)

We rewrite this equation as

ż(t) = iω0τ0z + g(z, z), (3.18)

where

g(z, z) = g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
· · · . (3.19)

By (3.9) and (3.18), we have

Ẇ = u̇t − żq − ż q

=

⎧
⎪⎨
⎪⎩

AW − 2Re
{
q∗(0)f0q(θ)

}
, θ ∈ [−1, 0),

AW − 2Re
{
q∗(0)f0q(0)

}
+ f0, θ = 0,

= AW +H(z, z, θ),

(3.20)

where

H(z, z, θ) = H20(θ)
z2

2
+H11(θ)zz +H02(θ)

z2

2
+ · · · . (3.21)
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Expanding the above series and comparing the coefficients, we obtain

(A − 2iω0τ0I)W20(θ) = −H20(θ), AW11(θ) = −H11(θ), . . . . (3.22)

Noticing that

q(θ) =
(
1, β, 0

)T
eiω0τ0θ,

ut(θ) = zq(θ) + z q(θ) +W(z, z, θ),
(3.23)

we have

x(t) = z + z +W (1)(z, z, 0),

y(t) = zβ + zβ +W (2)(z, z, 0),

x(t − 1) = ze−iω0τ0 + zeiω0τ0 +W (1)(z, z,−1),

y(t − 1) = zβe−iω0τ0 + zβeiω0τ0 +W (2)(z, z,−1),

n(t) =W (3)(z, z, 0),

(3.24)

where

W (1)(z, z, θ) =W (1)
20 (θ)

z2

2
+W (1)

11 (θ)zz +W
(1)
02 (θ)

z2

2
+ · · · ,

W (2)(z, z, θ) =W (2)
20 (θ)

z2

2
+W (2)

11 (θ)zz +W
(2)
02 (θ)

z2

2
+ · · · ,

(3.25)

and recalling that

f0 = τ0

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x(t)n(t)
2

− αy(t)n(t)
2

αx(t)n(t)
2

+
y(t)n(t)

2
−1
T

(
1 + p + n(t)

)(
x2(t) + y2(t)

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (3.26)
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we have

g(z, z) = q∗(0)f0 =
τ0
2D

{[
x(t)n(t) − αy(t)n(t)] + μ[αx(t)n(t) + y(t)n(t)]}

=
τ0
2D

{
(1 + αν)

[
z + z +W (1)

20 (0)
z2

2
+W (1)

11 (0)zz +W
(1)
02 (0)

z2

2
+ · · ·

]

×
[
W

(3)
20 (0)

z2

2
+W (3)

11 (0)zz +W
(3)
02 (0)

z2

2
+ · · ·

]

+ (ν − α)
[
zβ + zβ +W (2)

20 (0)
z2

2
+W (2)

11 (0)zz +W
(2)
02 (0)

z2

2
+ · · ·

]

×
[
W

(3)
20 (0)

z2

2
+W (3)

11 (0)zz +W
(3)
02 (0)

z2

2
+ · · ·

]}
.

(3.27)

We can obtain the coefficients which will be used in determining the important quantities:

g20 = g11 = g02 = 0,

g21 =
τ0
D

[
W

(3)
20 (0)
2

(
1 − αβ + αν + βν

)
+W (3)

11 (0)
(
1 − αβ + αν + βν

)]
.

(3.28)

We still need to computeW20(θ) andW11(θ) for θ ∈ [−1, 0). We have

H(z, z, θ) = −q∗(0)f0q(θ) − q∗(0)f0q(θ) = −g(z, z)q(θ) − g(z, z)q(θ). (3.29)

Comparing the coefficients aboutH(z, z, θ) gives that

H20(θ) = −g20q(θ) − g02q(θ) = 0, H11 = −g11q(θ) − g11q(θ) = 0. (3.30)

Then, from (3.22), we get

Ẇ20(θ) = 2iω0τ0W20(θ), Ẇ11(θ) = 0, (3.31)

which implies that

W20(θ) = Ee2iω0τ0θ, W11(θ) = F, (3.32)
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where E, F are both three-dimensional vectors and can be determined by setting θ = 0 in
H(z, z, θ). In fact, from

H(z, z, 0) = − 2Re
{
q∗(0)f0q(0) + f0

}

= − g(z, z)q(0) − g(z, z)q(0) + τ0
2

⎛
⎜⎜⎜⎜⎜⎝

x(t)n(t) − αy(t)n(t)

αx(t)n(t) + y(t)n(t)

−2
T

(
1 + p + n(t)

)(
x2(t) + y2(t)

)

⎞
⎟⎟⎟⎟⎟⎠

= − g(z, z)q(0) − g(z, z)q(0)

+
τ0
2

⎛
⎜⎜⎜⎜⎜⎜⎝

(
W (1) + z + z

)
W (3) − α

(
W (2) + zβ + zβ

)
W (3)

α
(
W (1) + z + z

)
W (3) +

(
W (2) + zβ + zβ

)
W (3)

−2
T

(
1 + p +W (3))

[(
W (1) + z + z

)2 +
(
W (2) + zβ + zβ

)2
]

⎞
⎟⎟⎟⎟⎟⎟⎠
,

(3.33)

we have

H20(0) = −g20q(0) − g02q(0) + τ0
(
0, 0,− 2

T

(
1 + p

)(
1 + β2

))T

= τ0
(
0, 0,− 2

T

(
1 + p

)(
1 + β2

))T

,

H11(0) = −g11q(0) − g11q(0) + τ0
(
0, 0,− 2

T

(
1 + p

)(
1 +

∣∣β∣∣2
))T

= τ0
(
0, 0,− 2

T

(
1 + p

)(
1 +

∣∣β∣∣2
))T

.

(3.34)

It follows from (3.22) and the definition of A that

τ0BW20(0) + τ0CW20(−1) = 2iω0τ0W20(0) −H20(0),

τ0BW11(0) + τ0CW11(−1) = −H11(0).
(3.35)

Combining the conditions above, we have

(
B + e−2iω0τ0C − 2iω0I

)
E =

(
0, 0,

2
T

(
1 + p

)(
1 + β2

))T

,

(B + C)F =
(
0, 0,

2
T

(
1 + p

)(
1 +

∣∣β∣∣2
))T

,

(3.36)
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which implies

E =
(
0, 0,

−2
1 + 2iTω0

(
1 + p

)(
1 + β2

))T

,

F =
(
0, 0,−2(1 + p)

(
1 +

∣∣β∣∣2
))
.

(3.37)

Consequently, the above g21 can be expressed by the parameters and delay in system (3.1).
Thus, we can compute the following quantities:

c1(0) =
i

2ω0τ0

(
g20g11 − 2

∣∣g11
∣∣2 − 1

3
∣∣g02

∣∣2
)
+
g21
2

=
−τ0

(
1 + p

)

2D

[
1

1 + 2iω0T

(
1 + β2

)(
1 − αβ + αν + βν

)

+2
(
1 +

∣∣β∣∣2
)(

1 − αβ + αν + βν)
]
,

μ2 = − Re c1(0)
Reλ′(τ0)

,

β2 = 2Re c1(0),

T2 = − Im c1(0) + μ2 Imλ′(τ0)
ω0τ0

,

(3.38)

which determine the properties of bifurcating periodic solutions at the critical value τ0. The
direction and stability of Hopf bifurcation in the center manifold can be determined by μ2 and
β2, respectively. In fact, if μ2 > 0 (μ2 < 0), then the bifurcating periodic solutions are forward
(backward); the bifurcating periodic solutions on the center manifold are stable (unstable)
if β2 < 0 (β2 > 0); T2 determines the period of the bifurcating periodic solutions: the period
increases (decreases) if T2 > 0 (T2 < 0).

From the discussion in Section 2, we have known that

(i) Reλ′
(
τ+j

)
> 0,

(ii) Reλ′
(
τ−j

)
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

< 0, when
p

2
< k <

√
1 + α2

2
p,

> 0, when k >

√
1 + α2

2
p.

(3.39)

From Remark 2.5, we have the following results.
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Theorem 3.1. For system (1.4), suppose that condition (H2) is satisfied. Then, when 0 ≤ j ≤ m, one
has

(i) the Hopf bifurcation at E(0, 0, p) when τ = τ−j is backward (forward) and the bifurcation
periodic solutions are stable (unstable) if Re(c1(0)) < 0(> 0);

(ii) the Hopf bifurcation at E(0, 0, p) when τ = τ+j is forward (backward) and the bifurcation
periodic solutions are stable (unstable) if Re(c1(0)) < 0(> 0).

Here τ±j andm are given in (ii) of Theorem 2.4.

4. Numerical Simulations

In this section, we will carry out numerical simulation on system (1.4). Set

(A) α = 9.42, k = 1, p = 1, T = 20.

Clearly, (H2) is satisfied. We have ω−
.= 3.845, ω+

.= 5.575 and

τ−0
.= 0.5448, τ+0

.= 0.7507, τ+1
.= 1.8771, τ−1

.= 2.1782 · · · . (4.1)

Thus, the equilibrium (0, 0, 1) is stable when τ ∈ (τ−0 , τ
+
0 ), and unstable when τ ∈ [0, τ−0 ) ∪

(τ+0 ,∞). Furthermore, we get

Reλ′
(
τ−0

) .= −1.8411, Reλ′
(
τ+0

) .= 2.3133. (4.2)

By the algorithm derived in Section 3, we can obtain

Re c1(0)
.= −0.7414, μ2

.= −0.1027, β2
.= −1.4828 (4.3)

at τ = τ−0 , and

Re c1(0)
.= −4.7053, μ2

.= 2.0340, β2
.= −9.4106 (4.4)

at τ = τ+0 , respectively. These imply that the direction of Hopf bifurcations is backward when
τ = τ−0 , and forward when τ = τ+0 , respectively, and the bifurcating periodic solutions are
orbitally asymptotically stable. These are shown in Figures 1, 2, and 3.

5. Conclusion

Flunkert et al. [22] explored an experimental system of two semiconductor lasers coupled
via a passive relay within the synchronization manifold. They calculated the maximum
transversal Lyapunov exponential and got blow-out bifurcations when the coupling strength
k passed through critical values.

In this paper, we also study the coupled system realized by a passive relay within
the synchronization manifold. By analyzing the distribution of eigenvalues, we study the



16 Journal of Applied Mathematics

0 500 1000 1500 2000 2500

0

2

4

6

−6

−4

−2

(a)

0 500 1000 1500 2000 2500

0
1
2
3
4
5
6

−4
−3
−2
−1

(b)

0

0 500 1000 1500 2000 2500

−0.2
−0.4
−0.6
−0.8
−1

1
0.8
0.6
0.4
0.2

(c)

−6 −4 −2 0 2 4 6

6
5
4
3
2
1
0

−1
−2
−3
−4

(d)

1

0.5

0

−0.5
−1
10

5
0

−5 −10
−5

0
5

(e)

Figure 1: For system (1.4) with the data (A), the Hopf bifurcation is backward at the first critical value
τ−0

.= 0.5448, and the bifurcating periodic solutions are asymptotically stable, where τ = 0.54 < 0.5448 and
the initial value is taken as (0.01, 0.01, 0.98).

stability of the equilibrium and the existence of periodic solutions. We find that as the
coupling strength increases, under the condition (H2), the stability switch for τ occurs, which
means that there exists a sequence values of τ±j and an integerm satisfying

0 < τ−0 < τ
+
0 < τ

−
1 < · · · < τ−m < τ+m < τ+m+1, (5.1)
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Figure 2: For system (1.4) with the data (A), the equilibrium E(0, 0, 1) is asymptotically stable when τ ∈
(τ−0 , τ

+
0 ), where τ = 0.6 and the initial value is taken as (0.01, 0.01, 0.98).

such that the equilibrium E is asymptotically stable when τ ∈ ∪mj=0(τ−j , τ+j ), and unstable when
τ ∈ {0} ∪ (∪mj=0[τ+j−1, τ−j )) ∪ (τ+m,∞), and the system undergoes a Hopf bifurcation at τ = τ±j ,
where j = 1, 2, . . ..

As a result, the modulation of the coupling strength k and the delay τ (which is caused
by the distance between the lasers and the relay) would be an efficient method to control the
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Figure 3: For system (1.4) with the data (A), the Hopf bifurcation is forward at τ+0
.= 0.7507, and the

bifurcating periodic solutions are asymptotically stable, where τ = 0.77 > τ+0 and the initial value is taken
as (0.01, 0.01, 0.98).

system in the complex electric field; the amplitude either vanishes or presents a periodic
oscillation.

As per the coupled systemwhich is realized by an active relay and the systemswithout
synchronization, we will study in the future.
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