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In this paper coupled coincidence points of mappings satisfying a nonlinear contractive condition
in the framework of partially ordered metric spaces are obtained. Our results extend the results
of Harjani et al. (2011). Moreover, an example of the main result is given. Finally, some coupled
coincidence point results for mappings satisfying some contraction conditions of integral type in
partially ordered complete metric spaces are deduced.

1. Introduction and Mathematical Preliminaries

The existence of fixed points for certain mappings in ordered metric spaces has been studied
and applied by Ran and Reurings [1] and then by Nieto and Rodrı́guez-López [2]. So far,
many researchers have obtained fixed point and common fixed point results for mappings
under various contractive conditions in different metric spaces (see, e.g., [3–8]).

Existence of coupled fixed points in partially ordered metric spaces was first
investigated in 2006 by Bhaskar and Lakshmikantham [9] and then by Lakshmikantham and
Ćirić [10]. Further results in this direction under weak contraction conditions in different
metric spaces were proved in, for example, [4, 5, 10–15].

Bhaskar and Lakshmikantham [9] introduced the following definitions.

Definition 1.1 (see [9]). Let (X,�) be a partially ordered set and F : X ×X → X be a self-map.
One can say that F has the mixed monotone property if F(x, y) is monotone nondecreasing
in x and is monotone nonincreasing in y, that is, for all x1, x2 ∈ X, x1 � x2 implies F(x1, y) �
F(x2, y) for any y ∈ X, and for all y1, y2 ∈ X, y1 � y2 implies F(x, y1) � F(x, y2) for any
x ∈ X.
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Definition 1.2 (see [9]). An element (x, y) ∈ X ×X is called a coupled fixed point of mapping
F : X ×X → X if x = F(x, y) and y = F(y, x).

The main results of Bhaskar and Lakshmikantham in [9] are the following coupled
fixed point theorems.

Theorem 1.3 (see [9]). Let (X,�) be a partially ordered set and suppose there exists a metric d on X
such that (X, d) is a complete metric space. Let F : X ×X → X be a continuous mapping having the
mixed monotone property on X. Assume that there exists a k ∈ [0, 1) with

d
(
F
(
x, y
)
, F(u, v)

) ≤ k

2
[
d(x, u) + d

(
y, v
)]
, (1.1)

for all x � u and y � v. If there exist two elements x0, y0 ∈ X with x0 � F(x0, y0) and y0 � F(y0, x0),
then F has a coupled fixed point.

Theorem 1.4 (see [9]). Let (X,�) be a partially ordered set and suppose that there is a metric d in
X such that (X, d) is a complete metric space. Assume that X has the following properties:

(i) if a nondecreasing sequence xn → x, then xn � x, for all n;
(ii) if a nonincreasing sequence yn → y, then y � yn, for all n.
Let F : X ×X → X be a mapping having the mixed monotone property on X.
Assume that there exists a k ∈ [0, 1) with

d
(
F
(
x, y
)
, F(u, v)

) ≤ k

2
(
d(x, u) + d

(
y, v
))
, (1.2)

for all x � u and y � v.
If there exist x0, y0 ∈ X such that x0 � F(x0, y0) and y0 � F(y0, x0), then F has a coupled

fixed point.

Recently, Abbas et al. [11] have introduced the concept of w-compatible mappings to
obtain coupled coincidence point for nonlinear contractive mappings in a cone metric space.

Definition 1.5 (see [11]). The mappings F : X × X → X and g : X → X are called w-
compatible if g(F(x, y)) = F(gx, gy), whenever g(x) = F(x, y) and g(y) = F(y, x).

Ćirić et al. [3] have presented the concepts of a mixed g-monotone mapping, coupled
coincidence point, and commutative mapping. They proved some coupled coincidence
and coupled common fixed point theorems for mixed g-monotone nonlinear contractive
mappings in partially ordered complete metric spaces. The results of Lakshmikantham and
Ćirić are generalizations of Theorems 1.3 and 1.4.

Definition 1.6 (see [10]). An element (x, y) ∈ X ×X is called

(1) a coupled coincidence point of mappings F : X × X → X and g : X → X if
g(x) = F(x, y) and g(y) = F(y, x),

(2) a common coupled fixed point of mappings F : X × X → X and g : X → X if
x = g(x) = F(x, y) and y = g(y) = F(y, x).
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Definition 1.7 (see [3]). Let (X,�) be a partially ordered set and F : X × X → X and g :
X → X be two self-mappings. F has the mixed g-monotone property if F is monotone g-
nondecreasing in its first argument and is monotone g-nonincreasing in its second argument,
that is, for all x1, x2 ∈ X, gx1 � gx2 implies F(x1, y) � F(x2, y) for any y ∈ X, and for all
y1, y2 ∈ X, gy1 � gy2 implies F(x, y1) � F(x, y2) for any x ∈ X.

Definition 1.8 (see [3]). Let X be a nonempty set. One can say that the mappings F : X ×X →
X and g : X → X are commutative if g(F(x, y)) = F(gx, gy), for all x, y ∈ X.

Theorem 1.9 (Corollary 2.1[3]). Let (X,�) be a partially ordered set and suppose there is a metric
d on X such that (X, d) is a complete metric space. Suppose F : X × X → X and g : X → X are
such that F has the mixed g-monotone property and assume that there exists a k ∈ [0, 1) with

d
(
F
(
x, y
)
, F(u, v)

) ≤ k

2
[
d
(
gx, gu

)
+ d
(
gy, gv

)]
, (1.3)

for all x, y, u, v ∈ X for which g(x) � g(u) and g(y) � g(v). Suppose F(X × X) ⊆ g(X), g is
continuous and commutes with F and also suppose either

(a) F is continuous, or,

(b) X has the following properties,

(i) if a nondecreasing sequence xn → x, then xn � x for all n ∈ N,
(ii) if a nonincreasing sequence yn → y, then yn � y for all n ∈ N.

If there exist x0, y0 ∈ X such that g(x0) � F(x0, y0) and g(y0) � F(y0, x0), then there exist x, y ∈ X
such that g(x) = F(x, y) and g(y) = F(y, x), that is, F and g have a coupled coincidence point.

Harjani et al. [7] obtained the following theorem for mappings with the mixed
monotone property.

Theorem 1.10 (see [7]). Let (X,�) be a partially ordered set and suppose that there exists a metric d
in X such that (X, d) is a complete metric space. Let F : X ×X → X be a mapping having the mixed
monotone property on X and continuous such that

ψ
(
d
(
F
(
x, y
)
, F(u, v)

)) ≤ ψ(max
{
d(x, u), d

(
y, v
)}) − ϕ(max

{
d(x, u), d

(
y, v
)})

, (1.4)

for all x, y, u, v ∈ X with x � u and y � v, where ψ and ϕ are altering distance functions. If there
exist x0, y0 ∈ X with x0 � F(x0, y0) and y0 � F(y0, x0), then F has a coupled fixed point.

Also, they proved that the above theorem is still valid for F not necessarily continuous,
assuming the following hypothesis.

If {xn} is a nondecreasing sequence with xn → x, then xn � x, for all n ∈ N.
If {yn} is a nonincreasing sequence with yn → y, then yn � y, for all n ∈ N.

Theorem 1.11 (see [7]). If in Theorem 1.10 one substitutes the continuity of F by the condition
mentioned above one also obtains the existence of a coupled fixed point for F.

The aim of this paper is to study necessary conditions for the existence of coupled
coincidence and common coupled fixed points of (ψ, α, β)-weak contractions in ordered
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metric spaces. For more details on (ψ, α, β)-weakly contractive mappings we refer the reader
to [16].

2. Main Results

The notion of an altering distance function was introduced by Khan et al. [17] as follows.

Definition 2.1. The function ψ : [0,∞) → [0,∞) is called an altering distance function, if the
following properties are satisfied:

(1) ψ is continuous and nondecreasing,

(2) ψ(t) = 0 if and only if t = 0.

Now, we establish an existence theorem for coupled coincidence point of mappings
satisfying (ψ, α, β)-weak contraction condition in the setup of partially ordered metric spaces.
Note that (ψ, α, β)-weak contraction condition was first appeared in [16].

Theorem 2.2. Let (X,�, d) be a partially ordered complete metric space and let F : X2 → X and
g : X → X be such that F(X2) ⊆ g(X) and F is continuous. Assume that

ψ
(
d
(
F
(
x, y
)
, F(u, v)

)) ≤ α(max
{
d
(
gx, gu

)
, d
(
gy, gv

)})

− β(max
{
d
(
gx, gu

)
, d
(
gy, gv

)})
,

(2.1)

for every x, y, u, v ∈ X with gx � gu and gy � gv, where ψ, α, β : [0,∞) → [0,∞) are such that,
ψ is an altering distance function, α is continuous, β is lower semicontinuous, α(0) = β(0) = 0 and
ψ(t) − α(t) + β(t) > 0 for all t > 0.

Assume that

(1) F has the mixed g-monotone property,

(2) g is continuous and commutes with F.

If there exist x0, y0 ∈ X such that gx0 � F(x0, y0) and gy0 � F(y0, x0), then F and g have a
coupled coincidence point in X.

Proof. Let x0, y0 ∈ X be such that gx0 � F(x0, y0) and gy0 � F(y0, x0). Define x1, y1 ∈ X such
that gx1 = F(x0, y0) and gy1 = F(y0, x0) and in this way, we construct the sequences {an} and
{bn} as follows:

an = gxn = F
(
xn−1, yn−1

)
,

bn = gyn = F
(
yn−1, xn−1

)
,

(2.2)

for all n ≥ 0.
We will do the proof in two steps.
Step I. We will show that {an} and {bn} are Cauchy. Let

δn = max{d(an−1, an), d(bn−1, bn)}. (2.3)
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As gxn−1 � gxn and gyn−1 � gyn, using (2.1)we obtain that

ψ(d(an, an+1)) = ψ
(
d
(
F
(
xn−1, yn−1

)
, F
(
xn, yn

)))

≤ α(max
{
d
(
gxn−1, gxn

)
, d
(
gyn−1, gyn

)})

− β(max
{
d
(
gxn−1, gxn

)
, d
(
gyn−1, gyn

)})

= α(max{d(an−1, an), d(bn−1, bn)})
− β(max{d(an−1, an), d(bn−1, bn)}).

(2.4)

In a similar way, since gyn � gyn−1 and gxn � gxn−1, we have

ψ(d(bn+1, bn)) = ψ
(
d
(
F
(
yn, xn

)
, F
(
yn−1, xn−1

)))

≤ α(max
{
d
(
gyn, gyn−1

)
, d
(
gxn, gxn−1

)})

− β(max
{
d
(
gyn, gyn−1

)
, d
(
gxn, gxn−1

)})

= α(max{d(an−1, an), d(bn−1, bn)})
− β(max{d(an−1, an), d(bn−1, bn)}).

(2.5)

If for an n ≥ 1, δn = 0, then the conclusion of the theorem follows. So, we assume that

δn /= 0, (2.6)

for all n ≥ 1.
Let, for some n, δn−1 < δn. So, from (2.4) and (2.5) as ψ is nondecreasing, we have

ψ(max{d(an−1, an), d(bn−1, bn)}) < ψ(max{d(an, an+1), d(bn, bn+1)})
= max

{
ψ(d(an, an+1)), ψ(d(bn, bn+1))

}

≤ α(max{d(an−1, an), d(bn−1, bn)})
− β(max{d(an−1, an), d(bn−1, bn)}),

(2.7)

that is, ψ(δn)−α(δn)+β(δn) ≤ 0. By our assumptions, we have δn = 0, which contradicts (2.6).
Therefore, for all n ≥ 1 we deduce that

δn+1 ≤ δn, (2.8)

that is, {δn} is a nonincreasing sequence of nonnegative real numbers. Thus, there exists an
r ≥ 0 such that limn→∞δn = r.
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Taking n → ∞ in (2.7) and using the lower semicontinuity of β and the continuity of
ψ and α, we obtain ψ(r) ≤ α(r)−β(r), which further implies that r = 0, from our assumptions
about ψ, α, and β. Therefore,

lim
n→∞

max{d(an−1, an), d(bn−1, bn)} = 0. (2.9)

Next, we claim that {an} and {bn} are Cauchy.
We will show that for every ε > 0, there exists k ∈ N such that ifm,n ≥ k,

max{d(an, am), d(bn, bm)} < ε. (2.10)

Suppose the above statement is false.
Then, there exists an ε > 0 for which we can find subsequences {am(k)} and {an(k)} of

{an} and {bm(k)} and {bn(k)} of {bn} such that n(k) > m(k) > k and

max
{
d
(
am(k), an(k)

)
, d
(
bm(k), bn(k)

)} ≥ ε, (2.11)

where n(k) is the smallest index with this property, that is,

max
{
d
(
am(k), an(k)−1

)
, d
(
bm(k), bn(k)−1

)}
< ε. (2.12)

From triangle inequality,

d
(
am(k), an(k)

) ≤ d(am(k), an(k)−1
)
+ d
(
an(k)−1, an(k)

)
. (2.13)

Similarly,

d
(
bm(k), bn(k)

) ≤ d(bm(k), bn(k)−1
)
+ d
(
bn(k)−1, bn(k)

)
. (2.14)

So,

max
{
d
(
am(k), an(k)

)
, d
(
bm(k), bn(k)

)} ≤ max
{
d
(
am(k), an(k)−1

)
, d
(
bm(k), bn(k)−1

)}

+max
{
d
(
an(k)−1, an(k)

)
, d
(
bn(k)−1, bn(k)

)}
.

(2.15)

Letting k → ∞, as limn→∞δn = 0, from (2.11) and (2.12), we conclude that

lim
k→∞

max
{
d
(
am(k), an(k)

)
, d
(
bm(k), bn(k)

)}
= ε. (2.16)

Since

d
(
an(k)+1, am(k)+1

) ≤ d(an(k)+1, an(k)
)
+ d
(
an(k), am(k)

)
+ d
(
am(k), am(k)+1

)
,

d
(
bn(k)+1, bm(k)+1

) ≤ d(bn(k)+1, bn(k)
)
+ d
(
bn(k), bm(k)

)
+ d
(
am(k), am(k)+1

)
,

(2.17)
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we obtain that

max
{
d
(
an(k)+1, am(k)+1

)
, d
(
bn(k)+1, bm(k)+1

)} ≤ max
{
d
(
an(k)+1, an(k)

)
, d
(
bn(k)+1, bn(k)

)}

+max
{
d
(
an(k), am(k)

)
, d
(
bn(k), bm(k)

)}

+max
{
d
(
am(k), am(k)+1

)
, d
(
bm(k), bm(k)+1

)}
.

(2.18)

If in the above inequality, k → ∞, as limn→∞δn = 0, from (2.16) we have

lim
k→∞

max
{
d
(
an(k)+1, am(k)+1

)
, d
(
bn(k)+1, bm(k)+1

)} ≤ ε. (2.19)

Again, since

d
(
an(k), am(k)

) ≤ d(an(k), an(k)+1
)
+ d
(
an(k)+1, am(k)+1

)
+ d
(
am(k)+1, am(k)

)
,

d
(
bn(k), bm(k)

) ≤ d(bn(k), bn(k)+1
)
+ d
(
bn(k)+1, am(k)+1

)
+ d
(
bm(k)+1, bm(k)

)
,

(2.20)

we have

max
{
d
(
an(k), am(k)

)
, d
(
bn(k), bm(k)

)} ≤ max
{
d
(
an(k), an(k)+1

)
, d
(
bn(k), bn(k)+1

)}

+max
{
d
(
an(k)+1, am(k)+1

)
, d
(
bn(k)+1, bm(k)+1

)}

+max
{
d
(
am(k)+1, am(k)

)
, d
(
bm(k)+1, bm(k)

)}
.

(2.21)

Letting k → ∞, we have

ε ≤ lim
k→∞

max
{
d
(
an(k)+1, am(k)+1

)
, d
(
bn(k)+1, bm(k)+1

)}
. (2.22)

Now, from (2.19) and (2.22), we have

lim
k→∞

max
{
d
(
an(k)+1, am(k)+1

)
, d
(
bn(k)+1, bm(k)+1

)}
= ε. (2.23)

As n(k) > m(k), we have gxm(k) � gxn(k) and gym(k) � gyn(k). Putting x = xm(k),
y = ym(k), u = xn(k), and v = yn(k) in (2.1), we have

ψ
(
d
(
am(k)+1, an(k)+1

))
= ψ
(
d
(
F
(
xm(k), ym(k)

)
, F
(
xn(k), yn(k)

)))

≤ α(max
{
d
(
am(k), an(k)

)
, d
(
bm(k), bn(k)

)})

− β(max
{
d
(
am(k), an(k)

)
, d
(
bm(k), bn(k)

)})
.

(2.24)
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Also, we have

ψ
(
d
(
bn(k)+1, bm(k)+1

))
= ψ
(
d
(
F
(
yn(k), xn(k)

)
, F
(
ym(k), xm(k)

)))

≤ α(max
{
d
(
bn(k), bm(k)

)
, d
(
an(k), am(k)

)})

− β(max
{
d
(
bn(k), bm(k)

)
, d
(
an(k), am(k)

)})
.

(2.25)

Therefore,

ψ
(
max

{
d
(
am(k)+1, an(k)+1

)
, d
(
bm(k)+1, bn(k)+1

)})

≤ α(max
{
d
(
am(k), an(k)

)
, d
(
bm(k), bn(k)

)})

− β(max
{
d
(
am(k), an(k)

)
, d
(
bm(k), bn(k)

)})
.

(2.26)

Then, in (2.26), if k → ∞, from (2.16) and (2.23), we have ψ(ε) ≤ α(ε) − β(ε). Thus,
ψ(ε) − α(ε) + β(ε) ≤ 0, and hence ε = 0, which is a contradiction. Consequently, {an} and {bn}
are Cauchy.

Completeness of (X, d) implies that {an} and {bn} converge to some x, y ∈ X,
respectively.

Step II. We will show that F and g have a coupled coincidence point.
From the above step, we have

lim
n→∞

F
(
xn, yn

)
= lim

n→∞
gxn = lim

n→∞
an = x,

lim
n→∞

F
(
yn, xn

)
= lim

n→∞
gyn = lim

n→∞
bn = y.

(2.27)

Since g is continuous, by (2.27), we have

lim
n→∞

g
(
gxn
)
= gx, lim

n→∞
g
(
gyn
)
= gy. (2.28)

Commutativity of F and g yields that

g
(
gxn+1

)
= g
(
F
(
xn, yn

))
= F
(
gxn, gyn

)
,

g
(
gyn+1

)
= g
(
F
(
yn, xn

))
= F
(
gyn, gxn

)
.

(2.29)

From the continuity of F, {g(gxn+1)} is convergent to F(x, y) and {g(gyn+1)}
convergent to F(y, x). From (2.28) and by uniqueness of the limit, we have F(x, y) = gx
and F(y, x) = gy, that is, g and F have a coupled coincidence point.

This completes the proof of the theorem.

In the following theorem we omit the continuity assumption of F and g.

Theorem 2.3. Let (X,�, d) be a partially ordered complete metric space and let F : X2 → X and
g : X → X be such that F(X2) ⊆ g(X). Assume that F and g satisfy (2.1) for every x, y, u, v ∈ X
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with gx � gu and gy � gv, where ψ, α, β : [0,∞) → [0,∞) are such that, ψ is an altering distance
function, α is continuous, β is lower semicontinuous, α(0) = β(0) = 0, and ψ(t) − α(t) + β(t) > 0 for
all t > 0.

Assume that

(1) F has the mixed g-monotone property,

(2) g(X) is a closed subset of X.

Also, suppose that

(i) if a nondecreasing sequence xn → x, then xn � x, for all n ∈ N;

(ii) if a nonincreasing sequence yn → y, then yn � y for all n ∈ N.

If there exist x0, y0 ∈ X such that gx0 � F(x0, y0) and gy0 � F(y0, x0), then F and g have a
coupled coincidence point in X.

Proof. Following the proof of the previous theorem, since g(X) is closed and {an} = {gxn} ⊆
g(X), there exists u ∈ X such that

lim
n→∞

gxn = gu = x. (2.30)

Similarly, there exists v ∈ X such that

lim
n→∞

gyn = gv = y. (2.31)

From (i) and (ii), we have gxn � gu and gyn � gv.
Now, we prove that F(u, v) = gu and F(v, u) = gv. Using (2.1), we have

ψ
(
d
(
gxn+1, F(u, v)

))
= ψ
(
d
(
F
(
xn, yn

)
, F(u, v)

))

≤ α
(
max

{
d
(
gxn, gu

)
, d
(
gyn, gv

)})

− β(max
{
d
(
gxn, gu

)
, d
(
gyn, gv

)})
.

(2.32)

In the above inequality, if n → ∞, from properties of ψ, α, and β,

ψ
(
d
(
gu, F(u, v)

)) ≤ α
(
max

{
d
(
gu, gu

)
, d
(
gv, gv

)})

− β(max
{
d
(
gu, gu

)
, d
(
gv, gv

)})

= α(0) − β(0) = 0.

(2.33)

Hence, d(gu, F(u, v)) = 0, that is, gu = F(u, v). Analogously, we can show that gv =
F(v, u).

Theorem 2.4. Under the hypotheses of Theorem 2.3, suppose that gy0 � gx0. Then, it follows that
gu = F(u, v) = F(v, u) = gv. Moreover, if F and g be w-compatible, then F and g have a coupled
coincidence point of the form (t, t).
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Proof. If gy0 � gx0, then gv � gyn � gy0 � gx0 � gxn � gu for all n ∈ N. Thus, if gu/= gv, by
inequality (2.1), we have

ψ
(
d
(
gv, gu

))
= ψ(d(F(v, u), F(u, v)))

≤ α(max
{
d
(
gv, gu

)
, d
(
gu, gv

)})

− β(max
{
d
(
gv, gu

)
, d
(
gu, gv

)})

= ψ
(
d
(
gu, gv

)) − β(d(gu, gv)).

(2.34)

Thus, from properties of functions ψ, α, β we obtain d(gu, gv) = 0, a contradiction.
Hence, gu = gv, that is, gu = F(u, v) = F(v, u) = gv. Now, let t = gu = gv. Since F and g
are w-compatible, then gt = g(gu) = g(F(u, v)) = F(gu, gv) = F(t, t). Thus, F and g have a
coupled coincidence point of the form (t, t).

Remark 2.5. In Theorems 2.2 and 2.3, we extend the results of Harjani et al. (Theorems 1.10
and 1.11), if we take α(t) = ψ(t), for all t ∈ [0,∞) and g(x) = IX (the identity mapping on X).

The following theorem can be deduced from our previous obtained results.

Theorem 2.6. Let (X,�, d) be a partially ordered complete metric space and let F : X2 → X be a
mapping having the mixed monotone property. Assume that

ψ
(
d
(
F
(
x, y
)
, F(u, v)

)) ≤ d(x, u) + d
(
y, v
)

2
− β(max

{
d(x, u), d

(
y, v
)})

, (2.35)

for every x, y, u, v ∈ X with x � u and y � v, where ψ, β : [0,∞) → [0,∞) are such that ψ is an
altering distance function, β is lower semicontinuous, β(0) = 0, and ψ(t) − t + β(t) > 0 for all t > 0.

Also, suppose that

(a) F is continuous, or,

(b) X has the following properties:

(i) if a nondecreasing sequence xn → x, then xn � x, for all n;
(ii) if a nonincreasing sequence yn → y, then yn � y for all n.

If there exist x0, y0 ∈ X such that x0 � F(x0, y0) and y0 � F(y0, x0), then F has a coupled
fixed point in X.

Proof. If F satisfies (2.35), then F satisfies (2.1) with g(x) = IX (the identity mapping on X)
and α(t) = t, for all t ∈ [0,∞). Then, the result follows from Theorems 2.2 and 2.3.

Note that if (X,�) is a partially ordered set, then we can endow X × X with the
following partial order relation:

(
x, y
) � (u, v) ⇐⇒ x � u, y � v, (2.36)

for all (x, y), (u, v) ∈ X ×X (see [3]).
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In the following theorem, we give a sufficient condition for the uniqueness of the
common coupled fixed point. A similar proof can be found in Theorem 2.2 of [3], Theorem
2.4 of [12], and Theorem 2.3 of [13].

Theorem 2.7. In addition to the hypotheses of Theorem 2.2 suppose that for every (x, y) and
(x∗, y∗) ∈ X × X, there exists (u, v) ∈ X2, such that (F(u, v), F(v, u)) is comparable with
(F(x, y), F(y, x)) and (F(x∗, y∗), F(y∗, x∗)). Then, F and g have a unique common coupled fixed
point.

Proof. From Theorem 2.2 the set of coupled coincidence points of F and g is nonempty. We
will show that if (x, y) and (x∗, y∗) are coupled coincidence points, that is,

g(x) = F
(
x, y
)
, g

(
y
)
= F
(
y, x
)
,

g(x∗) = F
(
x∗, y∗), g

(
y∗) = F

(
y∗, x∗),

(2.37)

then, gx = gx∗ and gy = gy∗.
Choose an element (u, v) ∈ X2 such that (F(u, v), F(v, u)) is comparable with

(F(x, y), F(y, x)) and (F(x∗, y∗), F(y∗, x∗)).
Let u0 = u, v0 = v and choose u1, v1 ∈ X so that gu1 = F(u0, v0) and gv1 = F(v0, u0).

Then, similarly as in the proof of Theorem 2.2, we can inductively define sequences {gun} and
{gvn} such that gun+1 = F(un, vn) and gvn+1 = F(vn, un). Since (gx, gy) = (F(x, y), F(y, x))
and (F(u, v), F(v, u)) = (gu1, gv1) are comparable, wemay assume that (gx, gy) � (gu1, gv1).
Then, gx � gu1 and gy � gv1. Using the mathematical induction, it is easy to prove that
gx � gun and gy � gvn, for all n ∈ N.

Let γn = max{d(gx, gun), d(gy, gvn)}. We will show that limn→∞γn = 0. First, assume
that γn = 0, for an n ≥ 1.

Applying (2.1), as gx � gun and gy � gvn one obtains that

ψ
(
d
(
gx, gun+1

))
= ψ
(
d
(
F
(
x, y
)
, F(un, vn)

))

≤ α(max
{
d
(
gx, gun

)
, d
(
gy, gvn

)})

− β(max
{
d
(
gx, gun

)
, d
(
gy, gvn

)})
.

(2.38)

Similarly, we have

ψ
(
d
(
gy, gvn+1

))
= ψ
(
d
(
F
(
y, x
)
, F(vn, un)

))

≤ α(max
{
d
(
gy, gvn

)
, d
(
gx, gun

)})

− β(max
{
d
(
gy, gvn

)
, d
(
gx, gun

)})
.

(2.39)
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From (2.38) and (2.39), we have

ψ
(
γn+1
)
= ψ
(
max

{
d
(
gun+1, gx

)
, d
(
gvn+1, gy

)})

= max
{
ψ
(
d
(
gun+1, gx

))
, ψ
(
d
(
gvn+1, gy

))}

≤ α(max
{
d
(
gx, gun

)
, d
(
gy, gvn

)})

− β(max
{
d
(
gx, gun

)
, d
(
gy, gvn

)})

= α
(
γn
) − β(γn

)

= α(0) − β(0) = 0.

(2.40)

So, from properties of ψ, α, and β, we deduce γn+1 = 0. Repeating this process, we can
show that γm = 0, for allm ≥ n. So, limn→∞γn = 0.

Now, let γn /= 0, for all n and let γn < γn+1, for some n.
As ψ is an altering distance function, from (2.40)

ψ
(
γn
)
= ψ
(
max

{
d
(
gun, gx

)
, d
(
gvn, gy

)})

< ψ
(
γn+1
)

= ψ
(
max

{
d
(
gun+1, gx

)
, d
(
gvn+1, gy

)})

= max
{
ψ
(
d
(
gun+1, gx

))
, ψ
(
d
(
gvn+1, gy

))}

≤ α(max
{
d
(
gx, gun

)
, d
(
gy, gvn

)})

− β(max
{
d
(
gx, gun

)
, d
(
gy, gvn

)})

= α
(
γn
) − β(γn

)
.

(2.41)

This implies that γn = 0, which is a contradiction.
Hence, γn+1 ≤ γn, for all n ≥ 1. Now, if we proceed as in Theorem 2.2, we can show that

lim
n→∞

max
{
d
(
gun, gx

)
, d
(
gvn, gy

)}
= 0. (2.42)

So, {gun} → gx and {gvn} → gy.
Similarly, we can show that

lim
n→∞

max
{
d
(
gun, gx

∗), d
(
gvn, gy

∗)} = 0, (2.43)

that is, {gun} → gx∗ and {gvn} → gy∗. Finally, since the limit is unique, gx = gx∗ and
gy = gy∗.

Since gx = F(x, y) and gy = F(y, x), by commutativity of F and g, we have g(gx) =
g(F(x, y)) = F(gx, gy) and g(gy) = g(F(y, x)) = F(gy, gx). Let gx = a and gy = b. Then,
ga = F(a, b) and gb = F(b, a). Thus, (a, b) is another coupled coincidence point of F and g.
Then, a = gx = ga and b = gy = gb. Therefore, (a, b) is a coupled common fixed point of F
and g.
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To prove the uniqueness of coupled common fixed point, assume that (p, q) is another
coupled common fixed point of F and g. Then, p = gp = F(p, q) and q = gq = F(q, p).
Since (p, q) is a coupled coincidence point of F and g, we have gp = ga and gq = gb. Thus,
p = gp = ga = a and q = gq = gb = b. Hence, the coupled common fixed point is unique.

Theorem 2.8. Under the hypotheses of Theorem 2.3, suppose in addition that for every (x, y)
and (x∗, y∗) in X2, there exists (u, v) ∈ X2 such that (F(u, v), F(v, u)) is comparable to
(F(x, y), F(y, x)) and (F(x∗, y∗), F(y∗, x∗)). If F and g are w-compatible, then F and g have a
unique common coupled fixed point of the form (t, t).

Proof. By Theorem 2.3, the set of coupled coincidence points of F and g is nonempty. Let (x, y)
and (x∗, y∗) be coupled coincidence points of F and g. Following the proof of Theorem 2.7,
we can prove that gx = gx∗ and gy = gy∗. Note that if (x, y) is a coupled coicidence point of
F and g, then (y, x) is also a coupled coincidence point of F and g. Thus, we have gx = gy.
Put t = gx = gy. Since gx = F(x, y) and gy = F(y, x) and F and g arew-compatible, we have
gt = g(gx) = g(F(x, y)) = F(gx, gy) = F(t, t). Thus, (t, t) is a coupled coincidence point of F
and g. So, gt = gx = gy = t and hence we have t = gt = F(t, t). Therefore, (t, t) is a common
coupled fixed point of F and g.

To prove the uniqueness of the coupled common fixed point of F and g, let (v,w) be
another coupled fixed point of F and g, that is, v = gv = F(v,w) and w = gw = F(w,v).
Clearly, we have gt = gv and gt = gw. Therefore, t = v = w. Thus, F and g have a unique
common coupled fixed point of the form (t, t).

Remark 2.9. Note that Theorems 2.4 and 2.8 have been established and proved according to
Theorems 2.3 and 2.5 of [12].

The following simple example guarantees that our results are proper generalizations
of the results of Harjani et al. (Theorems 1.10 and 1.11).

Example 2.10. Let X = [0,+∞). We define a partial order “�” on X as x � y if and only if
x ≤ y for all x, y ∈ X. Let a metric d on X be defined by d(x, y) = 0, if and only if x = y, and
d(x, y) = x + y, if x /=y. Then (X, d) is a complete metric space.

Define F : X ×X → X as follows:

F
(
x, y
)
=
∣∣∣
x

4
− y

4

∣∣∣, (2.44)

for all x, y ∈ X and g : X → X with g(x) = x for all x ∈ X.
Let ψ, α, β : [0,∞) → [0,∞) be defined by ψ(t) = 4t, α(t) = 7t, and β(t) = (7/2)t.

Clearly, ψ is an altering distance function, α is continuous, β is lower semicontinuous, α(0) =
β(0) = 0, and ψ(t) − α(t) + β(t) = t/2 > 0 for all t > 0.

Now, let x � u and y � v. So, we have

ψ
(
d
(
F
(
x, y
)
, F(u, v)

))
= 4
(∣∣∣
x

4
− y

4

∣∣∣ +
∣∣∣
u

4
− v

4

∣∣∣
)

≤ (x + u) +
(
y + v

)

≤ 2max
{
(x + u),

(
y + v

)}
.

(2.45)
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Hence,

ψ
(
d
(
F
(
x, y
)
, F(u, v)

)) ≤ 2max
{
d
(
gx, gu

)
, d
(
gy, gv

)}

≤ 7max
{
d
(
gx, gu

)
, d
(
gy, gv

)} − 7
2
max

{
d
(
gx, gu

)
, d
(
gy, gv

)}

= α
(
max

{
d
(
gx, gu

)
, d
(
gy, gv

)}) − β(max
{
d
(
gx, gu

)
, d
(
gy, gv

)})
.

(2.46)

Therefore, all of the conditions of Theorem 2.2 are satisfied. Moreover, (0, 0) is the unique
coupled coincidence point of F and g.

However, inequality (1.4) in Theorem 1.10 is not satisfied. Indeed, let (x, y) = (0, 1)
and (u, v) = (0, 0). Then,

ψ
(
d
(
F
(
x, y
)
, F(u, v)

))
= 1

� ψ
(
max

{
d
(
gx, gu

)
, d
(
gy, gv

)}) − β(max
{
d
(
gx, gu

)
, d
(
gy, gv

)})

= 4 − 7
2
=

1
2
.

(2.47)

Example 2.11. Let X = [0,∞) be endowed with the euclidian metric and the usual ordering.
Define F : X ×X → X as follows:

F
(
x, y
)
=

⎧
⎪⎨

⎪⎩

x − y
4

, if x ≥ y

0, if y > x,
(2.48)

for all x, y ∈ X and g : X → X with g(x) = x for all x ∈ X.
Let ψ : [0,∞) → [0,∞) be the identity mapping and α, β : [0,∞) → [0,∞) be defined

by α(t) = 2t and β(t) = (3/2)t.
Let x, y, u, v ∈ X are such that x ≤ u and y ≥ v. Now, we have

Case 1 (y > x and v > u). Then,

ψ
(
d
(
F
(
x, y
)
, F(u, v)

))
= 0 ≤ α

(
max

{
d
(
gx, gu

)
, d
(
gy, gv

)})

− β(max
{
d
(
gx, gu

)
, d
(
gy, gv

)})
.

(2.49)
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Case 2 (y > x and u ≥ v).

ψ
(
d
(
F
(
x, y
)
, F(u, v)

))
=

1
4
(u − v)

≤ 1
2

(
1
2
(
u − x + y − v)

)

=
1
2

(
|x − u| + ∣∣y − v∣∣

2

)

≤ 1
2
max

{|x − u|, ∣∣y − v∣∣}

= 2max
{|x − u|, ∣∣y − v∣∣} − 3

2
max

{|x − u|, ∣∣y − v∣∣}

= α
(
max

{
d
(
gx, gu

)
, d
(
gy, gv

)}) − β(max
{
d
(
gx, gu

)
, d
(
gy, gv

)})
.

(2.50)

Case 3 (x ≥ y and u ≥ v). As x ≤ u and y ≥ v, we have u ≥ x ≥ y ≥ v. Hence,

ψ
(
d
(
F
(
x, y
)
, F(u, v)

))
=
∣∣∣
x

4
− y

4
−
(u
4
− v

4

)∣∣∣

≤ 1
2

[
|x − u| + ∣∣y − v∣∣

2

]

≤ 1
2
max

{|x − u|, ∣∣y − v∣∣}

= 2max
{|x − u|, ∣∣y − v∣∣} − 3

2
max

{|x − u|, ∣∣y − v∣∣}

= α
(
max

{
d
(
gx, gu

)
, d
(
gy, gv

)}) − β(max
{
d
(
gx, gu

)
, d
(
gy, gv

)})
.

(2.51)

Case 4 (x ≥ y and v > u). As x ≤ u, and y ≥ v, we have x = y = u = v. Hence,

ψ
(
d
(
F
(
x, y
)
, F(u, v)

))
= 0 = α(0) − β(0)
= α
(
max

{
d
(
gx, gu

)
, d
(
gy, gv

)})

− β(max
{
d
(
gx, gu

)
, d
(
gy, gv

)})
.

(2.52)

Hence, all of the conditions of Theorem 2.2 are satisfied. Moreover, (0, 0) is the coupled
coincidence point of F and g.

In what follows, we obtain some coupled coincidence point theorems for mappings
satisfying some contraction conditions of integral type in an ordered complete metric space.

In [18], Branciari obtained a fixed point result for a single mapping satisfying an
integral type inequality. Then, Altun et al. [19] established a fixed point theorem for weakly
compatible maps satisfying a general contractive inequality of integral type.
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Denote by Λ the set of all functions μ : [0,+∞) → [0,+∞) verifying the following
conditions:

(I) μ is a positive Lebesgue integrable mapping on each compact subset of [0,+∞),

(II) for all ε > 0,
∫ε
0 μ(t)dt > 0.

Corollary 2.12. Replace the contractive condition (2.1) of Theorem 2.2 by the following condition.
There exists a μ ∈ Λ such that

∫ψ(d(F(x,y),F(u,v)))

0
μ(t)dt ≤

∫α(max{d(gx,gu),d(gy,gv)})

0
μ(t)dt

−
∫β(max{d(gx,gu),d(gy,gv)})

0
μ(t)dt.

(2.53)

If other conditions of Theorem 2.2 hold, then F and g have a coupled coincidence point.

Proof . Consider the function Γ(x) =
∫x
0 μ(t)dt. Then (2.53) becomes

Γ
(
ψ
(
d
(
F
(
x, y
)
, F(u, v)

))) ≤ Γ
(
α
(
max

{
d
(
gx, gu

)
, d
(
gy, gv

)}))

− Γ
(
β
(
max

{
d
(
gx, gu

)
, d
(
gy, gv

)}))
.

(2.54)

Taking ψ1 = Γoψ, α1 = Γoα and β1 = Γoβ and applying Theorem 2.2, we obtain the
proof.

Corollary 2.13. Substitute the contractive condition (2.1) of Theorem 2.2 by the following condition.
There exists a μ ∈ Λ such that

ψ

(∫d(F(x,y),F(u,v))

0
μ(t)dt

)

≤ α
(∫max{d(gx,gu),d(gy,gv)}

0
μ(t)dt

)

− β
(∫max{d(gx,gu),d(gy,gv)}

0
μ(t)dt

)

.

(2.55)

Then F and g have a coupled coincidence point, if other conditions of Theorem 2.2 hold.

Proof. Again, as in Corollary 2.12, define the function Γ(x) =
∫x
0 φ(t)dt. Then (2.55) changes to

ψ
(
Γ
(
d
(
F
(
x, y
)
, F(u, v)

))) ≤ α(Γ(max
{
d
(
gx, gu

)
, d
(
gy, gv

)}))

− β(Γ(max
{
d
(
gx, gu

)
, d
(
gy, gv

)}))
.

(2.56)

Now, if we define ψ1 = ψoΓ, α1 = αoΓ and β1 = ϕoΓ, and applying Theorem 2.2, then
the proof is obtained.
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As in [20], let n ∈ N
∗ be fixed. Let {μi}1≤i≤N be a family of N functions which belong

to Λ. For all t ≥ 0, we define

I1(t) =
∫ t

0
μ1(s)ds,

I2(t) =
∫ I1t

0
μ2(s)ds =

∫∫ t
0 μ1(s)ds

0
μ2(s)ds,

I3(t) =
∫ I2t

0
μ3(s)ds =

∫∫
∫t
0 μ1(s)ds
0 μ2(s)ds

0
μ3(s)ds,

...

IN(t) =
∫ I(N−1)t

0
μN(s)ds.

(2.57)

We have the following result.

Corollary 2.14. Replace the inequality (2.1) of Theorem 2.2 by the following condition:

ψ

(∫ I(N−1)(d(F(x,y),F(u,v)))

0
μN(s)ds

)

≤ α
(∫ I(N−1)(max{d(gx,gu),d(gy,gv)})

0
μN(s)ds

)

− β
(∫ I(N−1)(max{d(gx,gu),d(gy,gv)})

0
μN(s)ds

)

.

(2.58)

Assume further that all other conditions of Theorem 2.2 are also satisfied, then F and g have a
coupled coincidence point.

Proof. Consider ψ̂ = ψoIN , α̂ = αoIN , and β̂ = βoIN . Then the above inequality becomes

ψ̂
(
d
(
F
(
x, y
)
, F(u, v)

)) ≤ α̂(max
{
d
(
gx, gu

)
, d
(
gy, gv

)})

− β̂(max
{
d
(
gx, gu

)
, d
(
gy, gv

)})
.

(2.59)

Applying Theorem 2.2, we obtain the desired result.

Other consequence of our theorems is the following result.

Corollary 2.15. Replace the contractive condition (2.1) of Theorem 2.2 by the following condition.
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There exist μ1, μ2, μ3 ∈ Λ such that

∫d(F(x,y),F(u,v))

0
μ1(t)dt ≤

∫max{d(gx,gu),d(gy,gv)}

0
μ2(t)dt

−
∫max{d(gx,gu),d(gy,gv)}

0
μ3(t)dt.

(2.60)

Let other conditions of Theorem 2.2 are satisfied, then F and g have a coupled coincidence point.
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