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In order to study the rheological characteristics of magnetorheological fluids, a novel approach
based on the two-component Lattice Boltzmann method with double meshes was proposed, and
the micro-scale structures of magnetorheological fluids in different strength magnetic fields were
simulated. The framework composed of three steps for the simulation of magnetorheological
fluids was addressed, and the double meshes method was elaborated. Moreover, the various
internal and external forces acting on the magnetic particles were analyzed and calculated. The
two-component Lattice Boltzmann model was set up, and the flowchart for the simulation of
magnetorheological fluids based on the two-component Lattice Boltzmann method with double
meshes was designed. Finally, a physics experiment was carried out, and the simulation examples
were provided. The comparison results indicated that the proposed approach was feasible,
efficient, and outperforming others.

1. Introduction

Magnetorheological fluids (MRFs) are a kind of colloidal suspension well-dispersing micron-
ic magnetic particles with a size of about 10 nm in diameter in a carrier liquid. As a type
of novel functional material, MRFs have a bright application future in many fields such
as bioengineering mechanical, engineering, aerospace, and medical science. The rheological
characteristics of magnetorheological fluids can be controlled by an applied magnetic
field, and the theoretical analysis and experimental results have shown that the catenulate
microstructure of magnetorheological fluids is the most important factor for the magnetor-
heological effect [1]. Thus, it is essential and important to make a detailed research into the
micromechanism of the magnetorheological effect.

Nowadays, the numerical simulation method has been applied as an important and
effective solution for computational fluid dynamics, but it is difficult for the conventional
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numerical simulation methods to simulate complicated magnetorheological fluids. It can not
reveal the various interactions between microcosmic particles by macroscopic methods such
as finite-element method, finite-difference method, and finite-volume method. With micro-
scopic methods, it can only simulate a small number of particles because of vast calculating
amount. Compared with conventional numerical simulation methods, the Lattice Boltzmann
method (LBM) has many advantages such as high amenability to parallel computing, easy
dealing with the complex boundary conditions, the physical representation of microscopic
interactions and easy implementing program, and so forth. All these advantages make LBM
gradually becomes a popular method for the simulation of a range of complex fluids. During
the simulation of complex fluids, it follows a prescribed Lattice Boltzmann evolution equation
instead of the macroscopical Navier-Stokes equations, and it has been confirmed that the
Navier-Stokes equations can be recovered from the Boltzmann equation by Chapman-Enskog
expansion.

As a widely applied model, the standard Lattice Boltzmann model is developed from
the Lattice Gas Cellular Automata (LGCA). Thus, the meshes must be consistent with the
discrete-velocity to ensure that particles can migrate to the adjacent nodes at the next time
step, and the standard Lattice Boltzmann model has the advantages of simple principle,
simple operation and high amenability to parallel computing, and so forth. However, along
with the applications and developments of Lattice Boltzmann model in many fields, a great
limitation has been demonstrated in simulation process with standard Lattice Boltzmann
model. On the one hand, the applications are limited because the whole flow field must be
divided into symmetrical meshes such as quadrangle and hexagon, and so forth. On the
other hand, because of the determinate time accuracy, calculation precision cannot be
altered according to the actual research question. In order to overcome the existing defects
and enlarge the application fields, many scholars were devoted to the relevant research
and presented some improvement methods. In [2], He et al. presented an interpolation-
supplemented Lattice Boltzmann method through introducing interpolation into Lattice
Boltzmann method. Taylor series expansion and least square-based Lattice Boltzmann
method based on the least square optimization which was first presented by Shu et al. [3].
In [4], Filippova and Hänel applied the idea of multiblock grid technique to the Lattice
Boltzmann method, and further theoretical study was carried out by Allen [5]. In [6], Tölke
et al. applied multigrid method to the Lattice Boltzmann equation. Double meshes method
is a very effective approach in improving convergence rate of algebraic equations. Classical
iterative algorithms can efficiently decrease the error at high frequency, but it is difficult for
low frequency. Through double meshes method, iteration process makes the high frequency
error reduce on the fine mesh, and on the coarse mesh, iteration process can decrease the
low frequency error. Although the attenuation velocity of low frequency error is slow on the
coarse mesh, convergence rate is quick due to a small quantity of calculating amount [7].

Bearing the above observations in mind, we present a two-component Lattice Boltz-
mann method with double meshes to simulate magnetorheological fluids in an external
uniform magnetic field and the rest of this paper is organized as follows. In Section 2 some
related works are outlined based on literature. Section 3 presents the double meshes method
and two-component Lattice Boltzmann model, and the stress state of magnetic particles in
an external magnetic field is analyzed and calculated. Section 4 gives the detailed process
for the simulation of magnetorheological fluids based on Lattice Boltzmann method with
double meshes. Section 5 illustrates the simulation results of magnetorheological fluids and
compares them with the physics experimental results and other methods. Finally, Section 6
concludes with some advantages of the two-component Lattice Boltzmann method with
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double meshes applied to the simulation of magnetorheological fluids and points out some
future work.

2. Literature Review

2.1. The Computer Simulation Methods of Magnetorheological Fluids

In order to research the character of magnetorheological fluids, many scholars have worked
on the problem and proposed some different solutions. Monte Carlo method has been well
accepted as a useful approach to simulate magnetorheological fluids. In [8], Peng et al.
investigated and simulated a suspension comprised ofmagnetic and nonmagnetic particles in
gradient magnetic fields using a two-dimensional Monte Carlo simulation. Moreover, Lattice
Boltzmann method has gradually been applied for the simulation of magnetorheological
fluids. In [9], Xuan et al. developed a Lattice Boltzmann model to simulate the distribution of
suspended magnetic nanoparticles and morphology of the ferrofluid. Moreover, many other
methods are adopted to simulate magnetorheological fluids. In [10], Haitao and Xianghe
adopted molecular dynamics simulation method to simulate the catenulate structure of
magnetorheological fluids under the action of an external magnetic field. In [11], Li et al.
presented three dimensions dynamic models of magnetic particles based on the theory of
magnetic dipoles to simulate the procession of magnetorheological fluids magnetic particles
forming chains in an external magnetic field. In [12], Ly et al. employed the boundary
element method (BEM) to carry out dynamic simulation of magnetorheological fluids. In
[13], Zhang et al. divided magnetorheological fluids into two coincident elements to simulate
the mechanical behavior of magnetorheological fluids subjected to magnetic field in the
preyield region by the finite element analysis software ANSYS.

2.2. The Applications of Lattice Boltzmann Method

Although the Lattice Boltzmann method was introduced only 20 years, it has been widely
applied to simulate a wide range of physical phenomena. In [14], Zhou et al. presented
a novel hybrid method based on the Lattice Boltzmann approach to get insight into the
micro-scale characteristics of the multicomponent flow of nanofluid. In [15–17], Lattice
Boltzmann model was successfully applied to simulate flow and heat transfer in a porous
medium of complex structure. In [18], Heuveline et al. applied a hybrid parallelization of
Lattice Boltzmann method to a 3D benchmark problem and compared with a purely MPI
based approach. The Lattice Boltzmann models have also been applied to solve nonlinear
partial differential equations such as Korteweg-de Vries equation [19], Poisson’ equation
[20], nonlinear convection-diffusion equations [21], and Burgers’ equation [22]. In [23],
Hyakutake et al. investigated the blood cell behavior in microvascular flows by Lattice
Boltzmann simulations of a particulate suspension in a Poiseuille flow and bifurcation flow.

2.3. Discussion

Although many approaches for the simulation of magnetorheological fluids have been
developed in above literature, they have some common disadvantages described as follows.
Firstly, for the complex fluids such as magnetorheological fluids, they cannot get accurate
simulation result compared with the real physics experiment. Secondly, it would take a lot
of time in the simulation of magnetorheological fluids with mass volume fraction. Finally,
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Figure 1: Structure of the double meshes.

it is very difficult to simulate fluids with complex boundary conditions. Based on our past
research on the computer simulation of magnetorheological fluids and Lattice Boltzmann
method, this paper tries to tackle the above problems.

In this research, a two-component Lattice Boltzmann method with double meshes is
proposed for the simulation of magnetorheological fluids to overcome above disadvantages.

3. The Two-Component Lattice Boltzmann Method with
Double Meshes

The framework for the simulation of magnetorheological fluids is composed of three steps
described as follows. Firstly, two different-sized uniform meshes are constructed on the
whole magnetorheological fluids, and the spatial step of the coarse mesh is generally
double-size that of the fine mesh. Secondly, the various internal and external forces acting
on the magnetic particles are analyzed and calculated. Finally, the two-component Lattice
Boltzmann model is proposed and applied to the simulation of magnetorheological fluids on
the two different-sized uniform meshes with taking the above forces into account.

3.1. Double Meshes Method

The structure of double meshes is shown as Figure 1, where two different-sized uniform
meshes are employed for the simulation of magnetorheological fluids. The subscript c and
f , respectively, denote the coarse mesh and fine mesh, and the spatial step of the coarse mesh
is generally double-size that of the fine mesh.

It iterates and evolves on two different scale meshes by the two-component Lattice
Boltzmann method with double meshes and the relaxation process decreases the high
frequency error on the finemesh and the low frequency error on the coarsemesh, respectively.

During the simulation of magnetorheological fluids in a uniform magnetic field, a
preliminary simulation result is obtained after iterating form times on the fine mesh and then
transfers it to the coarse mesh. After that, a more precise result is obtained after iterating for
n times on the coarse mesh and then transfers it to the fine mesh. The deviation of simulation
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results can be decreased gradually and a quite precise simulation result can be achieved
through the above iteration process [24].

3.2. Force Analysis of Magnetic Particles

In a multiphase magnetorheological fluids system, the character of magnetorheological fluids
is mainly determined by the various internal and external forces acting on magnetic particles.
In presence of an external uniform magnetic field, magnetic particles are mainly affected
by the brown force, viscous resistance, magnetic force, van der Waals force, repulsive force,
gravitational force and buoyancy, and so forth.

3.2.1. Brownian Force

The Brownian force results from random thermal motion of themagnetic particles and impact
with others suspended in the carrier liquid. Due to the noncorrelation of the forces at different
time, the Brownian force can be modeled as the mean for zero of a Gaussian white noise
process [25]. The Brown force can be expressed as follows:

FB
i = ς ·

√
12πaμkBT

Δt
, (3.1)

where ς is the Gaussian random number with a mean value of zero and unit variance, kB is
the Boltzmann constant, T is the absolute temperature, and Δt is the magnitude of the time
step.

3.2.2. Viscous Resistance

It is assumed that the carrier liquid is incompressible and micronic magnetic particles are
spherical, and the viscous resistances of magnetic particles can be described by Stokes
formula as follows [26]:

FV
i = −3πηdΔu, (3.2)

where Δu is the velocity difference between magnetic particles and carrier liquid, η is the
kinematic viscosity, and d is the particle diameter of magnetic particles.

3.2.3. Magnetic Force

In our paper, the uniformmagnetic field is applied to study the character of magnetorheolog-
ical fluids and each magnetic particle is affected by a force because of the dipolar interactions
among the magnetic particles.

As a single-domain granule, each magnetic particle has its intrinsic magnetic moment
whose size and direction are unceasingly changing according to the change of the external
magnetic field and its own movement. The particles interaction force can be formulated by
calculating the interactive forces between two magnetic dipoles.
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Magnetic moment of magnetic particles in a magnetic field can be calculated as fol-
lows:

m =
4
3
πR3χH, (3.3)

where R is the radium of magnetic particles, χ is the magnetic susceptibility, and H is the
strength of external magnetic field.

According to the theory of magnetic dipole, the magnetic force acting on one magnetic
particle from others can be expressed as follows [27]:

FM
i =

∑
j /= i

3u0

4πrij4
[(
mi ·mj

) − 3(mi · r0)
(
mj · r0

)]
, (3.4)

where rij is the relative position vectors between two magnetic particles and r0 is the unit
vector of rij .

3.2.4. Van Der Waals Force

The van der Waals force is a kind of ubiquitous interactive force which is not inherent in
magnetorheological fluids. It is a short range interactive force, and it will decline rapidly
with the increasing of distance between the molecules. The van der Waals force from other
spheres separated by a distance h can be calculated by Hamaker’s formula as follows [28]:

FW
i =

∑
j /= i

− A(16λ)3

3
(
Ri + Rj

) ×

⎧⎪⎨
⎪⎩

s

(1 + λ)2
[
s2(1 + λ)2 − 4(1 − λ)2

]2
⎫⎪⎬
⎪⎭er, (3.5)

where A is the Hamaker constant. Ri and Rj are the radiuses of two magnetic particles
respectively.

A =
(
A1

1/2 −A2
1/2

)2
,

s =
2
(
h + Ri + Rj

)
Ri + Rj

,

λ =
Ri

Rj
,

(3.6)

where A1 and A2 are the Hamaker constants of magnetic particles and carrier liquid, respec-
tively.
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3.2.5. Repulsive Force

The repulsive force plays a vital role in preventing the particles from overlapping and
aggregating. The repulsive force can be derived by following formula [29]:

FR
i =

∑
j /= i

F0 exp
[
−B

(
rij

2R
− 1

)]
r̂ij , (3.7)

where B decides the variation rate of repulsive force alongwith the change of the deformation
of magnetic particles.

The parameter F0 is the repulsive force when two magnetic particles come into contact
in the direction of the exterior magnetic field. Through the balance of magnetic force and
repulsive force Fr

i = −Fm
i , and F0 can be calculated as follows:

F0 =
3u0m

2

2π(2R)4
. (3.8)

3.2.6. The Sum of Gravitational Force and Buoyant Force

The sum of gravitational force and buoyant force can be calculated as follows:

FH
i =

4πR3

3
Δρg, (3.9)

where Δρ is the mass density difference between the suspended magnetic particles and
carrier liquid, and g is the acceleration of gravitation.

The resultant force Fσ acting on magnetic particles is the vector sum of above internal
and external forces, and it can be expressed as

Fσ
i = FB

i + FV
i + FM

i + FW
i + FR

i + FH
i . (3.10)

3.3. Two-Component Lattice Boltzmann Model

The magnetorheological fluids composed of suspended magnetic particles and carrier liquid
is a two-component system. In this paper, the well-known D2Q9 model is employed to
simulatemagnetorheological fluids. The nine possible velocities at each node for themagnetic
particles can be expressed as follows:

ei =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 i = 0

c

(
cos

[
(i − 1)π

2

]
, sin

[
(i − 1)π

2

])
i = 1, 2, 3, 4

√
2c
(
cos

[
(i − 1)π

2

]
, sin

[
(i − 1)π

2

])
i = 5, 6, 7, 8,

(3.11)

where c = δx/δt is the lattice velocity, δx and δt are the space step and time step, respectively.



8 Journal of Applied Mathematics

The Lattice Boltzmann evolution equation can be proposed for each component σ in
the magnetorheological fluids as follows:

fi
σ(x + eiδt, t + δt) − fi

σ(x, t) = − 1
τσ

[
fi

σ(x, t) − fi
σ,eq(x, t)

]
i = 0, 1, . . . , 8, (3.12)

where σ = 1, 2 is the index of two phase particles of magnetorheological fluids. fσ
i (x, t) is the

distribution function for the particles of component σ which have microscopic velocity ei at
lattice site x on time t. τσ is the single-relaxation time of each component which controls the
rate approaching equilibrium. fσ,eq

i is the equilibrium distribution function of the component
σ.

The equilibrium distribution function can be expressed by a discretization of the
Maxwell-Boltzmann equilibrium distribution shown as follows:

fi
σ,eq = ρσωi

[
1 +

3ei · uσ,eq

c2
+
9(ei · uσ,eq)2

2c4
− 3uσ,eq2

2c2

]
, (3.13)

where ωi is a weighting factor which depends on Lattice Boltzmann model. In the D2Q9
model, ωi = 4/9(i = 0), ωi = 1/9(i = 1, 2, 3, 4), ωi = 1/36(i = 5, 6 7 8), and uσ,eq is the local
equilibrium velocity of each component σ.

The macroscopic density ρσ and velocity uσ of each component σ can be calculated
with the following relationships:

ρσ =
∑
i

fi
σ
, uσ =

1
ρσ

∑
i

fi
σei. (3.14)

Thus, the magnetorheological fluids macroscopic density ρ and velocity u can be
presented as follows:

ρ =
∑
σ

ρσ, u =
∑

σ ρ
σuσ∑

σ ρ
σ

. (3.15)

In the absence of any additional force acting on the each component particles, the
equilibrium velocity of each component is assumed to be equal to the mixed velocity u′ of
the two-component magnetorheological fluids, and it follows the requirement that the total
momentummust be conserved at each collision. The local equilibrium velocity can be defined
as follows [30]:

u′ =

∑
σ

(
ρσuσ/τσρ

)
∑

σ

(
ρσ/τσρ

) . (3.16)

Under the effect of an external magnetic field, magnetic particles would be affected by
the various internal and external forces. So it is necessary to revise the local equilibrium speed
with taking into account the factor of all forces. In the presence of external and interparticle
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forces vector, each component particle gains a momentum variation at each site, and the new
equilibrium velocity can be proposed as follows:

uσ,eq = u′ +
FστσρΔt

ρσ
. (3.17)

4. The Flowchart of LBM with Double Meshes

The detailed process for the simulation of magnetorheological fluids based on LBM with
double meshes can be designed as follows:

(1) The initial density ρ(0) and velocity u(0) are derived according to concrete problems.

(2) According to ρ(0) and u(0), calculate the initial distribution function f
(0)
i of sus-

pended magnetic particles by (3.13).

(3) On the fine mesh, the distribution function f
(m)
f

is obtained after iterating for m

times by (3.12).

(4) Calculate the density ρ
(m)
f and velocity u

(m)
f of magnetic particles by (3.14).

(5) Transfer ρ(m)
f

and u
(m)
f

from the fine mesh to coarse mesh by the following formulas:

ρc = Icfρ
(m)
f

, uc = Icfu
(m)
f

, (4.1)

where Icf is the prolongation operator.

(6) According to ρc and uc, calculate the distribution function fi by (3.13).

(7) On the coarse mesh, the distribution function f
(n)
c is obtained after iterating for n

times by (3.12).

(8) Calculate the density ρ
(n)
c and velocity u

(n)
c of magnetic particles by (3.14).

(9) Transfer ρ(n)c and u
(n)
c from the coarse mesh to fine mesh by the following formulas:

ρf = I
f
c ρ

(n)
c , uf = I

f
c u

(n)
c (4.2)

where Ifc is the restriction operator.

(10) Set ρf to ρ(0) and uf to u(0) and repeat (2) ∼ (10) steps until the computation is con-
vergent.

It is very important for the simulation of magnetorheological fluids to couple the
variables and parameters from different scale regions. As shown in the fifth and ninth steps,
the prolongation operator and restriction operator are adopted to transfer the variables and
parameters between the fine and coarse meshes. So it requires that the prolongation operator
and restriction operator should have high accuracy. Combined with the distribution of the
double meshes shown as Figure 1, the prolongation operator and restriction operator can be
calculated as follows.
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The density ρc and velocity uc of magnetorheological fluids on the coarse mesh are
obtained by means of integration of ρc and uc from the fine grids, that is ρc = Icfρ

(m)
f , uc =

Ic
f
u
(m)
f

. The linear interpolation is shown as follows in the two-dimensional simulation:

ρ
[
ic, jc

]
=

1
16

(
ρ
[
if − 1, jf + 1

]
+ 2ρ

[
if , jf + 1

]
+ ρ

[
if + 1, jf + 1

]
+ 2ρ

[
if − 1, jf

]
+4ρ

[
if , jf

]
+ 2ρ

[
if + 1, jf

]
+ ρ

[
if − 1, jf − 1

]
+ 2ρ

[
if , jf − 1

]
+ ρ

[
if + 1, jf − 1

])
,

u
[
ic, jc

]
=

1
16

(
u
[
if − 1, jf + 1

]
+ 2u

[
if , jf + 1

]
+ u

[
if + 1, jf + 1

]
+ 2u

[
if − 1, jf

]
+ 4u

[
if , jf

]
+2u

[
if + 1, jf

]
+ u

[
if − 1, jf − 1

]
+ 2u

[
if , jf − 1

]
+ u

[
if + 1, jf − 1

])
.

(4.3)

On the other hand, the density ρf and velocity uf of magnetorheological fluids on the
fine mesh are obtained by means of integration of ρ(n)c and u

(n)
c from the coarse grids, that is

ρf = I
f
c ρ

(n)
c , uf = I

f
c u

(n)
c . In the two-dimensional simulation, the restriction operator Ifc can be

calculated as follows:

ρ
[
if , jf

]
= ρ

[
ic, jc

]
,

ρ
[
if + 1, jf

]
=

1
2
(
ρ
[
ic, jc

]
+ ρ

[
ic + 1, jc

])
,

ρ
[
if , jf + 1

]
=

1
2
(
ρ
[
ic, jc

]
+ ρ

[
ic, jc + 1

])
,

ρ
[
if + 1, jf + 1

]
=

1
4
(
ρ
[
ic, jc

]
+ ρ

[
ic + 1, jc

]
+ ρ

[
ic, jc + 1

]
+ ρ

[
ic + 1, jc + 1

])
,

u
[
if , jf

]
= u

[
ic, jc

]
,

u
[
if + 1, jf

]
=

1
2
(
u
[
ic, jc

]
+ u

[
ic + 1, jc

])
,

u
[
if , jf + 1

]
=

1
2
(
u
[
ic, jc

]
+ u

[
ic, jc + 1

])
,

u
[
if + 1, jf + 1

]
=

1
4
(
u
[
ic, jc

]
+ u

[
ic + 1, jc

]
+ u

[
ic, jc + 1

]
+ u

[
ic + 1, jc + 1

])
.

(4.4)

During the simulation of magnetorheological fluids in an external magnetic field, the
two-component Lattice Boltzmann method with double meshes can exert the merits of LBM
and double mesh method. Thus, it is useful to improve computational efficiency and make
the calculation converged easily.

5. Simulation and Discussion

In this section, the two-component Lattice Boltzmann method with double meshes is applied
to simulate magnetorheological fluids in the different strength magnetic fields. In order to
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Table 1: The parameters of magnetorheological fluids.

Parameter R/um χ η/Pa · s A × 1020/J
Value 10 3.2 0.01 22.3
Parameter u0 × 107/(H ·m−1) ρp × 10−3/(kg ·m−3) ρf × 10−3/(kg ·m−3)
Value 4π 0.89 7.8

verify the validity of two-component Lattice Boltzmann model with double meshes for the
simulation of magnetorheological fluids, a physics experiment is carried out. The simulation
results are contrasted with the physics experiment results and the computational efficiency
of the proposed approach is compared with other methods.

The above forces decrease quickly along with the increasing of distance between
two particles. So during the simulation of magnetorheological fluids, it is just needed to
calculate the forces from other particles at adjacent nodes to reduce the simulation time.
The parameters of magnetorheological fluids used in simulation are shown as in Table 1.
The volume fraction of magnetorheological fluids used in our simulation is 10%. The fluids
are confined between two parallel plates with the distance of L = 80mm and the fluid
temperature is 293K. The initial velocity is assumed to be zero. The spatial steps and the
time steps are δx = 500 um, δt = 2 × 10−7 s, respectively. Periodic boundary condition is
adopted at the entrance and exit of the channel and bounce-back boundary condition is used
at the top and bottom boundary.

Figure 2 is the simulation results for microstructure of magnetorheological fluids in the
different strength magnetic fields through the two-component Lattice Boltzmann model with
double meshes. The random distribution of magnetic particles in the absence of an external
magnetic field is shown as Figure 2(a). Figure 2(b) shows that short clusters are formed
sporadically in a low magnetic field λ = 1.5mT. For the case of λ = 3.0mT, many long thin
chainlike clusters are formed along the magnetic field direction as shown in Figure 2(c). In
the strong magnetic field λ = 6.0mT, the chainlike clusters gradually draw together and form
thick chainlike clusters along the strong magnetic field direction as shown in Figure 2(d).

Figure 3 shows the physics experimental results about distributions of magnetic
particles on the same condition and the simulation results are in a good accordance with
these of experiment values. In other words, the two-component Lattice Boltzmann model
with double meshes is feasible and efficient for the simulation of magnetorheological fluids.

A high computational efficiency is crucial to a numerical approach, so it is necessary
to investigate the factors which may affect the computational efficiency. In this section,
we compare the computational time of three different models in the simulation of
magnetorheological fluids at the different volume fraction. The computer used in our paper
is Pentium(R) Dual-Core CPU E5700 3.00GHz.

Figure 4 shows the computational time related with grid number for three different
approaches. The grid number of the coarse and fine meshes used in the double meshes
method is respectively n × n and 2n × 2n. The grid size used in the single-component Lattice
Boltzmann model is equal to the coarse grid size used in the double meshes method and the
grid size used in the two-component Lattice Boltzmann model is the same as the fine grid
size used in the double meshes method.

The comparison results indicate that the single-component Lattice Boltzmann model
consumes theminimum computational time. But because it treats themagnetorheological flu-
ids as a mixed single-component fluid and adopts the coarse meshes, so its simulation results
are not accurate and cannot meet the requirement of magnetorheological fluids simulation.
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Figure 2: Influences of magnetic field strength on distributions of particles.

The two-component Lattice Boltzmann model consumes the maximum computational time,
and the computational time is reduced obviously through the application of double meshes
method.

Figure 5 shows the computational time ratio of two-component LBM with double
meshes (T2) to single-component LBM (T1) and two-component LBM (T3) to two-component
LBMwith double meshes (T2) as the grid is refined. It can be easy to find the simulation time
of magnetorheological fluids with the two-component LBM with double meshes increases
faster than the other two approaches along with the grids becoming denser. The reason lies
in that the two-component LBM with double meshes takes more time to transfer the values
of u and ρ between the coarse and fine meshes with the increasing of grid number, while
the other two approaches has not such a process, so the increase of computational efficiency
is affected. But the computational efficiency can obviously be improved in the premise of
guarantee calculation precision.

6. Conclusions and Future Work

It usually takes a lot of time in the simulation of magnetorheological fluids by the uniform
mesh algorithm in LBM. In order to improve computational efficiency, the two-component
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Figure 3: The physics experiment results in different strength magnetic fields.
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Lattice Boltzmann model with double meshes was proposed. During the simulation of mag-
netorheological fluids in an external magnetic field, the two-component LBM with double
meshes can exert the merits of LBM and double mesh method. It makes the high frequency
error reduce on the fine mesh and the low frequency error decrease on the coarse mesh.
Thus, it is useful to improve computational efficiency and make the calculation converged
easily. The comparison between the simulation and physics experiment verifies the validity of
two-component Lattice Boltzmannmodel with double meshes for magnetorheological fluids.
The proposed approach has been vital significant to study the rheological characteristics of
magnetorheological fluids. However, the simulation results show that the simulation time of
magnetorheological fluids increases quickly alongwith the grids becoming denser. It is due to
the factor that the proposed approach would take more time in transferring u and ρ between
the fine and coarse meshes. In future studies, the authors plan to investigate the interpolation
operator to improve computational efficiency. The application of the proposed approach to
the simulation of magnetorheological fluids with a mass volume fraction is also an important
research for the authors.
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