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we apply the improved (G′/G)-expansion method for constructing abundant new exact traveling
wave solutions of the (2+1)-dimensional Modified Zakharov-Kuznetsov equation. In addition,
G

′′
+ λG′ + μG = 0 together with b(α) =

∑w
q=−w pq(G′/G)q is employed in this method, where

pq(q = 0,±1,±2, . . . ,±w), λ and μ are constants. Moreover, the obtained solutions including solitons
and periodic solutions are described by three different families. Also, it is noteworthy to mention
out that, some of our solutions are coincided with already published results, if parameters taken
particular values. Furthermore, the graphical presentations are demonstrated for some of newly
obtained solutions.

1. Introduction

The investigations of traveling wave solutions for nonlinear evolution equations (NLEEs)
play an outstanding role in analysing nonlinear physical phenomena. In the recent past, a
wide range of methods have been presented to establish analytical solutions for nonlinear
partial differential equations (PDEs), such as the Backlund transformation method [1], the
inverse scattering method [2], the homogeneous balance method [3], the Hirota bilinear
transformation method [4], the Jacobi elliptic function expansion method [5–7], the gener-
alized Riccati equation method [8], the tanh-coth method [9–11], the F-expansion method
[12, 13], the direct algebraicmethod [14], the Cole-Hopf transformationmethod [15], the Exp-
function method [16–23], the Adomian decomposition method [24], the homotopy analysis
method [25], the bifurcation method [26, 27], and others [28–40].

Wang et al. [42] presented the basic (G′/G)-expansion method, and u(ξ) =
∑m

i= 0 ai(G′/G)i is implemented as traveling wave solutions, where am /= 0. Later on,
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Table 1: Comparison between Bekir [41] solutions and Newly obtained solutions.

Bekir [41] solutions New solutions

(i) If C1 = 0, C2 /= 0, μ = 2 and λ = 3 solution
equation (4.9) from Bekir [41] (from Section 4)
becomes:

u1,2(ξ) = ±i√3 coth(1/2)ξ.

(i) If μ = 2, λ = 3 and b1(α) = u1,2(ξ), solution
b1(α) becomes: u1,2(ξ) = ±i√3 coth(1/2)ξ.

(ii) If C1 /= 0, C2 = 0, μ = 2 and λ = 3 solution
equation (4.9) from Bekir [41] (from Section 4)
becomes:

u1,2(ξ) = ±i√3 tanh(1/2)ξ.

(ii) If μ = 2, λ = 3 and b4(α) = u1,2(ξ), solution
b4(α) becomes: u1,2(ξ) = ±i√3 tanh(1/2)ξ.

(iii) If C1 = 0, C2 /= 0, μ = 2 and λ = 2 solution
equation (4.9) from Bekir [41] (from Section 4)
becomes: u3,4(ξ) = ±2i√3cotξ.

(iii) If μ = 2, λ = 2 and b10(α) = u3,4(ξ), solution
b10(α) becomes: u3,4(ξ) = ±2i√3cotξ.

(iv) If C1 /= 0, C2 = 0, μ = 2 and λ = 2 solution
equation (4.9) from Bekir [41] (from Section 4)
becomes:

u3,4(ξ) = ±2i√3 tan(1/2)ξ.

(iv) If μ = 2, λ = 2 and b13(α) = u3,4(ξ), solution
b13(α) becomes: u3,4(ξ) = ±2i√3 tan(1/2)ξ.

(v) If C1 = 0, C2 = 1 and λ2 − 4μ = 0 solution
equation (4.9) from Bekir [41] (from Section 4)
becomes:

u5,6(ξ) = ±i√3(2/x).

(v) If U = 0, V = 1, λ2 − 4μ = 0 and
b19(α) = u5,6(ξ), solution b19(α) becomes:
u5,6(ξ) = ±i√3(2/x).

(vi) If C1 = 1, C2 = 1/2 and λ2 − 4μ = 0 solution
equation (4.9) from Bekir [41] (from Section 4)
becomes:

u5,6(ξ) = ±i√3(2/(2 + x)).

(vi) If U = 1, V = 1/2, λ2 − 4μ = 0 and
b19(α) = u5,6(ξ), solution b19(α) becomes:
u5,6(ξ) = ±i√3(2/(2 + x)).

(vii) If C1 = 1, C2 = −1/2 and λ2 − 4μ = 0 solution
equation (4.9) from Bekir [41] (from Section 4)
becomes:

u5,6(ξ) = ∓i√3(2/(2 − x)).

(vii) If U = 1, V = −1/2, λ2 − 4μ = 0 and
b19(α) = u5,6(ξ), solution b19(α) becomes:
u5,6(ξ) = ∓i√3(2/(2 − x)).
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Figure 1: Solitons solution for λ = 3, μ = 2.
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Figure 2: Solitons solution for λ = 2, μ = 0.5.
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Figure 3: Solitons solution for λ = 6, μ = 8.

nonlinear partial differential equations are investigated to construct traveling wave solutions
via this method [41, 43–50]. More recently, Zhang et al. [51] extended this method and called
it the improved (G′/G)-expansion method. They employed the b(α) =

∑w
q=−w pq(G′/G)q

method as traveling wave solutions, where either p−w or pw may be zero, but both p−w and
pw cannot be zero at a time. Afterwards, many researchers studied different nonlinear partial
differential equations to construct traveling wave solutions by using this improved (G′/G)-
expansion method. For example, Zhao et al. [52] executed the same method to establish exact
solutions of the variant Boussinesq equations. Nofel et al. [53] constructed traveling wave
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Figure 4: Periodic solution for λ = 5, μ = 6.
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Figure 5: Periodic solution for λ = 5, μ = 4.

solutions for the fifth-order KdV equation by using this method. Hamad et al. [54] studied
higher-dimensional potential YTSF equation to obtain analytical solutions via the same
method. Naher et al. [55] applied this powerful method to construct traveling wave solutions
of the higher-dimensional modified KdV-Zakharov-Kuznetsev equation. In [56], Naher and
Abdullah were concerned about the same method to obtain exact solutions for the nonlinear
reaction diffusion equation whilst in [57] they investigated the combined KdV-MKdV equa-
tion for constructing traveling wave solutions by applying this method and so on.

Many researchers studied the (2+1)-dimensional modified Zakharov-Kuznetsov equa-
tion by using different methods. For instance, Khalfallah [58] implemented homogeneous
balance method to investigate this equation for obtaining exact solutions. In [41], Bekir
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Figure 6: Periodic solution for λ = 3, μ = 2.
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Figure 7: Solitons solution for λ = 2, μ = 0.5.

employed the basic (G′/G)-expansionmethod to construct traveling wave solutions for the
same equation. In this basic (G′/G)-expansion method, they utilized u(ξ) =

∑m
i= 0 ai(G′/G)i,

where am /= 0, as traveling wave solutions, instead of b(α) =
∑w

q=−w pq(G′/G)q, where either
p−w or pw may be zero, but both p−w and pw cannot be zero at a time.

The significance of this work is that the (2+1)-dimensional modified Zakharov-
Kuznetsov equation is considered to construct many new exact traveling wave solutions
including solitons, periodic, and rational solutions by applying the improved (G′/G)-expan-
sion method.
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Figure 8: Solitons solution for λ = 1, μ = 1.
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Figure 9: Solitons solution for λ = 7, μ = 14.

2. Description of the Improved (G′/G)-Expansion Method

Consider the general nonlinear partial differential equation

A
(
u, ut, ux, uy, uxt, uyt, uxy, utt, uxx, uyy, . . .

)
= 0, (2.1)

where u = u(x, y, t) is an unknown function,A is a polynomial in u(x, y, t), and the subscripts
stand for the partial derivatives.

The main steps of the improved (G′/G)-expansion method [51] are as follows.
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Figure 10: Solitons solution for λ = 6, μ = 10.
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Figure 11: Solitons solution for λ = 4, μ = 5.

Step 1. Consider the traveling wave variable

u
(
x, y, t

)
= b(α), α = x + y − Ct, (2.2)

where C is the wave speed. Now using (2.2), (2.1) is converted into an ordinary differential
equation for b(α)

B
(
b, b′, b′′, b′′′, . . .

)
= 0, (2.3)

where the superscripts indicate the ordinary derivatives with respect to α.
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Figure 12: Solitons solution for λ = 3, μ = 3.
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Figure 13: Solitons solution for λ = 3, μ = 4.

Step 2. According to possibility, (2.3) can be integrated term by term one or more times,
yielding constant(s) of integration. The integral constant may be zero, for simplicity.

Step 3. Suppose that the traveling wave solution of (2.3) can be expressed in the form [51]

b(α) =
w∑

q =−w
pq

(
G′

G

)q

, (2.4)
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Figure 14: Periodic solution for λ = 0.5, μ = 1.

with G = G(α) satisfing the second-order linear ODE

G′′ + λG′ + μG = 0, (2.5)

where pq (q = 0,±1,±2, . . . ,±w), λ, and μ are constants.

Step 4. To determine the integer w, substitute (2.4) along with (2.5) into (2.3) and then take
the homogeneous balance between the highest-order nonlinear terms and the highest-order
derivatives appearing in (2.3).

Step 5. Substitute (2.4) and (2.5) into (2.3) with the value of w obtained in Step 4. Equate the
coefficients of (G′/G)r , (r = 0,±1,±2, . . .) and then set each coefficient to zero and obtain a
set of algebraic equations for pq (q = 0,±1,±2, . . . ,±w), C, λ, and μ.

Step 6. By solving the system of algebraic equations which are obtained in Step 5 with the aid
of algebraic software Maple, and we obtain values for pq (q = 0,± 1,± 2, . . . ,±w), C, λ and μ.
Then, substitute the obtained values in (2.4) along with (2.5) with the value of w to obtain
the traveling wave solutions of (2.1).

3. Applications of the Method

In this section, we have studied the (2+1)-dimensional modified Zakharov-Kuznetsov equa-
tion to construct new exact traveling wave solutions including solitons, periodic solutions,
and rational solutions via the improved (G′/G)-expansion method.
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3.1. The (2+1)-Dimensional Modified Zakharov-Kuznetsov Equation

We consider the (2+1)-dimensional Modified Zakharov-Kuznetsov equation followed by
Bekir [41]:

ut + u2 ux + uxxx + uxyy = 0. (3.1)

Now, we use the wave transformation equation (2.2) into (3.1), which yields

−Cb′ + b2b′ + 2b′′′ = 0. (3.2)

Equation (3.2) is integrable; therefore, integrating with respect to α once yields:

H − Cb +
1
3
b3 + 2b′′ = 0, (3.3)

where H is an integral constant that is to be determined later.
Taking the homogeneous balance between b3 and b′′ in (3.3), we obtain w = 1.
Therefore, the solution of (3.3) is of the form

b(α) = p−1
(
G′/G

)−1 + p0 + p1
(
G′/G

)
, (3.4)

where p−1, p0, and p1 are constants to be determined.
Substituting (3.4) together with (2.5) into (3.3), the left-hand side of (3.3) is converted

into a polynomial of (G′/G)r , (r = 0,±1,±2, . . .). According to Step 5, collecting all terms with
the same power of (G′/G), and then setting each coefficient of the resulted polynomial to
zero, yields a set of algebraic equations (for simplicity, which are not presented) for p−1,
p0, p1, C,H, λ, and μ.

Solving the system of obtained the algebraic equations with the help of algebraic soft-
ware Maple, we obtain three different values.

Case 1. We have

p−1 = 0, p0 = ±λi
√
3, p1 = ±2i

√
3, C = 4μ − λ2, H = 0, (3.5)

where λ and μ are free parameters.

Case 2. We have

p−1 = ±2μi
√
3, p0 = ±λi

√
3, p1 = 0, C = 4μ − λ2, H = 0, (3.6)

where λ and μ are free parameters.
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Case 3. We have

p−1 = ±2μi
√
3, p0 = ±λi

√
3, p1 = ±2i

√
3,

C = −8μ − λ2, H = ±8λμi
√
3,

(3.7)

where λ and μ are free parameters.

Substituting the general solution equation (2.5) into (3.4), we obtain three different
families of traveling wave solutions of (3.3)

Family 1 (hyperbolic function solutions). When λ2 − 4μ > 0, we obtain

b(α) = p−1

⎛

⎜
⎝

−λ
2

+
1
2

√
λ2 − 4μ

U sinh(1/2)
√
λ2 − 4μα + V cosh(1/2)

√
λ2 − 4μα

U cosh(1/2)
√
λ2 − 4μα + V sinh(1/2)

√
λ2 − 4μα

⎞

⎟
⎠

−1

+ p0

+ p1

⎛

⎜
⎝

−λ
2

+
1
2

√
λ2 − 4μ

U sinh(1/2)
√
λ2 − 4μα + V cosh(1/2)

√
λ2 − 4μα

U cosh(1/2)
√
λ2 − 4μα + V sinh(1/2)

√
λ2 − 4μα

⎞

⎟
⎠.

(3.8)

IfU and V take particular values, various known solutions can be rediscovered.
For example,

(i) ifU = 0 but V /= 0, we obtain

b(α) = p−1

(−λ
2

+
1
2

√
λ2 − 4μ coth

1
2

√
λ2 − 4μα

)−1
+ p0

+ p1

(−λ
2

+
1
2

√
λ2 − 4μ coth

1
2

√
λ2 − 4μα

)

,

(3.9)

(ii) if V = 0 but U/= 0, we obtain

b(α) = p−1

(−λ
2

+
1
2

√
λ2 − 4μ tanh

1
2

√
λ2 − 4μα

)−1
+ p0

+ p1

(−λ
2

+
1
2

√
λ2 − 4μ tanh

1
2

√
λ2 − 4μα

)

,

(3.10)

(iii) ifU/= 0, U > V , we obtain

b(α) = p−1

(−λ
2

+
1
2

√
λ2 − 4μ tanh

(
1
2

√
λ2 − 4μα + α0

))−1
+ p0

+ p1

(−λ
2

+
1
2

√
λ2 − 4μ tanh

(
1
2

√
λ2 − 4μα + α0

))

.

(3.11)
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Family 2 (trigonometric function solutions). When λ2 − 4μ < 0, we obtain

b(α) = p−1

⎛

⎜
⎝

−λ
2

+
1
2

√
4μ − λ2

−U sin(1/2)
√
4μ − λ2α + V cos(1/2)

√
4μ − λ2α

U cos(1/2)
√
4μ − λ2α + V sin(1/2)

√
4μ − λ2α

⎞

⎟
⎠

−1

+ p0

+ p1

⎛

⎜
⎝

−λ
2

+
1
2

√
4μ − λ2

−U sin(1/2)
√
4μ − λ2α + V cos(1/2)

√
4μ − λ2α

U cos(1/2)
√
4μ − λ2α + V sin(1/2)

√
4μ − λ2α

⎞

⎟
⎠.

(3.12)

IfU and V take particular values, various known solutions can be rediscovered.
For example,

(iv) ifU = 0 but V /= 0, we obtain

b(α) = p−1

(−λ
2

+
1
2

√
4μ − λ2cot

1
2

√
4μ − λ2α

)−1
+ p0

+ p1

(−λ
2

+
1
2

√
4μ − λ2cot

1
2

√
4μ − λ2α

)

,

(3.13)

(v) if V = 0 but U/= 0, we obtain

b(α) = p−1

(−λ
2

− 1
2

√
4μ − λ2 tan

1
2

√
4μ − λ2α

)−1
+ p0

+ p1

(−λ
2

− 1
2

√
4μ − λ2 tan

1
2

√
4μ − λ2α

)

,

(3.14)

(vi) ifU/= 0, U > V , we obtain

b(α) = p−1

(−λ
2

+
1
2

√
4μ − λ2 tan

(
1
2

√
4μ − λ2 α − α0

))−1
+ p0

+ p1

(−λ
2

+
1
2

√
4μ − λ2 tan

(
1
2

√
4μ − λ2 α − α0

))

.

(3.15)

Family 3 (rational function solution). When λ2 − 4μ = 0, we obtain

b(α) = p−1

(−λ
2

+
V

U + Vα

)−1
+ p0 + p1

(−λ
2

+
V

U + Vα

)

. (3.16)

Family 4 (hyperbolic function solutions). Substituting (3.5), (3.6), and (3.7) together with the
general solution equation (2.5) into (3.4) yields the hyperbolic function solution equation
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(3.8), then using (3.9), our traveling wave solutions become, respectively (ifU = 0 but V /= 0),

b1(α) = ±i
√
3
(
λ2 − 4μ

)
coth

1
2

√
λ2 − 4μα, (3.17)

where α = x + y + (λ2 − 4μ)t,

b2(α) = ±i
√
3

⎛

⎜
⎝2μ

⎛

⎜
⎝

−λ
2

+

√
λ2 − 4μ

2
coth

1
2

√
λ2 − 4μα

⎞

⎟
⎠

−1

+ λ

⎞

⎟
⎠ , (3.18)

where α = x + y + (λ2 − 4μ)t,

b3(α) = ±i
√
3

⎛

⎜
⎝2μ

⎛

⎜
⎝

−λ
2

+

√
λ2 − 4μ

2
coth

1
2

√
λ2 − 4μα

⎞

⎟
⎠

−1

+
√
λ2 − 4μ coth

1
2

√
λ2 − 4μα

⎞

⎟
⎠,

(3.19)

where α = x + y + (λ2 + 8μ)t.
Again, substituting (3.5), (3.6), and (3.7) together with the general solution equation

(2.5) into (3.4), we obtain the hyperbolic function solution equation (3.8), then using (3.10),
we obtain the following exact solutions, respectively (if V = 0 but U/= 0),

b4(α) = ±i
√
3
(
λ2 − 4μ

)
tanh

1
2

√
λ2 − 4μα, (3.20)

b5(α) = ±i
√
3

⎛

⎜
⎝2μ

⎛

⎜
⎝

−λ
2

+

√
λ2 − 4μ

2
tanh

1
2

√
λ2 − 4μα

⎞

⎟
⎠

−1

+ λ

⎞

⎟
⎠, (3.21)

b6(α) = ±i
√
3

⎛

⎜
⎝2μ

⎛

⎜
⎝

−λ
2

+

√
λ2 − 4μ

2
tanh

1
2

√
λ2 − 4μα

⎞

⎟
⎠

−1

+
√
λ2 − 4μ tanh

1
2

√
λ2 − 4μα

⎞

⎟
⎠.

(3.22)

Moreover, substituting (3.5), (3.6), and (3.7) together with the general solution equation (2.5)
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into (3.4) yields the hyperbolic function solution equation (3.8), and then using (3.11), our
obtained wave solutions become, respectively (ifU/= 0, U > V ),

b7(α) = ±i
√
3
(
λ2 − 4μ

)
tanh

(
1
2

√
λ2 − 4μα + α0

)

, (3.23)

where α0 = tanh−1(V/U),

b8(α) = ±i
√
3

⎛

⎜
⎝2μ

⎛

⎜
⎝

−λ
2

+

√
λ2 − 4μ

2
tanh

(
1
2

√
λ2 − 4μα + α0

)
⎞

⎟
⎠

−1

+ λ

⎞

⎟
⎠ , (3.24)

where α0 = tanh−1(V/U),

b9(α) = ±i
√
3

⎛

⎜
⎝2μ

⎛

⎜
⎝

−λ
2

+

√
λ2 − 4μ

2
tanh

(
1
2

√
λ2 − 4μα + α0

)
⎞

⎟
⎠

−1

+
√
λ2 − 4μ tanh

(
1
2

√
λ2 − 4μα + α0

)
⎞

⎟
⎠,

(3.25)

where α0 = tanh−1(V/U).

Family 5 (trigonometric function solutions). Substituting (3.5), (3.6), and (3.7) together with
the general solution equation (2.5) into (3.4) yields the trigonometric function solution equa-
tion (3.12), and then using (3.13), we obtain the following solutions, respectively (if U = 0
but V /= 0),

b10(α) = ±i
√
3
(
4μ − λ2

)
cot

1
2

√
4μ − λ2α, (3.26)

where α = x + y − (4μ − λ2)t,

b11(α) = ±i
√
3

⎛

⎜
⎝2μ

⎛

⎜
⎝

−λ
2

+

√
4μ − λ2

2
cot

1
2

√
4μ − λ2α

⎞

⎟
⎠

−1

+ λ

⎞

⎟
⎠ , (3.27)
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where α = x + y − (4μ − λ2)t,

b12(α) = ±i
√
3

⎛

⎜
⎝2μ

⎛

⎜
⎝

−λ
2

+

√
4μ − λ2

2
cot

1
2

√
4μ − λ2α

⎞

⎟
⎠

−1

+
√
4μ − λ2 cot

1
2

√
4μ − λ2α

⎞

⎟
⎠,

(3.28)

where α = x + y − (−8μ − λ2)t.

Also, substituting (3.5), (3.6), and (3.7) together with the general solution equation
(2.5) into (3.4) yields the trigonometric function solution equation (3.12), and then using
(3.14), our solutions become, respectively (if V = 0 but U/= 0),

b13(α) = ∓i
√
3
(
4μ − λ2

)
tan

1
2

√
4μ − λ2α, (3.29)

b14(α) = ±i
√
3

⎛

⎜
⎝2μ

⎛

⎜
⎝

−λ
2

−

√
4μ − λ2

2
tan

1
2

√
4μ − λ2α

⎞

⎟
⎠

−1

+ λ

⎞

⎟
⎠, (3.30)

b15(α) = ±i
√
3

⎛

⎜
⎝2μ

⎛

⎜
⎝

−λ
2

−

√
4μ − λ2

2
tan

1
2

√
4μ − λ2α

⎞

⎟
⎠

−1

−
√
4μ − λ2 tan

1
2

√
4μ − λ2α

⎞

⎟
⎠.

(3.31)

Furthermore, substituting (3.5), (3.6), and (3.7) together with the general solution equation
(2.5) into (3.4) yields the trigonometric function solution equation (3.12), and then using
(3.15), our obtained traveling wave solutions, become respectively (ifU/= 0, U > V ),

b16(α) = ±i
√
3
(
4μ − λ2

)
tan
(
1
2

√
4μ − λ2α − α0

)

, (3.32)

where α0 = tan−1(V/U),

b17(α) = ±i
√
3

⎛

⎜
⎝2μ

⎛
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−λ
2

+

√
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2
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(
1
2

√
4μ − λ2α − α0

)
⎞

⎟
⎠

−1

+ λ

⎞

⎟
⎠, (3.33)
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where α0 = tan−1(V/U),

b18(α) = ±i
√
3

⎛

⎜
⎝2μ

⎛

⎜
⎝

−λ
2

+

√
4μ − λ2

2
tan
(
1
2

√
4μ − λ2α − α0

)
⎞

⎟
⎠

−1

+
√
4μ − λ2 tan

(
1
2

√
4μ − λ2 α − α0

)
⎞

⎟
⎠,

(3.34)

where α0 = tan−1(V/U).

Family 6 (rational function solutions). Substituting (3.5), (3.6), and (3.7) together with the
general solution equation (2.5) into (3.4), we obtain the rational function solution equation
(3.16), and our wave solutions become, respectively (if λ2 − 4μ = 0),

b19(α) = ±i
√
3

2V
(U + Vα)

, (3.35)

where α = x + y + (λ2 − 4μ)t,

b20(α) = ±i
√
3

(

2μ
(−λ

2
+

V

U + Vα

)−1
+ λ

)

, (3.36)

where α = x + y + (λ2 − 4μ)t,

b21(α) = ±i
√
3

(

2μ
(−λ

2
+

V

U + Vα

)−1
+

2V
U + Vα

)

, (3.37)

where α = x + y + (λ2 + 8μ)t.

4. Results and Discussion

It is worth declaring that some of our obtained solutions are in good agreement with already-
published results, which are presented Table 1. Moreover, some of the newly obtained exact
traveling wave solutions are described in Figures 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, and 14.

Beyond Table 1, we obtain new exact traveling wave solutions b2, b3, b5, b6, b7, b8, b9,
b11, b12, b14, b15, b16, b17, b18, b20, and b21, which are not established in the previous literature.

4.1. Graphical Representations of the Solutions

The graphical presentations of some solutions are depicted in Figures 1–14 with the aid of
commercial software Maple.
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5. Conclusions

In this paper, the improved (G′/G)-expansion method is implemented to investigate the
nonlinear partial differential equation, namely, the (2+1)-dimensional modified Zakharov-
Kuznetsov equation.We have constructed abundant exact traveling wave solutions including
solitons, periodic, and rational solutions. Moreover, it is worth stating that some of the newly
obtained solutions are identical with already-published results, for special case. The obtained
solutions show that the improved (G′/G)-expansion method is more effective and more
general than the basic (G′/G)-expansion method, because it gives many new solutions. Con-
sequently, this simple and powerful method can be more successfully applied to study non-
linear partial differential equations, which frequently arise in engineering sciences, mathe-
matical physics, and other scientific real-time application fields.
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