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The dynamic complexities of an Ivlev-type prey-predator system with impulsive state feedback
control are studied analytically and numerically. Using the analogue of the Poincaré criterion,
sufficient conditions for the existence and the stability of semitrivial periodic solutions can be
obtained. Furthermore, the bifurcation diagrams and phase diagrams are investigated by means
of numerical simulations, which illustrate the feasibility of the main results presented here.

1. Introduction

The theoretical investigation of predator-prey systems in mathematical ecology has a long
history, beginning with the pioneering work of Lotka and Volterra. During this time,
the theory and application of differential equations with impulsive perturbations were
significantly advanced by the efforts of Lakshmikantham et al. [1]. In fact, many systems
in physics, chemistry, and biology can be modeled by impulsive differential equations which
can represent the abrupt jumps that occur during their evolutionary processes [2].

Many factors in the environment must be considered in predator-prey systems [3].
Impulsive perturbations are an important element because some factors, such as fires, floods,
and similar disturbances, are not well suited to be considered in a continuous manner. In
general, impulsive perturbations can be classified into two cases [4]. The first is perturbations
caused by nature, and the second is perturbations that arise as a result of human efforts
to control prey density, for instance, controlling pest outbreaks. There are many strategies
to control agricultural pests, including chemical and biological controls. Chemical control
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methods, such as crop dusting, are useful because they quickly kill a significant portion of
a pest population and sometimes provide the only feasible method for preventing economic
loss. However, pesticide pollution is a major hazard to human health and the populations of
natural enemies. Another important control method is biological control. Biological control is
the purposeful introduction and establishment of one or more natural enemies of a pest [5, 6].
The key to successful biological pest control is to identify the pest and its natural enemy and
to release the natural enemies for pest control. Proportional harvesting, for example, of fish, is
also considered in this category. Consequently, it is natural to assume that these perturbations
are instantaneous, that is, in the form of an impulse.

Generally speaking, there are three possible cases of impulsive perturbation: systems
with impulses at fixed times, systems with impulses at variable times, and autonomous
impulsive systems. In recent years, most investigations of impulsive differential equations
have concentrated on systems with impulses at fixed times [7-14], while the other two kinds
of impulsive differential equations have been relatively less studied. As a matter of fact, in
many practical cases, impulses often occur at state-dependent times rather than at fixed times.
For example, it may be desirable to control a population size by catching, crop-dusting, or
releasing the predator when prey numbers reach a threshold value.

As is well known, significant developments have recently been achieved in the
bifurcation theory of continuous dynamic systems [15-20]. The study of impulsive systems
mainly involves the properties of their solutions, such as existence, uniqueness, stability,
boundedness, and periodicity. This paper also considers bifurcation behaviors. Recently,
Lakmeche and Arino [21] transformed the problem of a periodic solution into a fixed-
point problem, discussed the bifurcation of periodic solutions from trivial solutions, and
obtained the existence conditions for the positive period-1 solution. Tang and Chen [22]
developed a complete expression for a period-1 solution and investigated the bifurcation of
periodic solutions numerically using a discrete dynamic system determined by a stroboscopic
map. Many papers have been devoted to the analysis of mathematical models with state-
dependent impulsive effects [23]. For instance, Tang, Jiang, Zeng, Qian, Nie, and others
[24-29] have studied the dynamic behaviors of predator-prey systems with impulsive
state feedback control and have determined the existence and stability of positive periodic
solutions using the Poincaré map and the properties of the Lambert W function.

Recently, the continuous model with Ivlev-type has been extensively studied [30-
36]. The Ivlev-type functional response describes a cyrtoid or Holling II prey-dependent
functional response because the feeding rate declines with increasing resource abundance
until it reaches a constant rate [34]. Although a direct link between the predator and prey
cannot be established unless quantitative methods are used, the precious works clearly show
that the amount of two species is often related, and a change in one species can cause a change
in another, especially predator. Thus, we apply Ivlev-type functional response to describe
their relationship with sufficient accuracy in this paper. Using the method of impulsive
perturbations, a predator-prey model with Ivlev-type and state impulsive perturbations will
be considered, as follows:

X = rx<1 - %) - (1-exp(-ax))y, x#h,

y=((1-exp(-ax)) -m)y, (1.1)
Ax = —px,
Ay=qy+T,
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where x(t) and y(t) are functions of time representing the population densities of the prey
and predator, respectively. a is the efficiency with which predators extract preys from their
environment, which sometimes is called the apparency of the preys, k is the carrying capacity
of prey x, m is the death rate of predator y, p € (0,1) is the average lost rate of prey x during
this time the amount of prey x reaches to critical threshold h > 0, g(g > 0) describes a released
parameter for juvenile predator y, T(T > 0) represents a released parameter for adult predator
y, Ax(t) = x(t")—x(t), and Ay(t) = y(t*) —y(t). When the amount of prey x reaches to critical
threshold h, a control strategy is used; then the numbers of prey and predator become (1-p)h
and (1 + q)y(ti(h)) + T, respectively.

The rest of this paper is organized as follows. Section 2 presents certain preliminaries,
important definitions, and lemmas that are frequently used in the following discussions. In
Section 3, the existence and stability of a positive periodic solution of system (1.1) are stated
and proved. Section 4 presents a numerical analysis to illustrate the theoretical results. Finally,
conclusions and remarks are presented in Section 5.

2. Preliminaries

The dynamic behavior of system (1.1) without impulsive effects can be interpreted as follows.
It has one saddle at (0,0), and calculations reveal that (0, k) is also a saddle, while (- In(1 -
m)/a,-rIn(1 — m)(ak + In(1 — m))/a’km) is a stable positive focus when ak + In(1 - m) > 0
and ak +2In(1 — m) < 0 hold.

Throughout this paper, it is assumed that h < —In(1 —m)/a, ak + In(1 — m) > 0 and
ak +21In(1-m) < 0 always hold. Only solutions with nonnegative components, continuously
differentiable in the region D = {(x,y) : x > 0,y > 0} based on the biological background of
system (1.1), will be considered.

Let R = (-o0,00) and let z(t) = (x(t), y(t)) be any solution of system (1.1). The positive
orbit through point zg € R2 = {(x,y) : x >0,y > 0} for t > t, > 0 is defined as

O*(zo,t) = {z ER?:z=2z(t), t >ty z(t) = zo}. (2.1)

Definition 2.1. A trajectory O*(zo,t) of system (1.1) is said to be order-k periodic if there
exists a positive integer k > 1 such that k is the smallest integer for which xy = xy.

The next step is to construct the Poincaré map. To discuss the dynamics of system
(1.1), consider its vector field. As shown in Figure 1, denote Sp = {(x,y) | x = (1-p)h, y >0}
and S1 = {(x,y) | x = h, y > 0}. It is clear that the line x = (1 — p)h and the line x = k
intersect the isoclinal line rx(1 — x/k) — (1 — exp(—ax))y = 0, or in other words, dx/dt = 0,
at point A((1 — p)h,rh(1 - p)(k = (1 — p)h)/k(1 — exp(-a(l — p)h))), and that B(h,rh(k -
h)/k(1 — exp(—ah))) intersects the line y = 0 at point C((1 - p)h,0), D(h,0). Denote Q =
{(x,y) | 0 <y < rx(k—x)/k(l —exp(-ax)),(1 -p)h < x < h}, and Q; = Q U CD. It is

al N
obvious that dx/dt = 0, dy/dt < 0 are satisfied at point (x, y) €AB, where AB is represented
asy = rx(k — x)/k(1 —exp(—ax)) and (1 - p)h < x < h. Any orbit passing through segment
al

AB and into the interior of Q will exit Q by passing through segment BD.

Assume that point S, ((1 — p)h, y,) is on section Sy. Then the trajectory O*(S,,t,)
of system (1.1) intersects section S; at point Sy.1(h, Yus1), Wwhere y,.1 is determined by y,,.
Then the point S,1(h, Yus1) jumps to point S¥.,((1 = p)h, (1 + q)y, + T) on Sy due to the
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Figure 1: Poincaré map of system (1.1).

impulsive effects, and section Sy is a Poincaré section. The following Poincaré map f can
thus be obtained:

Yo=(1+q)g(y,q) + 7 (2.2)

Now choose section S; as another Poincaré section. Another Poincare map f; can be
obtained for Si:

Ynr1 = §((1+q)yn +7) = F(q,7, Yn). (2.3)

In this discussion, vk is determined by y, and parameters g and 7.
Next, an autonomous system with impulsive effects will be considered:

dx dy
=Py, S =Qky), e(xy)#0 (2.4)

Ax=¢(xy), Ay=n(xy), ¢(xy)=0

where P(x,y) and Q(x,y) are continuous differential functions and ¢(x, y) is a sufficiently
smooth function with grade ¢(x,y) #0. Let (¢(t),7(t)) be a positive T-periodic solution of
system (2.4). The following technical lemma will now be introduced.

Lemma 2.2 (see [37]). If the Floquet multiplier y satisfies the condition |u| < 1, where

n T aP aQ
po= gAk exp Uo (a—x(é(t),n(t)) + @(é(t),n(t)))dt], (2.5)

with
_ P.((0p/0dy)(0¢/0x) — (6p/0x)(0¢/dy) + ¢/ 0x)
. P(09/0x) + Q(3¢/y)

. Q. ((0a/0x)(8¢/0y) — (0a/0y) (0 /0x) + O/ 0y)
P(0¢/0x) + Q(0¢/dy) ’

A

(2.6)
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and P, Q, 0a/0x, 0a/ Ay, 0/ 0x, 0p/dy, 0P/ 0x, 0/ dy are calculated at point ({(t)), n(t;)), Py =
P(t),n(t)), Qv = Q(&(t), n(t))) and ti(k € N) is the time of the k-th jump, then (§(t), n(t)) is
orbitally asymptotically stable.

Lemma 2.3 (see [38]). Let F : Rx R — R be a one-parameter family of C* maps satisfying
(i) F(O,4) = 0,
(i) (0F/0x)(0,0) =1,
(iii) (0°F/0x3u)(0,0) > 0,
(iv) (8%F/9x* )(0,0) < 0.
Then F has two branches of fixed points for y near zero. The first branch is x1 () = 0 for all p.
The second bifurcating branch x,(u) changes its value from negative to positive as y increases through

u = 0 with x,(0) = 0. The fixed points of the first branch are stable if y < 0 and unstable if u > 0,
while those of the bifurcating branch having the opposite stability.

3. Dynamic Properties
3.1. Case T =0

It should be stressed that the semitrivial periodic solution with i = 0 of system (1.1) exists if
and only if 7 = 0. Therefore, the discussions start with 7 = 0.
When 7 = 0, system (1.1) can be stated in the following form:

x#h,

y = ((1-exp(-ax)) -m)y, (3.1)
Ax = -px,
Ay =qy.

X = rx(l - %) - (1-exp(-ax))y,

Let y(t) = 0 for t € [0, o0); then from system (3.1),

X = rx(l - f), x#h,
k (3.2)

Ax =-px, x=h.

Setting x9p = x(0) = (1 — p)h leads to the solution of system (3.2), x(t) = k(1 — p)hexp(r(t -
nT))/[k - (1 -p)h+ (1 -p)hexp(r(t—nT))]. Let T = In[k — (1 - p)h/(k — h)(1 - p)]*/"; then
x(T) = h and x(T*) = (1 - p)h. Hence, system (3.1) has the following semitrivial periodic
solution:

k(1-p)hexp(r(t—nT))
k= (1-p)h+ (1-p)hexp(r(t-nT))’ (3.3)

y(t) =0,

x(t) =

where t € (nT, (n+1)T],n € N, and which is denoted by (¢(t), 0).
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Now the stability of this semitrivial periodic solution will be discussed.

Theorem 3.1. The semitrivial periodic solution (3.3) is said to be orbitally asymptotically stable if

k=(-ph N\ (T
0<g< <m> exp fo exp(—aé(t))dt ) - 1. (3.4)

Proof. In fact,

P(x,y) = rx<1 - %) - (1-exp(-ax))y,

Q(x,y) = (1 —exp(-ax)) -m)y, (3.5)
a(x,y)=-px, P(xy)=qy, $(x,y)=x-h,
(&(T),n(T)) = (h,0), &(T),n(T)) = ((1-p)h,0).

According to Lemma 2.2, a straightforward calculation yields

2—1; =r- 2—er —ay exp(—ax), 2—(5 =1-exp(-ax) -m,
oa oa op op op op
a—x——P, @—0, a—x—O, @—q, a—x—l, W—O,
. P, ((0B/0y)(0¢/0x) — (0p/0x)(0¢/dy) + 0d/0x)
! P(3¢/0x) + Q(0¢/0y) (3.6)
. Q.+ ((0a/0x) (8¢ /0y) — (0a/0y) (0 /0x) + O/ 0y)
P(0¢/0x) + Q(0¢/dy)
P*(3(T"),n(T")) (1 +q) k-(1-p)h
= =(1-p)(1 _
Pamamy PO,
Furthermore,
T/7oP )
exp UO (5 @00 + £<§<t>,n<t>))dt]
T
=exp [.[o r+1-d- 2%g(t) - exp(—aé(t))dt] (3.7)

k—(1-vh (r+1-m)/r k= (1-p)h -2 T
() (Y ]
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Hence, the Floquet multiplier y can be obtained by direct calculation as follows:

— - T/op 0
p= gAk exp U (a(é(t),n(t)) + @(é(t),n(t))>dt]

0

] k(o \
=(1+q) <m> exp _Io exp(—aé(t))dt |.

Therefore, || < 1 holds if and only if (3.4) holds. This completes the proof. O

(3.8)

Remark 3.2. Set g* = ((k—(1-p)h)/((k-h)(1-p)) "™/ exp(f; exp(-aé(t))dt) - 1; a
bifurcation may occur at g = g* for 4| = 1, and a positive periodic solution may appear
when g > g*. Hence, the problem of bifurcations will now be discussed.

First, in the case T = 0, consider the Poincaré map (2.2). Set u = y;; and u > 0 small
enough. The map then takes the following form:

ur— (1+q)g(u) =G(u,q), (3.9)

where the function G(u, g) is continuously differentiable with respect to both u and g, g(0) =
0; then lim,, - g(u) = g(0) = 0.

Second, by examining the bifurcation of map (3.9), it is possible to obtain the following
theorem.

Theorem 3.3. A transcritical bifurcation occurs when q = q*. Therefore, a stable positive fixed point
appears when parameter q changes through q* from left to right. Correspondingly, system (3.1) has a
stable positive periodic solution if g € (q*, q* + 6) with 6 > 0.

Proof. The values of ¢'(u) and g"(u) must be calculated at u = 0, where 0 < u < rh(1 - p)(k -
(1-p)h)/k(1 —exp(-a(l —p)h)) = up. From system (1.1),

dy _ Q(xy)
B Play) (310
where
x
P(x,y) = rx(l - E) - (1-exp(-ax))y, a1

Q(x,y) = ((1-exp(-ax)) -m)y.
Let (x, v (xx; x0,Y0)) be an orbit of system (3.10), and set xp = (1 - p)h, yo = u, 0 < u < up; then

y(x;(1-p)hu)=y(x,u), (1-p)h<x<h, 0<u<u. (3.12)
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Using (3.12),

oy(x,u) * 0 Q(s,y(s,u))
ou P [I(l_p)h oy < P(s,y(s,u)) >dS:|’

(3.13)
azy(x/ u) _ ay(x/u) * 6_2 Q(S’ y(sru)> ay(sru) dS
o ou Japudy \P(s,y(sw) ) 0w
Clearly, it can be deduced that 0y (x, u)/0u > 0 and
0y 0 (0 (0(y6,0)
70 250 on(f s (Feem )*)
B h 1 —m —exp(-as)
o U (o rs(L=s/k) ds)
(er)/m (3.14)
[ k=(1-p)h J‘h —exp(-as) 4
"\ (k-m(1-p) P\ rs@—s/0)
(k= aepn T
= <(k " - P)> exp Jo —exp(—ad(t))dt ).
Furthermore,
v - o [ dy(s,0)
FO=g0f 9T s @15
where
& [Q(s,y(s,0))
55 ()
(1 - exp(-as) - m) (1 - exp(-as)) o
_ 2(1-exp(-as) -m)(1 - exp(-as _
= o= s/l , se[(1-p)h,h].
Using the previous assumption,
< 2ind-m (3.17)

It can be determined that

I(s) <0, se[(1-p)hh). (3.18)
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Therefore,
g"(0) <0. (3.19)

The next step is to check whether the following conditions are satisfied.

(a) Itis easy to see that

G(0,9) =0, g€ (0,). (3.20)

(b) Using (3.14),

0G(0,9) :
—5n = (1+9)g' )
/m (3.21)
(1+ )< k-(-p)h >(1 ! <IT ( g(t))dt>
= _— ex —exp(-a ,
V\ k—m@a-p) PAJ, P
which yields
0G(0.q) _ (3.22)
ou
This means that (0, 4*) is a fixed point with eigenvalue 1 of map (3.9).
(c) Because (3.14) holds,
°G(0,q%)
———=¢ . 3.23
usg - 8©>0 (3.23)
(d) Finally, (3.19) implies that
aZG(O’ q*) *\ I
— = (1+4%)g"(0) <O0. (3.24)
These conditions satisfy the conditions of Lemma 2.3. This completes the proof. O

3.2. Case T >0

In this subsection, the existence of a positive periodic solution with 7 > 0 will be discussed
using the Poincaré map (2.3). Sufficient conditions will be given for the existence and stability
of positive periodic solutions. The following theorem will now be proved.

Theorem 3.4. For any q > 0and T > 0, system (1.1) has a positive order-1 periodic solution.
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Proof. Let point M;((1 — p)h,0) be on section Sy. Then the trajectory O* (M, ty) of system
(1.1) starting from the initial point M; intersects section S; at point Ni(h,0). In state Ny,
the trajectory O*(M;, ty) is subjected to impulsive effects, jumps to point M, ((1 - p)h, ) on
section Sy, and then returns to N, (h, a1) on section Si. Because T > 0, point M, is above point
M. Furthermore, point N is above point N1, and ay > 0. From (2.3), a1 = F(q,7,0) = g(7) >
0, and

0-F(q,7,0) =0—-a; <O. (3.25)

In addition, assuming that the initial point of the trajectory O*(A, ty) is point A, where dy /dt
<0and dx/dt =0, obviously, O* (A, ty) is tangent to the line Sy, intersects S; at point H (h, v1),
and then jumps to point H*((1 — p)h, (1 + g)v; + T) on Sy, and returns to point H'(h, v;) on
Si1. Assume further that there exists a positive g such that (1 +q)v; + 7 = rh(1 -p)(k - (1 -
p)h)/k(1-exp(-a(l-p)h)). Then point H* coincides with point A for g = g, and point H* is
above point A for g > g, but below point A for g < g. However, for any g > 0, the point H' is
not above the point H in view of the geometrical structure of the phase space of system (1.1).
In conclusion, the following results can be obtained from the previous discussion:

(i) if v1 = v2(g = q), then system (1.1) has a positive order-1 periodic solution;

(ii) if v1 > v2(g #9q), then

v1 - F(gq,7,01) =v1 -0, > 0. (3.26)
From (3.25) and (3.26), it follows that the Poincaré map (2.3) has a fixed point; that is,
system (1.1) has a positive order-1 periodic solution. This completes the proof. O

According to the following discussion, a positive periodic solution exists when 7 =
0,9 > q* or T > 0,9 > 0. Next, the stability of a positive order-1 periodic solution of system
(1.1) will be proved. This will be accomplished by means of the following theorem.

Theorem 3.5. Forany T =0,9 > qg* or T > 0,9 > 0, let (&(t), n(t)) be a positive order-1 T-periodic
solution of system (1.1) which starts from point (h,w). If the condition

|| = (1+q)Texp <J‘0T 1I‘(t‘)alt> <1 (3.27)

holds, where

o rh(=p) (k= (1-p)h) — k(1 ~exp(-ah(1-p)))[(1 + q)w + 7]
rh(k — h) — kw(1 — exp(-ah))

7

(3.28)
W) = G (€0,100) + 5260, 10),

then (¢(t),n(t)) is a positive order-1 periodic solution of system (1.1) which is orbitally asymptotically
stable and has the asymptotic phase property.
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Proof. Based on the conclusion of Theorem 3.4, it is necessary only to verify the stability of the
positive order-1 periodic solutions (¢(t), 77(t)) of system (1.1). In what follows, it is assumed
that a periodic solution with period T passes through points K*((1 - p)h, (1 + q)w + 7) and
K (h,w), in which w < v; holds because of the properties of the vector field of system (1.1) as
outlined in the following discussion. Because the mathematical form and the period T of the
solution are not known, the stability of this positive periodic solution will be discussed using
Lemma 2.2. The difference between this case and that of Theorem 3.1 lies in the fact that

@M, 1) = (hw),  GT)n(T))=((1-p)h (1+q)w+7), (3.29)
while the others are just the same. Then

a, = Pe((@B/3y) (0p/0x) ~ (3p/0x) (99 /0y) + 09 /0%)

P(3¢/0x) + Q(0p/dy)
. Q.+ ((0a/0x)(0¢/dy) — (0a/0y) (0/0x) + 0/ 0y) (3.30)
P(d¢/0x) +Q(0/dy) '
P (T, n(T)(1+49)
= =(1 I,
pemam)
where
r_ A -p)(k- (A -p)h) ~ k(1 -exp(-ah(l-p)))[(1 +q)w +7] (3.31)
rh(k — h) — kw(1 — exp(-ah)) ’ '
Let W(t) = (0P/0x)(5(t), () + (0Q/y) (), 7(t)); then
~ T/opP 00
Kl = Arexp <f0 GO @(«zum(t)))dt)
. (3.32)
= (1+g)Texp <I 1I‘(t)¢7lt>.
0
If |u| < 1, that is:
T
'(1 +q)Texp <I 1I’(t)¢7lt> <1, (3.33)
0
then the periodic solution is stable. This completes the proof. O

Remark 3.6. From the previously mentioned, it is known that if there exists a ' > g such that
|u| = 1, a flip bifurcation occurs at g = 4q'. If a flip bifurcation occurs, there exists a stable
positive order-2 periodic solution of system (1.1) for g4’ > g, which may also lose its stability
as q increases.
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Figure 2: Trajectories with initial point (0.02, 0.001) of system (1.1) withp =0.8,4=0.5,7=0: (a) h =0.2,
(b) h =0.15.

4. Numerical Analysis

As is well known, system (1.1) cannot be solved explicitly, so it must be studied by numerical
integration and the long-term dynamic behavior of the solution by numerical simulation.

To study the dynamic complexity of an Ivlev-type system with state-dependent
impulsive perturbation on the predator, a semitrivial periodic solution of system (1.1) with
initial conditions is first obtained numerically for a biologically feasible range of parameter
values. The bifurcation diagram provides a summary of the essential dynamic behavior of
system (1.1).

Next, two control parameters, g and 7, are chosen. Other parameters are set to r =
095,k = 20,a = 2.8,m = 0.45 and provide some representative values to help with the
analysis.

Note that the corresponding focus (- In(1-m)/a, —r In(1-m)(ak+In(1-m))/a*km) =
(0.2135, 0.4459), so h < 0.2135. System (1.1) has a semitrivial periodic solution when 7 = 0.
Taking p = 0.8 and h = 0.2, from Theorem 3.1, 4 = 0.7(1 + g). Note that y > 1 is always true
for any g > 3/7 and that the periodic semitrivial solution is unstable (Figure 1(A) ).

Let p = 0.8 and h = 0.15; then g* = 0.56 can be obtained from Remark 3.2. Setting
q = 0.5, the solution of system (1.1) tends to a stable semitrivial periodic solution as ¢ increases
(Figure 2(b)).

When 7 > 0, there is no semitrivial solution of system (1.1). Figures 3(a) and 3(b)
show typical bifurcation diagrams for population y in system (1.1) as p increases from 0 to
35 and 7 increases from 0 to 0.16 with initial X(0) = (0.02, 0.01). As p and 7 increase, the
bifurcation diagrams clearly show that system (1.1) has rich dynamics, including period-
doubling bifurcations, periodic windows, chaotic bands, period-halving bifurcations, and
crises.

In Figure 3(a), there is no fold bifurcation. The positive order-1 periodic solution is
stable for g €(0, 3.92). At g = 3.92, a positive order-2 periodic solution bifurcates from the
positive order-1 period solution by means of a flip bifurcation. Furthermore, order-4 and
order-8 periodic solutions arise through flip bifurcation. The period-doubling bifurcation
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Figure 3: Bifurcation diagram of system (1.1) with initial conditions X(0) = (0.02, 0.01), h = 0.21, p = 0.8:
(a) 7=0.065, (b) g=18, (c) T = 0.

leads to chaos. Finally, a cascade of period-halving bifurcations leads to stable order-4
periodic solutions for g > 29.68. Now let g = 18, and consider 7 as a control parameter.
Figure 3(b) shows a plot of the solution as a function of the bifurcation parameter 7. In this
case, there is a route from chaos to a stable periodic solution via a period-halving bifurcation
in which complex dynamic behaviors exist, such as periodic windows, chaotic bands, and
chaotic crises (Figure 3(b)).

In Figure 3(c), g is considered as a parameter, and the bifurcation diagram of the
periodic solution of system (1.1) with 7 = 0is shown. It is obvious that the semitrivial periodic
solution is stable for g € (0, 0.74) and unstable for q € (0.74, +o0). A transcritical bifurcation
leads to a positive order-1 periodic solution from the semitrivial periodic solution at g = 0.74.
This positive order-1 periodic solution is stable for g € (0.74, 4.05) and unstable for g € (4.05,
+00). In addition, a positive period-2 solution bifurcates from the positive order-1 periodic
solution by means of a flip bifurcation at g = 4.05. Due to the period-doubling bifurcation,
chaos arises, in which periodic windows, chaotic bands, and crises also exist (Figure 3(c)).

From Theorem 3.5, Remark 3.6, and analysis of the bifurcations described previously,
it is known that system (1.1) has a positive order-1 periodic solution, which is shown in
Figure 4(a). A flip bifurcation occurs at g = 4.05 according to the numerical simulations.
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Figure 4: Periodic solutions of system (1.1): h = 0.21, p = 0.8, 7 = 0.065; (a) 4 = 3, (b) g = 6, (c) g = 10, (d)
g=115.

Figure 4 also shows the period-i (i = 2,4, 8) solutions for different value of g. Figure 5 presents
the phase diagram and time series of population y for a chaotic solution.

Based on the previous analysis, it can be seen that the impulsive state feedback control
can enhance the predator y biomass level with the increasing of g, in which result is agreed
with some results in reality. Further, it is also interesting to point out that the two different
parameters of the impulsive state feedback control can come into rich and complex dynamical
behaviors, but these dynamical behaviors are different. Moreover, the use of mathematical
model with impulsive state feedback control is considered to investigate some biological
problems, and the numerical simulation provides an approximation of the real biological
system behaviors; hence, these results can promote the study of ecological dynamics.

5. Conclusions

In this paper, a predator-prey model with Ivlev-type function and impulsive state feedback
control has been built and studied analytically and numerically. Mathematical theoretical
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Figure 5: (a) Phase diagram; (b) time series of y for system (1.1) with h = 0.21, p = 0.8, 7 = 0.065, g4 = 14.

arguments have investigated the existence and stability of semitrivial periodic solutions of
system (1.1) and have proved that the positive periodic solution comes into being from
the semitrivial periodic solution through a transcritical bifurcation according to bifurcation
theory. Numerical simulations illustrate the theory and show the complex dynamics of the
impulsive system. All these results are expected to be useful in the study of the dynamic
complexity of ecosystems.
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