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The current research attempts to offer a new method for solving fuzzy linear Volterra integral
equations system. This method converts the given fuzzy system into a linear system in crisp case
by using the Taylor expansion method. Now the solution of this system yields the unknown Taylor
coefficients of the solution functions. The proposed method is illustrated by an example and also
results are compared with the exact solution by using computer simulations.

1. Introduction

Many mathematical formulations of physical phenomena contain integral equations. These
equations appear in physics, biological models, and engineering. Since these equations are
usually difficult to solve explicitly, so it is required to obtain approximate solutions. In recent
years, numerous methods have been proposed for solving integral equations. For example,
Tricomi, in his book [1], introduced the classical method of successive approximations for
nonlinear integral equations. Variational iteration method [2] and Adomian decomposition
method [3]were effective and convenient for solving integral equations. Also the Homotopy
analysis method (HAM) was proposed by Liao [4] and then has been applied in [5].
Moreover, some different valid methods for solving this kind of equations have been
developed. First time, Taylor’s expansion approach was presented for solution of integral
equations by Kanwal and Liu in [6] and then has been extended in [7–9]. In addition,
Babolian et al. [10] by using the orthogonal triangular basis functions solved some integral
equation systems. Jafari et al. [11] applied Legendre’s wavelets method to find numerical
solution system of linear integral equations. Also Sorkun and Yalçinbaş [12] approximated a
solution of linear Volterra integral equations system with the help of Taylor’s series.
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In this paper, we want to propose a new numerical approach to approximate the
solution of a fuzzy linear Volterra integral equations system. This method converts the given
fuzzy system that supposedly has a unique fuzzy solution, into crisp linear system. For this
scope, first, the Taylor expansions of unknown functions are substituted in parametric form of
the given fuzzy system. Then we differentiate both sides of the resulting integral equations of
the systemN times and also approximate the Taylor expansion by a suitable truncation limit.
This work yields a linear system in crisp case, so the solution of the linear system yields the
unknown Taylor coefficients of the solution functions. An interesting feature of this method
is that we can get an approximate of the Taylor expansion in arbitrary point to any desired
degree of accuracy. Here is an outline of the paper. In Section 2, the basic notations and
definitions of the integral equation and the Taylor polynomial method are briefly presented.
Section 3 describes how to find an approximate solution of the given fuzzy Volterra integral
equations system with using proposed approach. Finally in Section 4, we apply the proposed
method by an example to show the simplicity and efficiency of the method.

2. Preliminaries

In this section, the most basic used notations in fuzzy calculus and integral equations are
briefly introduced. We started by defining the fuzzy number.

Definition 2.1. A fuzzy number is a fuzzy set u : R
1 → I = [0, 1] such that

(i) u is upper semicontinuous,

(ii) u(x) = 0 outside some interval [a, d],

(iii) there are real numbers b, c : a ≤ b ≤ c ≤ d, for which:

(1) u(x) is monotonically increasing on [a, b],

(2) u(x) is monotonically decreasing on [c, d],

(3) u(x) = 1, b ≤ x ≤ c.

The set of all fuzzy numbers (as given by Definition 2.1) is denoted by E1 [13, 14]. An
alternative definition which yields the same E1 is given by Kaleva [15] and Ma et al. [16].

Definition 2.2. A fuzzy number v is a pair (v, v) of functions v(r) and v(r) : 0 ≤ r ≤ 1, which
satisfy the following requirements:

(i) v(r) is a bounded monotonically increasing left continuous function on (0, 1] and
right continuous at 0,

(ii) v(r) is a bounded monotonically decreasing left continuous function on (0, 1] and
right continuous at 0,

(iii) v(r) ≤ v(r) : 0 ≤ r ≤ 1.
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A popular fuzzy number is the triangular fuzzy number v = (vm, vl, vu) where vm denotes
the modal value and the real values vl ≥ 0 and vu ≥ 0 represent the left and right fuzziness,
respectively. The membership function of a triangular fuzzy number is defined as follows:

μv(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x − vm

vl
+ 1, vm − vl ≤ x ≤ vm,

vm − x

vu
+ 1, vm ≤ x ≤ vm + vu,

0, otherwise.

(2.1)

Its parametric form is

v(r) = vm + vl(r − 1), v(r) = vm + vu(1 − r), 0 ≤ r ≤ 1. (2.2)

Triangular fuzzy numbers are fuzzy numbers in LR representation where the reference
functions L and R are linear.

2.1. Operation on Fuzzy Numbers

We briefly mentioned fuzzy number operations that have had been defined by the extension
principle [17, 18].

μA+B(z) = max
{
μA(x) ∧ μB

(
y
) | z = x + y

}
,

μf(Net)(z) = max
{
μA(x) ∧ μB

(
y
) | z = xy

}
,

(2.3)

where A and B are fuzzy numbers, μ∗(·) denotes the membership function of each fuzzy
number, ∧ is the minimum operator, and f is a continuous function.

The above operations on fuzzy numbers are numerically performed on level sets (i.e.,
α-cuts). For 0 < α ≤ 1, a α-level set of a fuzzy number A is defined as

[A]α =
{
x | μA(x) ≥ α, x ∈ R

}
, (2.4)

and [A]0 =
⋃

αε(0,1][A]α. Since level sets of fuzzy numbers become closed intervals, we denote
[A]α by

[A]α =
[
[A]αl , [A]αu

]
, (2.5)
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where [A]αl and [A]αu are the lower and the upper limits of the α-level set [A]α, respectively.
From interval arithmetic [19], the above operations on fuzzy numbers are written for the
α-level sets as follows:

[A]α + [B]α =
[
[A]αl , [A]αu

]
+
[
[B]αl , [B]

α
u

]
=
[
[A]αl + [B]αl , [A]αu + [B]αu

]
,

f([Net])α = f
(
[Net]αl , [Net]αu

)
=
[
f
(
[Net]αl

)
, f
(
[Net]αu

)]
,

k[A]α = k
[
[A]αl , [A]αu

]
=
[
k[A]αl , k[A]αu

]
, if k ≥ 0,

k[A]α = k
[
[A]αl , [A]αu

]
=
[
k[A]αu, k[A]αl

]
, if k < 0.

(2.6)

For arbitrary u = (u, u) and v = (v, v), we define addition (u + v) and multiplication by k as
[13, 14]:

(u + v)(r) = u(r) + v(r),

(u + v)(r) = u(r) + v(r),

(ku)(r) = k · u(r), (kv)(r) = k · u(r), if k ≥ 0,

(ku)(r) = k · u(r), (kv)(r) = k · u(r), if k < 0.

(2.7)

Definition 2.3. For arbitrary fuzzy numbers u, vεE1 the quantity

D(u, v) = sup
0≤r≤1

{
max

[∣
∣u(r) − v(r)

∣
∣, |u(r) − v(r)|]} (2.8)

is the distance between u and v. It is shown that (E1, D) is a complete metric space [20].

Definition 2.4. Let f : [a, b] → E1. For each partition P = {t0, t1, . . . , tn} of [a, b] and for
arbitrary ξiε[ti−1, ti] (1 ≤ i ≤ n), suppose

RP =
n∑

i=1

f(ξi)(ti − ti−1),

Δ := max{|ti − ti−1|, i = 1, . . . , n}.
(2.9)

The definite integral of f(t) over [a, b] is

∫b

a

f(t)dt = lim
Δ→ 0

RP , (2.10)
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provided that this limit exists in the metric D. If the fuzzy function f(t) is continuous in the
metric D, its definite integral exists [13]. Also,

(∫b

a

f(t, r) dt

)

=
∫b

a

f(t, r)dt,

(∫b

a

f(t, r) dt

)

=
∫b

a

f(t, r)dt.

(2.11)

More details about properties of the fuzzy integral are given in [13, 15].

2.2. System of Integral Equations

The basic definition of integral equation is given in [21].

Definition 2.5. The Fredholm integral equation of the second kind is

F(t) = f(t) + λ(ku)(t), (2.12)

where

(ku)(t) =
∫b

a

k(s, t)F(s)ds, a ≤ t ≤ b. (2.13)

In (2.12), k(s, t) is an arbitrary kernel function over the square a ≤ s, t ≤ b and f(t) is a
function of t : a ≤ t ≤ b. If the kernel function satisfies k(s, t) = 0, s > t, we obtain the Volterra
integral equation

F(t) = f(t) + λ

∫ t

a

k(s, t)F(s)ds. (2.14)

In addition, if f(t) be a crisp function, then the solution of the above equation is crisp as
well. Also if f(t) be a fuzzy function, we have Fredholm’s fuzzy integral equation of the
second kind which may only process fuzzy solutions. Sufficient conditions for the existence
and uniqueness of the solution of the second kind equation, where f(t) is a fuzzy function,
are given in [22, 23].

Definition 2.6. The second kind fuzzy linear Volterra integral equations system is in the form

F1(t) = f1(t) +
m∑

j=1

(

λ1j

∫ t

a

k1j(s, t)Fj(s)ds
)

...
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Fi(t) = fi(t) +
m∑

j=1

(

λij

∫ t

a

kij(s, t)Fj(s)ds
)

...

Fm(t) = fm(t) +
m∑

j=1

(

λmj

∫ t

a

kmj(s, t)Fj(s)ds
)

,

(2.15)

where a ≤ s ≤ t ≤ b and λij /= 0 (for i, j = 1, . . . , m) are real constants. Moreover, in system
(2.15), the fuzzy function fi(t) and kernel ki,j(s, t) are given and assumed to be sufficiently
differentiable with respect to all their arguments on the interval a ≤ t, s ≤ b. Also we assume
that the kernel function ki,j(s, t)εL2([a, b]×[a, b]) and F(t) = [F1(t), . . . , Fm(t)]

T is the solution
to be determined.

Now let (f
i
(t, r), f i(t, r)) and (Fi(t, r), Fi(t, r)) (0 ≤ r ≤ 1;a ≤ t ≤ b) be parametric

form of fi(t) and Fi(t), respectively. To simplify, we assume that λij > 0 (for i, j = 1, . . . , m).
In order to design a numerical scheme for solving (2.15), we write the parametric form of the
given fuzzy integral equations system as follows:

F1(t, r) = f1(t, r) +
m∑

j=1

(

λ1j

∫ t

a

U1,j(s, r)ds
)

F1(t, r) = f
1
(t, r) +

m∑

j=1

(

λ1j

∫ t

a

U1,j(s, r)ds
)

...

Fm(t, r) = fm(t, r) +
m∑

j=1

(

λmj

∫ t

a

Um,j(s, r)ds
)

Fm(t, r) = f
m
(t, r) +

m∑

j=1

(

λmj

∫b

a

Um,j(s, r)ds

)

,

(2.16)

where

Ui,j(s, r) =

⎧
⎪⎨

⎪⎩

ki,j(s, t)Fj(s, r), ki,j(s, t) ≥ 0,

ki,j(s, t)Fj(s, r), ki,j(s, t) < 0

Ui,j(s, r) =

⎧
⎪⎨

⎪⎩

ki,j(s, t)Fj(s, r), ki,j(s, t) ≥ 0,

ki,j(s, t)Fj(s, r), ki,j(s, t) < 0.

(2.17)
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2.3. Taylor’s Series

Let us first recall the basic principles of the Taylor polynomial method for solving Fredholm’s
fuzzy integral equations system (2.15). Because these results are the key for our problems,
therefore, we explain them. Without loss of generality, we assume that

λi,j · ki,j(s, t) ≥ 0, a ≤ s ≤ ci,j

λi,j · ki,j(s, t) < 0, ci,j ≤ s ≤ t,

(2.18)

With above supposition, the system (2.16) is transformed to the following form:

F1(t, r) = f1(t, r) +
m∑

j=1

λ1j

(∫ c1,j

a

k1,j(s, t)Fj(s, r)ds +
∫ t

c1,j

k1,j(s, t)Fj(s, r)ds

)

F1(t, r) = f
1
(t, r) +

m∑

j=1

λ1j

(∫ c1,j

a

k1,j(s, t)Fj(s, r)ds +
∫ t

c1,j

k1,j(s, t)Fj(s, r)ds

)

...

Fm(t, r) = fm(t, r) +
m∑

j=1

λmj

(∫ cm,j

a

km,j(s, t)Fj(s, r)ds +
∫ t

cm,j

km,j(s, t)Fj(s, r)ds

)

Fm(t, r) = f
m
(t, r) +

m∑

j=1

λmj

(∫ cm,j

a

km,j(s, t)Fj(s, r)ds +
∫ t

cm,j

km,j(s, t)Fj(s, r)ds

)

.

(2.19)

Now we want to obtain the solution of the above system in the form of

Fj,N(t, r) =
N∑

i=0

(
1
i!
· ∂

(i)Fj(t, r)
∂ti

∣
∣
∣
∣
∣
t=z

· (t − z)i
)

, a ≤ t, z ≤ b, 0 ≤ r ≤ 1,

Fj,N(t, r) =
N∑

i=0

⎛

⎝
1
i!
·
∂(i)Fj(t, r)

∂ti

∣
∣
∣
∣
∣
∣
t=z

· (t − z)i
⎞

⎠, a ≤ t, z ≤ b, 0 ≤ r ≤ 1,

(2.20)
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(for j = 1, . . . , m) which are the Taylor expansions of degree N at t = z for the unknown
functions Fj(t, r) and Fj(t, r), respectively. For this scope, we calculate pth (for p = 0, . . . ,N)
derivative of each equation in the system (2.19) with respect to t and get

∂(p)F1(t, r)
∂tp

=
∂(p)f1(t, r)

∂tp
+

m∑

j=1

λ1j

(∫ c1,j

a

∂(p)k1,j(s, t)
∂tp

· Fj(s, r)ds

+
p−1∑

l=0

p−l−1∑

q=0

(
p − q − 1

p − q − 1 − l

)(
∂(q)k1,j(s, t)

∂tq

∣
∣
∣
∣
∣
s=t

)(p−q−1−l)

·
⎛

⎝
∂(l)Fj(t, r)

∂tl

⎞

⎠ +
∫ t

c1,j

∂(p)k1,j(s, t)
∂tp

· Fj(s, r)ds

⎞

⎠

∂(p)F1(t, r)
∂tp

=
∂(p)f

1
(t, r)

∂tp
+

m∑

j=1

λ1j

(∫ c1,j

a

∂(p)k1,j(s, t)
∂tp

· Fj(s, r)ds

+
p−1∑

l=0

p−l−1∑

q=0

(
p − q − 1

p − q − 1 − l

)(
∂(q)k1,j(s, t)

∂tq

∣
∣
∣
∣
∣
s=t

)(p−q−1−l)

·
(

∂(l)Fj(t, r)

∂tl

)

+
∫ t

c1,j

∂(p)k1,j(s, t)
∂tp

· Fj(s, r)ds

)

...

∂(p)Fm(t, r)
∂tp

=
∂(p)fm(t, r)

∂tp
+

m∑

j=1

λmj

(∫ cm,j

a

∂(p)km,j(s, t)
∂tp

· Fj(s, r)ds

+
p−1∑

l=0

p−l−1∑

q=0

(
p − q − 1

p − q − 1 − l

)(
∂(q)km,j(s, t)

∂tq

∣
∣
∣
∣
∣
s=t

)(p−q−1−l)

·
⎛

⎝
∂(l)Fj(t, r)

∂tl

⎞

⎠ +
∫ t

cm,j

∂(p)km,j(s, t)
∂tp

· Fj(s, r)ds

⎞

⎠

∂(p)Fm(t, r)
∂tp

=
∂(p)f

m
(t, r)

∂tp
+

m∑

j=1

λmj

(∫ cm,j

a

∂(p)km,j(s, t)
∂tp

· Fj(s, r)ds

+
p−1∑

l=0

p−l−1∑

q=0

(
p − q − 1

p − q − 1 − l

)(
∂(q)km,j(s, t)

∂tq

∣
∣
∣
∣
∣
s=t

)(p−q−1−l)

·
(

∂(l)Fj(t, r)

∂tl

)

+
∫ t

cm,j

∂(p)km,j(s, t)
∂tp

· Fj(s, r)ds

)

.

(2.21)
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For brevity, we define symbols as below:

F
(p)
jN(z, r) :=

∂(p)FjN(t, r)
∂tp

∣
∣
∣
∣
∣
t=z

, F
(p)
jN(z, r) :=

∂(p)FjN(t, r)

∂tp

∣
∣
∣
∣
∣
∣
t=z

, j = 1, . . . , m. (2.22)

The aim of this study is to determine the coefficients F
(p)
j (z, r) and F

(p)
j (z, r), (for p =

0, . . . ,N; j = 1, . . . , m) in system (2.21). For this intent, we expanded Fj(s, r) and Fj(s, r) in
Taylor’s series at arbitrary point z : a ≤ z ≤ b and substituted its Nth truncation in (2.21).
Now we can write

F
(p)
1N(z, r) =

∂(p)f1(t, r)
∂tp

∣
∣
∣
∣
∣
t=z

+
m∑

j=1

⎛

⎝
p−1∑

l=0

v
(1,j)
p,l

· F(l)
jN(z, r) +

N∑

q=0

w
(1,j)
p,q · F(q)

jN(z, r) +
N∑

q=0

w′(1,j)
p,q · F(q)

jN(z, r)

⎞

⎠

F
(p)
1N(z, r) =

∂(p)f
1
(t, r)

∂tp

∣
∣
∣
∣
∣
∣
t=z

+
m∑

j=1

⎛

⎝
p−1∑

l=0

v
(1,j)
p,l

· F(l)
jN(z, r) +

N∑

q=0

w
(1,j)
p,q · F(q)

jN(z, r) +
N∑

q=0

w′(1,j)
p,q · F(q)

jN(z, r)

⎞

⎠

...

F
(p)
mN(z, r) =

∂(p)fm(t, r)
∂tp

∣
∣
∣
∣
∣
t=z

+
m∑

j=1

⎛

⎝
p−1∑

l=0

v
(m,j)
p,l · F(l)

jN(z, r) +
N∑

q=0

w
(m,j)
p,q · F(q)

jN(z, r) +
N∑

q=0

w′(m,j)
p,q · F(q)

jN(z, r)

⎞

⎠

F
(p)
mN(z, r) =

∂(p)f
m
(t, r)

∂tp

∣
∣
∣
∣
∣
∣
t=z

+
m∑

j=1

⎛

⎝
p−1∑

l=0

v
(m,j)
p,l · F(l)

jN(z, r) +
N∑

q=0

w
(m,j)
p,q · F(q)

jN(z, r) +
N∑

q=0

w′(m,j)
p,q · F(q)

jN(z, r)

⎞

⎠,

(2.23)
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where

w
(i,j)
p,q =

λi,j

q!

∫ ci,j

a

∂(p)ki,j(s, t)
∂tp

∣
∣
∣
∣
∣
t=z

· (s − z)qds,

w′(i,j)
p,q =

λi,j

q!

∫b

ci,j

∂(p)ki,j(s, t)
∂tp

∣
∣
∣
∣
∣
t=z

· (s − z)qds, p, q = 0, . . . ,N,

v
(i,j)
p,l =

p−l−1∑

q=0

(
p − q − 1

p − q − 1 − l

)(
∂(q)k1,j(s, t)

∂tq

∣
∣
∣
∣
∣
s=t

)(p−q−1−l)∣∣
∣
∣
∣
∣
s=z

, i, j = 1, . . . , m.

(2.24)

Consequently, the matrix form of expression (2.23) can be written as follows:

(
W + V

)
Y = E, (2.25)

where

Y =
[

F1N(a, r), . . . , F(N)
1N (a, r), F1N(a, r), . . . , F

(N)
1N (a, r), . . . ,

FmN(a, r), . . . , F(N)
mN(a, r), FmN(a, r), . . . , F

(N)
mN(a, r)

]′
,

E =

⎡

⎣−f
1
(a, r), . . . , −

∂(N)f
1
(t, r)

∂tN

∣
∣
∣
∣
∣
∣
t=a

,−f1(a, r), . . . , −
∂(N)f1(t, r)

∂tN

∣
∣
∣
∣
∣
t=a

, . . . ,

−f
m
(a, r), . . . , −

∂(N)f
m
(t, r)

∂tN

∣
∣
∣
∣
∣
∣
t=a

,−fm(a, r), . . . , −
∂(N)fm(t, r)

∂tN

∣
∣
∣
∣
∣
t=a

⎤

⎦

′

,

W =

⎡

⎢
⎣

W (1,1) · · · W (1,m)

...
. . .

...
W (m,1) · · · W (m,m)

⎤

⎥
⎦, V =

⎡

⎢
⎣

V (1,1) · · · V (1,m)

...
. . .

...
V (m,1) · · · V (m,m)

⎤

⎥
⎦.

(2.26)

Parochial matrices W (i,j) (for i, j = 1, ..., m) are defined with the following elements:

W (i,j) =

⎡

⎢
⎣

W
(i,j)
1,1 W

(i,j)
1,2

W
(i,j)
2,1 W

(i,j)
2,2

⎤

⎥
⎦, V (i,j) =

⎡

⎢
⎣

V
(i,j)
1,1 V

(i,j)
1,2

V
(i,j)
2,1 V

(i,j)
2,2

⎤

⎥
⎦, i, j = 1, . . . , m, (2.27)
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where

W
(i,j)
1,1 = W

(i,j)
2,2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w
(i,j)
0,0 − 1 w

(i,j)
0,1 · · · w

(i,j)
0,N−1 w

(i,j)
0,N

w
(i,j)
1,0 w

(i,j)
1,1 − 1 · · · w

(i,j)
1,N−1 w

(i,j)
1,N

...
...

. . .
...

...

w
(i,j)
N−1,0 w

(i,j)
N−1,1 · · · w

(i,j)
N−1,N−1 − 1 w

(i,j)
N−1,N

w
(i,j)
N,0 w

(i,j)
N,1 · · · w

(i,j)
N,N−1 w

(i,j)
N,N − 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

W
(i,j)
1,2 = W

(i,j)
2,1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w′(i,j)
0,0 w′(i,j)

0,1 · · · w′(i,j)
0,N−1 w′(i,j)

0,N

w′(i,j)
1,0 w′(i,j)

1,1 · · · w′(i,j)
1,N−1 w′(i,j)

1,N

...
...

. . .
...

...

w′(i,j)
N−1,0 w′(i,j)

N−1,1 · · · w′(i,j)
N−1,N−1 w′(i,j)

N−1,N

w′(i,j)
N,0 w′(i,j)

N,1 · · · w′(i,j)
N,N−1 w′(i,j)

N,N

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

V
(i,j)
1,2 = V

(i,j)
2,1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 · · · 0 0

v′(i,j)
1,0 0 · · · 0 0

...
...

. . .
...

...

v′(i,j)
N−1,0 v′(i,j)

N−1,1 · · · 0 0

v′(i,j)
N,0 v′(i,j)

N,1 · · · v′(i,j)
N,N−1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

V
(i,j)
1,1 = V

(i,j)
2,2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 · · · 0 0

0 0 · · · 0 0

...
...

. . .
...

...

0 0 · · · 0 0

0 0 · · · 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(N+1)×(N+1)

.

(2.28)

3. Convergence Analysis

In this section, we proved that the above numerical method converges to the exact solution
of fuzzy system (2.15).

Theorem 3.1. Let the kernel be bounded and belong to L2 and Fj,N(t) and Fj,N(t) (for j = 1, . . . , m)
be Taylor polynomials of degree N that their coefficients are produced by solving the linear system
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(2.25). Then these polynomials converge to the exact solution of the fuzzy Volterra integral equations
system (2.15), whenN → +∞.

Proof. Consider the system (2.15). Since, the series (2.20) converge to Fj(t, r) and
Fj(t, r) (for j = 1, . . . , m), respectively, then we conclude that

FiN(t, r) = fi(t, r) +
m∑

j=1

λij

(∫ ci,j

a

ki,j(s, t)FjN(s, r)ds +
∫ t

ci,j

ki,j(s, t)FjN(s, r)ds

)

,

FiN(t, r) = f
i
(t, r) +

m∑

j=1

λij

(∫ ci,j

a

ki,j(s, t)FjN(s, r)ds +
∫ t

ci,j

ki,j(s, t)FjN(s, r)ds

)

,

(3.1)

(for i = 1, . . . , m) and it holds that

Fj(t, r) = lim
N→∞

FjN(t, r), Fj(t) = lim
N→∞

FjN(t, r). (3.2)

We defined the error function eN(t, r) by subtracting (2.19) and (3.1) as follows:

eN(t, r) =
m∑

i=1

ei,N(t, r),

ei,N(t, r) = ei,N(t, r) + ei,N(t, r),

(3.3)

where

eiN(t, r) =
(

Fi(t, r) − FiN(t, r)
)
+

m∑

j=1

λij

(∫ ci,j

a

Ki,j(s, t)
(
Fj(s, r) − FjN(s, r)

)
ds

)

+
m∑

j=1

λij

(∫ t

ci,j

Ki,j(s, t)
(
Fj(s, r) − FjN(s, r)

)
ds

)

,

eiN(t, r) =
(
Fi(t, r) − FiN(t, r)

)
+

m∑

j=1

λij

(∫ ci,j

a

Ki,j(s, t)
(
Fj(s, r) − FjN(s, r)

)
ds

)

+
m∑

j=1

λij

(∫ t

ci,j

Ki,j(s, t)
(
Fj(s, r) − FjN(s, r)

)
ds

)

.

(3.4)
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We must prove when N → +∞, the error function eN(t) becomes zero. Hence, we proceed
as follows:

‖eN‖ ≤
m∑

i=1

‖eiN‖ =
m∑

i=1

∥
∥eiN + eiN

∥
∥ ≤

m∑

i=1

(‖eiN‖ + ∥∥eiN
∥
∥
)

≤
m∑

i=1

∥
∥
∥

(
Fi(t, r) − FiN(t, r)

)∥
∥
∥ +

(∥
∥
(
Fi(t, r) − FiN(t, r)

)∥
∥
)

+
m∑

i=1

m∑

j=1

(
∣
∣λi,j

∣
∣

∫ t

a

∥
∥ki,j

∥
∥
(∥
∥
∥Fj(s, r) − FjN(s, r)

∥
∥
∥ +

∥
∥
∥Fj(s, r) − FjN(s, r)

∥
∥
∥

)
ds

)

.

(3.5)

Since ‖ki,j‖ is bounded, therefore, ‖(Fj(s, r)−FjN(s, r))‖ → 0 and ‖(Fj(s, r)−FjN(s, r))‖ → 0
imply that ‖eN‖ → 0 and proof is completed.

4. An Example

In this section, we present an example of fuzzy linear Volterra integral equations system and
results will be compared with the exact solution.

Example 4.1. Consider the system of fuzzy linear Volterra integral equations with

f1(t, r) =
t2(r − 2)

4
+
9
(
r3 − 2

)
(t − 1)2

10
+
rt2

(
t2 − 1

)2

4

− t(r − 2) +
r
(
r4 + 2

)
(t − 1)4

(
2t3 + 4t2 + 6t + 3

)

10
,

f
1
(t, r) = rt − rt2

4
− 3

(
r3 − 2

)
(t − 1)4

(
2t3 + 4t2 + 6t + 3

)

10

− 3r
(
r4 + 2

)
(t − 1)2

10
− t2

(
t2 − 1

)2(r − 2)
4

,

f2(t, r) =
(r − 2)(t + 1)4

20
− t
(
3r3 − 6

)
+ t2

(
r3 − 2

)
+
r(4t + 1)

(
t2 − 1

)4

20

+
rt2

(
r4 + 2

)
(2t + 1)(t − 1)2

3
,

f
2
(t, r) = t

(
r5 + 2r

)
− rt2

(
r4 + 2

)

3
− (4t + 1)

(
t2 − 1

)4(r − 2)
20

− r(t + 1)4

20

− t2
(
r3 − 2

)
(2t + 1)(t − 1)2,

(4.1)
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kernel functions

k1,1(s, t) = t2
(
1 − s2

)
, k1,2(s, t) = (1 − t)2

(
1 − s3

)
,

k2,1(s, t) = (1 + t)4
(
1 − s3

)
, k2,2(s, t) = 2t2(1 − s), 0 ≤ s ≤ t ≤ 2,

(4.2)

and a = 0, b = 2, N = 1, λi,j = 1 (for i, j = 1, 2). The exact solution in this case is given by

F1(t, r) = t(2 − r), F1(t, r) = tr,

F2(t, r) = t
(
6 − 3r3

)
, F2(t, r) = t

(
r5 + 2r

)
.

(4.3)

In this example, we assume that z = 0. Using (2.23)–(2.25), the coefficients matrix W + V is
calculated as follows:

W + V =

[
W1,1 + V 1,1 W1,2 + V 1,2

W2,1 + V 2,1 W2,2 + V 2,2

]

, (4.4)

where

W1,1 + V 1,1 =

⎡

⎢
⎢
⎣

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎤

⎥
⎥
⎦, W1,2 + V 1,2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3
4

3
10

−3
4

− 3
10

−3
2

−3
5

5
2

3
5

−3
4

− 3
10

3
4

3
10

5
2

3
5

−3
2

−3
5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

W2,1 + V 2,1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
4

1
20

−1
4

− 1
20

1
1
5

0 −1
5

−1
4

− 1
20

1
4

1
20

0 −1
5

1
1
5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, W2,2 + V 2,2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(4.5)
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With using above matrices, we can rewrite the linear system (2.25) as follows:

(W + V )

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

F1,1(0, r)

F ′
1,1(0, r)

F1,1(0, r)

F
′
1,1(0, r)

F2,1(0, r)

F ′
2,1(0, r)

F2,1(0, r)

F
′
2,1(0, r)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3r5

10
+
9r3

10
+
3r
5

− 9
5

−3r
5

5
− 9r3

5
− 11r

5
+
18
5

−3r
5

10
− 9r3

10
− 3r

5
+
9
5

3r5

5
+
9r3

5
+
11r
5

− 28
5

r

10
− 1
10

−r5 − 8r
5

− 2
5

1
10

− r

10

3r3 − 2r
5

− 28
5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.6)

The vector solution of the above linear system is

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

F1,1(0, r)

F ′
1,1(0, r)

F1,1(0, r)

F
′
1,1(0, r)

F2,1(0, r)

F ′
2,1(0, r)

F2,1(0, r)

F
′
2,1(0, r)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
r
0

2 − r
0

r5 + 2r
0

6 − 3r3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.7)

After propagating this vector solution in (2.20), we have

F1,1(t, r) = t(2 − r) = F1(t, r), F1,1(t, r) = tr = F1(t, r),

F2,1(t, r) = t
(
6 − 3r3

)
= F2(t, r), F2,1(t, r) = t

(
r5 + 2r

)
= F2(t, r).

(4.8)

As shown in Figures 1 and 2, the present method gives the analytical solution for this kind of
fuzzy equations system, if the exact solution be polynomial.
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Figure 1: F1,1(t, r) and F1,1(t, r) for Example 4.1.

0
0.5

1
1.5

2

024681012
0

0.2

0.4

0.6

0.8

1

r

t
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Figure 2: F2,1(t, r) and F2,1(t, r) for Example 4.1.

5. Conclusions

Fuzzy integral equations systems, which have a very important place in physics and
engineering, are usually difficult to solve analytically. Therefore, it is required to obtain
approximate solutions. In this study, mechanization of solving fuzzy linear Volterra integral
equations system of the second kind by using the Taylor expansion method have proposed.
This Taylor method transforms the given problem to a linear algebraic system in crisp case.
The solution of the resulting system is used to compute unknown Taylor coefficients of the
solution functions. Consider that to get the best approximating solutions of the given fuzzy
equations, the truncation limit N must be chosen large enough. An interesting feature of
this method is finding the analytical solution for given fuzzy system, if the exact solution be
polynomials of degree N or less than N. The results of the example indicate the ability and
reliability of the present method.
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[9] S. Nas, S. Yalçınbaş, and M. Sezer, “A Taylor polynomial approach for solving high-order linear
Fredholm integro-differential equations,” International Journal of Mathematical Education in Science and
Technology, vol. 31, no. 2, pp. 213–225, 2000.

[10] E. Babolian, Z. Masouri, and S. Hatamzadeh-Varmazyar, “A direct method for numerically solving
integral equations system using orthogonal triangular functions,” International Journal of Industrial
Mathematics, vol. 2, pp. 135–145, 2009.

[11] H. Jafari, H. Hosseinzadeh, and S. Mohamadzadeh, “Numerical solution of system of linear integral
equations by using Legendre wavelets,” International Journal of Open Problems in Computer Science and
Mathematics, vol. 5, pp. 63–71, 2010.
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