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We propose a mathematical model of a complex dynamical network consisting of two types
of chaotic oscillators and investigate the schemes and corresponding criteria for cluster
synchronization. The global asymptotically stable criteria for the linearly or adaptively coupled
network are derived to ensure that each group of oscillators is synchronized to the same behavior.
The cluster synchronization can be guaranteed by increasing the inner coupling strength in each
cluster or enhancing the external excitation. Theoretical analysis and numerical simulation results
show that the external excitation is more conducive to the cluster synchronization. All of the
results are proved rigorously. Finally, a network with a scale-free subnetwork and a small-world
subnetwork is illustrated, and the corresponding numerical simulations verify the theoretical
analysis.

1. Introduction

Since the pioneering works by Watts and Strogatz on the small-world network [1] and by
Barabási and Albert on the scale-free network [2], complex networks have been studied
extensively in various disciplines, such as social, biological, mathematical, and engineering
sciences [3]. Besides the properties of “small-world” and “scale-free,” another common
property in real-world complex networks is cluster (or community, module) structure [4].
Many real networks are composed of several clusters within which the connection of nodes
is more than that of nodes between different clusters, or the nodes have some common
properties in a cluster. This feature can be seen in many networks such as social networks
[5], biological networks [6], and citation networks [7].

Synchronization of coupled chaotic oscillators is one of commonly collective coherent
behaviors attracting a growing interest in physics, biology, communication, and other fields
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of science and technology. Synchronization of complex networks has attracted tremendous
attention in recent years. Different synchronization phenomena in complex networks have
been studied, such as global synchronization [8, 9], partial synchronization and cluster
synchronization [10–15]. In particular, the cluster synchronization, which implies that nodes
in the same group achieve the same synchronization state while nodes in different groups
achieve different synchronization state, is considered to be significant in biological science
[6], laser technology, and communication engineering [11].

More recently, some new progress in cluster synchronization of complex dynamical
networks have been reported [16–18]. In [16], Belykh et al. have studied the cluster
synchronization for conditional clusters and unconditional clusters in an oscillator network
with given configuration based on a graph theoretical approach, and the corresponding
existence and stability conditions are proposed. In [17], authors presented a linear feedback
control strategy to achieve the cluster synchronization for a networkwith identical oscillators.
In [18] authors have investigated the cluster synchronization in a dynamical network
consisting of two groups of nonidentical oscillators, and upper bounds of input strength for
the synchrony of each cluster are derived under the “same-input” condition.

In this paper, based on [18], we further investigate the cluster synchronization of a
complex network containing two groups of different oscillators. But different from [18], our
research mainly focuses on the inner coupling strength and the external excitation intensity
to ensure the cluster synchronization. Intuitively, the inner coupling of clusters is beneficial
to the cluster synchronization. Yet our study shows that the external excitation intensity is
more conducive to the cluster synchronization under the “same-input” condition. Theoretical
analysis and numerical simulation results show that, even without any connection within a
cluster, the cluster synchronization can be still achieved by enhancing the external excitation.

The rest of the paper is organized as follows. In Section 2, the mathematical model
of our research network is proposed and preliminaries are introduced. The linear coupling
criteria for the cluster synchronization are derived in Section 3. The adaptive inner coupling
and external excitation schemes and corresponding conditions for the cluster synchronization
are presented in Section 4. The numerical simulations are provided to verify the effectiveness
of the theoretical analysis in Section 5. Finally, a brief summary of the obtained results is given
in Section 6.

2. Mathematical Model and Preliminaries

Let’s consider a dynamical network with two clusters, each cluster contains a number of
identical dynamical systems, however, the subsystems composing the two clusters can be
different, that is, the individual dynamical system in one cluster can differ from that in the
other cluster. Suppose that two clusters are composed of N1 and N2 nodes which are n1 and
n2 dimensional dynamical, oscillator as ẋ = f(x), ẏ = g(y), respectively. We call each cluster
as x-cluster and y-cluster respectively. The two-cluster-network is described by

ẋi = f(xi) + c1

N1∑

k=1,k /= i

aik(xk − xi) + d1

N2∑

k=1

bik
(
Γ1yk − xi

)
, i = 1, 2, . . . ,N1,

ẏj = g
(
yj

)
+ c2

N2∑

k=1,k /= j

ajk

(
yk − yj

)
+ d2

N1∑

k=1

bjk
(
Γ2xk − yj

)
, j = 1, 2, . . . ,N2.

(2.1)
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Equivalently, (2.1) can be rewritten as

ẋi = f(xi) + c1

N1∑

k=1

aikxk + d1

N2∑

k=1

bikΓ1yk − d1

N2∑

k=1

bikxi, i = 1, 2, . . . ,N1,

ẏj = g
(
yj

)
+ c2

N2∑

k=1

ajkyk + d2

N1∑

k=1

bjkΓ2xk − d2

N1∑

k=1

bjkyj , j = 1, 2, . . . ,N2,

(
2.1′

)

where xi = (xi1, xi2, . . . , xin1)
T ∈ Rn1 and yj = (yj1, yj2, . . . , yjn2)

T ∈ Rn1 are state vectors of
the nodes. f : Ω1 → Rn1 (Ω1 ⊆ Rn1) and g : Ω2 → Rn2 (Ω2 ⊆ Rn2) are smooth nonlinear
function vectors. c1, c2 > 0 are the inner coupling strength of each cluster, d1, d2 > 0 are
the external excitation intensity acting on each cluster. Γ1 ∈ Rn1×n2 , Γ2 ∈ Rn2×n1 are internal
coupling matrices when the corresponding oscillators used to output, and have form [I, 0]
or [I, 0]T (where I denotes identity matrix, 0 is a proper dimension zero matrix). Obviously,
there has Γ1 = Γ2T . The matrixA1 = (aij) ∈ RN1×N1 is a diffusive symmetric irreducible matrix
which represents the internal connection in x-cluster. If node i and node j are connected
in x-cluster, then aij = aji = 1, otherwise aij = aji = 0. The diagonal elements of A1 are
aii = −∑N1

j=1 aij (i = 1, 2, . . . ,N1). With these assumptions, the eigenvalues of matrix A1 can
be given by 0 = λ1 > λ2 ≥ · · · ≥ λN1 . The matrix A2 = (aij) ∈ RN2×N2 which represents the
internal connection in y-cluster is the same asA1, and its eigenvalues can be given by 0 = μ1 >

μ2 ≥ · · · ≥ μN2 . The matrices B1 = (bij) ∈ RN1×N2 and B2 = (bij) ∈ RN2×N1 represent external
connection between two clusters which satisfy “same-input” condition (see Definition 2.1),
and all the elements bij and bij take 0 or 1.

Definition 2.1. A matrix C = (cij)m×n is said to satisfy condition SI, if its elements satisfy

cik = cjk, i, j = 1, . . . , m, k = 1, . . . , n. (2.2)

Moreover, if the external input matrices B1 and B2 satisfy the condition SI, then the network
(2.1) is said to satisfy the “same-input” condition.

Note that, we suppose that all network models throughout this paper satisfy “same-
input” condition. From this condition, we have bik = b1k,

∑N2
k=1 bik = b (i = 1, 2, . . . ,N1), and

bik = b1k,
∑N2

k=1 bik = b (i = 1, 2, . . . ,N2). The positive constants b and b are regarded as the
external excitation acting on each cluster. It implies that the input of nodes in the same cluster
is equal.

Denote s1 = (1/N1)
∑N1

i=1 xi, s2 = (1/N2)
∑N2

j=1 yj and f(s1) = (1/N1)
∑N1

i=1 f(xi),

g(s2) = (1/N2)
∑N2

j=1 g(yj).
Then, we have

ṡ1 = f(s1) + d1

N2∑

k=1

b1kΓ1yk − d1bs1, ṡ2 = g(s2) + d2

N1∑

k=1

b1kΓ2xk − d2bs2. (2.3)
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Definition 2.2. The set

S =
{(

xT
1 , . . . , x

T
N1

, yT
1 , . . . , y

T
N2

)T
: xi = s1, yj = s2, i = 1, . . . ,N1, j = 1, . . . ,N2

}
(2.4)

is called cluster synchronous manifold of the network (2.1).
Therefore, the synchronous errors are denoted as x̃i = xi − s1 (i = 1, . . . ,N1) for the

x-cluster and ỹj = yj − s2 (j = 1, . . . ,N2) for the y-cluster. Denote X̃ = (x̃T
1 , . . . , x̃

T
N1

)T , Ỹ =

(ỹT
1 , . . . , ỹ

T
N2

)T . Then the error equations are given by

˙̃xi = f(xi) − f(s1) + c1

N1∑

k=1

aikx̃k − d1bx̃i, i = 1, 2, . . . ,N1,

˙̃yi = g
(
yj

) − g(s2) + c2

N2∑

k=1

ajkỹk − d2bỹj , j = 1, 2, . . . ,N2.

(2.5)

Obviously, the stability problem of cluster synchronous manifold S in the network
(2.1) is equivalent to the stability of system (2.5) at zero. Our objective is to find the criteria
for the coupling strength such that the network (2.1) achieves cluster synchronization, that
is, limt→+∞‖x̃i‖ = 0 (i = 1, 2, . . . ,N1) and limt→+∞‖ỹj‖ = 0 (j = 1, 2, . . . ,N2), which implies
that the x-cluster and y-cluster achieve synchronization, respectively.

In order to achieve cluster synchronization, a useful assumption and a lemma are
introduced as follows.

Assumption 2.3. (A1) Suppose that there exists positive constants δf and δg such that

∥∥f(z1) − f(z2)
∥∥ ≤ δf‖z1 − z2‖,

∥∥g(z1) − g(z2)
∥∥ ≤ δg‖z1 − z2‖, (2.6)

where z1, z2 are time-varying vectors.

Note that we assume that (A1) is satisfied by all models in this paper.

Lemma 2.4. For the above matrices A1 and A2, one has

X̃T (A1 ⊗ In1)X̃ ≤ λ2

N1∑

i=1

x̃T
i x̃i, Ỹ T (A2 ⊗ In2)Ỹ ≤ μ2

N2∑

j=1

ỹT
j ỹj . (2.7)

Proof. Since A1 is a real symmetric matrix, there exists an orthogonal matrix Q such that
A1 = QΛ1Q

T , where QQT = I, Λ1 = diag(λ1, λ2, . . . , λN1).
Take transformation ζ = (QT ⊗ In1)X̃, that is, X̃ = (Q ⊗ In1)ζ, where ζ = (ζT1 , ζ

T
2 , . . . , ζ

T
N1

),
ζTi ∈ Rn1 . Denote Q = (q1, q2, . . . , qN1), where q1 = (1/

√
N1)(1, 1, . . . , 1)

T is the eigenvector
corresponding to λ1 = 0, and we have

ζ1 =
1

√
N1

N1∑

i=1

x̃i =
1

√
N1

N1∑

i=1

(xi − s1) = 0. (2.8)
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Moreover,

ζTζ = X̃T (Q ⊗ In1)
(
QT ⊗ In1

)
X̃ = X̃T X̃, (2.9)

that is,
∑N1

i=1 ζ
T
i ζi =

∑N1
i=1 x̃

T
i x̃i. So one has

X̃T (A1 ⊗ In1)X̃ = ζT
((

QTA1Q
)
⊗ In1

)
ζ = ζT (Λ1 ⊗ In1)ζ

=
N1∑

i=1

ζTi λiζi ≤ λ2

N1∑

i=1

ζTi ζi = λ2

N1∑

i=1

x̃T
i x̃i.

(2.10)

Similarly, one can obtain Ỹ T (A2 ⊗ In2)Ỹ ≤ μ2
∑N2

j=1 ỹ
T
j ỹj . This completes the proof.

3. Linear Coupling Scheme and Criteria for Cluster Synchronization

In this section, we propose linear coupling schemes to achieve the cluster synchronization,
and derive the corresponding criteria for the coupling strength in the network (2.1).

For the linearly coupled network (2.1), the following criteria can be derived.

Theorem 3.1. For the linearly coupled network (2.1), the cluster synchronous manifold S is globally
exponentially stable under the following condition:

δf + c1λ2 − d1b < 0, δg + c2μ2 − d2b < 0. (3.1)

Proof. Consider the function V (t) = (1/2)
∑N1

i=1 x̃
T
i x̃i + (1/2)

∑N2
j=1 ỹ

T
j ỹj .

Its time derivative along the trajectory of (2.5) is

V̇ (t) =
N1∑

i=1

x̃T
i

(
f(xi) − f(s1)

)
+

N1∑

i=1

x̃T
i

(
f(s1) − f(s1)

)

+ c1

N1∑

i=1

N1∑

k=1

x̃T
i aikx̃k − d1b

N1∑

i=1

x̃T
i x̃i

+
N2∑

j=1

ỹT
j

(
g
(
yj

) − g(s2)
)
+

N2∑

j=1

ỹT
j

(
g(s2) − g(s2)

)

+ c2

N2∑

j=1

N2∑

k=1

ỹT
j ajkỹk − d2b̃

N2∑

j=1

ỹT
j ỹj ,

(3.2)

since

N1∑

i=1

x̃T
i

(
f(s1) − f(s1)

)
=
(
f(s1) − f(s1)

) N1∑

i=1

(xi − s1)T = 0. (3.3)
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Similarly, one has
∑N2

j=1 ỹ
T
j (g(s2) − g(s2)) = 0.

One has

V̇ (t) ≤ δf

N1∑

i=1

x̃T
i x̃i + c1

N1∑

i=1

N1∑

k=1

x̃T
i aikx̃k − d1b

N1∑

i=1

x̃T
i x̃i

+ δg

N2∑

j=1

ỹT
j ỹj + c2

N2∑

j=1

N2∑

k=1

ỹT
j ajkỹk − d2b̃

N2∑

j=1

ỹT
j ỹj

=
(
δf − d1b

) N1∑

i=1

x̃T
i x̃i + c1X̃

T (A1 ⊗ In1)X̃

+
(
δg − d2b

) N2∑

j=1

ỹT
j ỹj + c2Ỹ

T (A2 ⊗ In2)Ỹ .

(3.4)

By Lemma 2.4, one has

V̇ (t) ≤ (
δf + c1λ2 − d1b

) N1∑

i=1

x̃T
i x̃i +

(
δg + c2μ2 − d2b

) N2∑

j=1

ỹT
j ỹj ≤ −2ϑV (t), (3.5)

where ϑ = min{|δf + c1λ2 − d1b|, |δg + c2μ2 − d2b|} > 0. Then one has V (t) ≤ V (0)e−2ϑt.
Notice that V (t) ≥ (1/2)‖x̃i‖2, so ‖x̃i‖ ≤

√
2V (0) e−ϑt → 0, that is, limt→+∞‖x̃i‖ = 0 (i =

1, 2, . . . ,N1). Similarly, limt→+∞‖ỹj‖ ≤ limt→+∞
√
2V (0) e−ϑt = 0 (j = 1, 2, . . . ,N2), which

implies that the cluster synchronization manifold S of dynamical network (2.1) is globally
exponentially stable. Now the proof is completed.

According to Theorem 3.1, for the cluster synchronization, c1, c2 may take any positive
number, even zero, if the external excitation intensity is sufficiently large such that d1b > δf

and d2b > δg . Thus, the following corollary is derived.

Corollary 3.2. For the following network:

ẋi = f(xi) + d1

N2∑

k=1

bik
(
Γ1yk − xi

)
, i = 1, 2, . . . ,N1,

ẏj = g
(
yj

)
+ d2

N1∑

k=1

bjk
(
Γ2xk − yj

)
, j = 1, 2, . . . ,N2,

(3.6)

which is a special case of network (2.1), the cluster synchronous manifold S is globally exponentially
stable under the conditions d1b > δf and d2b > δg .

Remark 3.3. In model (3.6), there is no connection inside clusters. Corollary 3.2 shows that the
cluster synchronization can be achieved even if without any connection within a cluster. It
implies that the external excitation intensity is more conducive to the cluster synchronization
than the cluster’s interconnection under the “same-input” condition.



Journal of Applied Mathematics 7

4. Adaptive Coupling Scheme and Criteria for
Cluster Synchronization

Note that, the Lipschitz constants δf and δg are required to be known in Theorem 3.1.
However, it is often difficult to obtain the precise values of δf and δg in some practical
systems, hence the constants δf and δg are often selected to be larger, which leads to the
coupling strengths c1 and c2 being larger than their necessary values. To overcome this
drawback, we design c1 and c2 as adaptive variables, and present a local adaptive coupling
scheme to realize cluster synchronization as follows.

Theorem 4.1. For the network (2.1), take the inner coupling strengths c1 and c2 as adaptive vari-
ables, then the cluster synchronous manifold S is globally asymptotically stable under the following
adaptive laws:

ċ1(t) =
N1∑

i=1

x̃T
i x̃i, c1(0) > 0,

ċ2(t) =
N2∑

j=1

ỹT
j ỹj , c2(0) > 0.

(4.1)

Proof. Consider the Lyapunov function

V (t) =
1
2

N1∑

k=1

x̃T
k x̃k +

1
2

N2∑

j=1

ỹT
j ỹj

+
1
2β1

(
β1c1(t) + d1b − δf − 1

)2 +
1
2β2

(
β2c2(t) + d2b − δg − 1

)2
,

(4.2)

where β1 = −λ2 > 0 and β2 = −μ2 > 0.
Its time derivative along the trajectory of (2.5) is

V̇ (t) =
N1∑

i=1

x̃T
i
˙̃xi +

N2∑

j=1

ỹT
j
˙̃yj +

(
β1c1(t) + d1b − δf − 1

)
ċ1(t)

+
(
β2c2(t) + d2b − δg − 1

)
ċ2(t)

=
N1∑

i=1

x̃T
i

(
f(xi) − f(s1)

)
+ c1(t)

N1∑

i=1

N1∑

k=1

x̃T
i aikx̃k − d1b

N1∑

i=1

x̃T
i x̃i

+
(
β1c1(t) + d1b − δf − 1

) N1∑

i=1

x̃T
i x̃i
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+
N2∑

j=1

ỹT
j

(
g
(
yj

) − g(s2)
)
+ c2(t)

N2∑

j=1

N2∑

k=1

ỹT
j ajkỹk

− d2b
N2∑

j=1

ỹT
j ỹj +

(
β2c2(t) + d2b − δg − 1

) N2∑

j=1

ỹT
j ỹj .

(4.3)

Similar to the proof of Theorem 3.1, one has

V̇ (t) ≤ δf

N1∑

i=1

x̃T
i x̃i + c1(t)λ2

N1∑

i=1

x̃T
i x̃i +

(
β1c1(t) − δf − 1

) N1∑

i=1

x̃T
i x̃i

+ δg

N2∑

j=1

ỹT
j ỹj + c2(t)μ2

N2∑

j=1

ỹT
j ỹj +

(
β2c2(t) − δg − 1

) N2∑

j=1

ỹT
j ỹj

= −
N1∑

i=1

x̃T
i x̃i −

N2∑

j=1

ỹT
j ỹj ≤ 0.

(4.4)

By the LaSalle-Yoshizawa theorem [19, 20], we have limt→+∞‖x̃i‖ = 0 (i = 1, 2, . . . ,N1)
and limt→+∞‖ỹj‖ = 0 (j = 1, 2, . . . ,N2), which means that the cluster synchronous manifold
S is globally asymptotically stable. Now the proof is completed.

Similarly, we can further obtain the following theorem.

Theorem 4.2. For the network (2.1), take the external excitation intensities d1, d2 as adaptive
variables, then the cluster synchronous manifold S is globally asymptotically stable under the following
adaptive laws:

ḋ1(t) =
N1∑

i=1

x̃T
i x̃i, d1(0) > 0,

ḋ2(t) =
N2∑

j=1

ỹT
j ỹj , d2(0) > 0.

(4.5)

Proof. Consider the Lyapunov function V(t)=(1/2)
∑N1

k=1 x̃
T
k
x̃k+(1/2)

∑N2
j=1 ỹ

T
j ỹj+(1/2b)(bd1(t)−

c1λ2−δf−1)2+(1/2b )(bd2(t) − c2μ2 − δg − 1)
2
, and similar to the proof of Theorem 4.1, one can

obtain the conclusion.

Corollary 4.3. For the network (3.6), the cluster synchronous manifold S is globally asymptotically
stable under the adaptive law (4.5).

5. Numerical Simulations

In this section, illustrative examples are provided to verify the above theoretical analysis.
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Figure 1: Cluster synchronization in the linearly coupled network (2.1) with 50 lorenz oscillators in the
x-cluster and 30 hyperchaotic Lü oscillators in the y-cluster.

We consider a network which consists of two clusters with a scale-free sub-network
with 50 Lorenz chaotic oscillators [21] as the x-cluster and a small-world sub-network with
30 hyperchaotic Lü oscillators [22] as the y-cluster. That is, the node’s dynamics is f(xi) =
(10(xi2 − xi1), 28xi1 − xi2 − xi1xi3, xi1xi2 − 8/3xi3)

T (i = 1, . . . , 50), or g(yj) = (36(yj2 − yj1) +
yj4, 20yi2 − yj1yj3, yj1yj2 − 3yj3, yj1yj3 + yj4)

T (j = 1, . . . , 30). The coupling matrix A1 of the
x-cluster is taken as an adjacency matrix of scale-free network with 50 nodes, The coupling
matrix A2 of the y-cluster is taken as an adjacency matrix of small-world network with 30
nodes, and the matrices B1, B2, Γ1, and Γ2 satisfy the conditions of models (2.1) and (3.6).

In the simulation, we take initial values xi(0) = (−1 + 0.5i,−2 + 0.5i,−3 + 0.5i)T , yj(0) =
(1 + 0.5j, 2 + 0.5j, 3 + 0.5j, 4 + 0.5j)T , where 1 ≤ i ≤ 50, 1 ≤ j ≤ 30, and c1(0) = c2(0) = d1(0) =
d2(0) = 1.

Figures 1 and 3 display the numerical simulation results of network (2.1) linear
coupling and adaptive coupling, respectively. It shows that a set of nodes belonging to
each cluster synchronize to the same behavior, that is, the cluster synchronization has been
achieved quite soon.

Figures 2 and 4 show the numerical simulation results of network (3.6) with linear
coupling and the adaptive coupling, respectively, where there are no connections inside the
cluster. Obviously, synchronization has been reached quite soon.

Remark 5.1. Figures 1 and 2 show that the cluster synchronization (x-cluster and y-cluster)
can be reached while the complete synchronization cannot be achieved in the network.
Furthermore, compared with the coupling strength in Figures 3 and 4, one can also see that
the external excitation d1 and d2 are more conducive to the cluster synchronization.

6. Conclusions

In this paper, we have further investigated the cluster synchronization of a complex dynam-
ical network with given configuration which is connected by two groups of different
oscillators. we present a linear coupling scheme and the corresponding sufficient condition is
derived for the cluster synchronization. Moreover, an adaptive coupling scheme to lead
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Figure 2: Cluster synchronization of the linearly coupled network (3.6) with 50 lorenz oscillators in the
x-cluster and 30 hyperchaotic Lü oscillators in the y-cluster.
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Figure 3: Cluster synchronization of the adaptively coupled network (2.1)with 50 lorenz oscillators in the
x-cluster and 30 hyperchaotic Lü oscillators in the y-cluster.
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Figure 4: Cluster synchronization of the adaptively coupled network (3.6)with 50 lorenz oscillators in the
x-cluster and 30 hyperchaotic Lü oscillators in the y-cluster.

the cluster synchronization is proposed based on adaptive control technique. Our study
shows that the global stability of the cluster synchronization can be guaranteed by increasing
coupling strength in each cluster or enhancing the external excitation even if there are no
connections insider a cluster. Chaos synchronization of delay systems [23] with adaptive
impulsive control method [24] is widely discussed and applied, so we will study cluster
synchronization in delay-coupling cluster networks with impulsive control in the future
work.
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