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Based on the renewal process theory we develop a decomposition method to analyze the reliability
of the repair facility in an n-unit series system with vacations. Using this approach, we study the
unavailability and the mean replacement number during (0, t] of the repair facility. The method
proposed in this work is novel and concise, which can make us see clearly the structures of the
facility indices of a series system with an unreliable repair facility, two convolution relations.
Special cases and numerical examples are given to show the validity of our method.

1. Introduction

It is well known that the repairable systems with an unreliable repair facility are frequently
studied in the literature of reliability theory. Theoretically, they are in a class of more general
repairable systems, and the usual repairable systems are their special cases [1].

Common approaches in the reliability analysis of repairable systems with a repair
facility include the Markov renewal process method, the geometric process method, the
supplementary variable method, and the strong stability method. The Markov renewal
process method has important applications in reliability theory. By means of this method,
the reliability indices of various systems were obtained in the previous literatures (see, e.g.,
[2, 3]). The geometric process proposed by Lam [4] is a special monotone process, which can
model the working times and the repair times of a deteriorating system. Much research has
been conducted by Jia andWu [5, 6], Wu andClements-Croome [7], Zhang andWang [8], and
others under the monotone process model. Moreover, with the help of the geometric process
method, a deteriorating system with its repairman having multiple vacations was studied by
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Yuan and Xu [9]. They obtained the optimal replacement policy which could make the long-
run expected cost per unit time minimize. The strong stability method studied by Rahmoune
and Aissani [10] and other researchers is a more powerful tool. For example, Rahmoune
and Aissani [10] applied this method to analyze the characteristics of the M/G/1/N queue
with multiple vacations where the rate of the vacations is sufficiently small. This method is
also useful in analyzing complex repairable systems, such as, redundant repairable systems
with unreliable facilities, with vacations, or with priority in use. The supplementary variable
technique was first introduced by Cox [11], and it had been widely applied to complex
repairable systems by Li et al. [12], Liu et al. [13, 14], and many others. Also, recently, Guo
et al. [15] have derived the steady-state reliability indices of a series system by using the
eigenfunction corresponding to eigenvalue 0 of the system operator.

However, these methods mentioned above usually become too complicated to be
solved especially when dealing with some complex systems with many random variables
following general distributions. In this paper, a new approach, called decomposition method
here, is developed based on the renewal process theory. With this novel method, we analyze
the unavailability and the mean replacement number during (0, t] of the repair facility in
an n-unit series system with an unreliable repair facility and vacations. To be precise, we
obtain two convolution relations for the unavailability and the mean replacement number.
The two convolution relations turn studying the unavailability and the mean replacement
number during (0, t] into studying the corresponding reliability indices in the classical one-
unit system and the “generalized busy period of the repair facility” (see Definition 2.3). In
addition, some new reliability results are also obtained.

To introduce ourmethod, we consider an n-unit series systemwith a nonreliable repair
facility and multiple adaptive vacations. We aim at obtaining two key reliability quantities
of the repair facility, that are, the replacement probability (the unavailability of the repair
facility) and the average number of replacements during (0, t]. Note that the two indices have
been investigated by Liu et al. [13, 14]with the help of the supplementary variable method. In
this paper we study again the above two indices bymeans of a decomposition method, which
is completely different from the methods used in [2–15]. Our main idea is as follows: (1)with
the definition of “generalized busy period of the repair facility,” we obtain the probability
that the repair facility is during its generalized busy period at time t; (2) based on this, using
our decomposition method, we derive the unavailability and average replacement number
of the repair facility, which lead to two convolution relations; (3) finally, we present some
special cases and numerical examples to show the validity of our method.

The rest of the paper is organized as follows. The next section gives the assumptions of
the considered model and some preliminaries. In Section 3 we use a decomposition method
to discuss two key reliability indices of the repair facility. In Sections 4 and 5 special cases
and numerical examples are presented to validate the derived results. Conclusions are finally
drawn in Section 6.

2. Assumptions and Preliminaries

We consider a series repairable system consisting of n dissimilar units, a repairman, and an
unreliable repair facility by making the following assumptions.

(1) Whenever one unit fails, the system breaks down. It is assumed that n units shut
each other off, and each unit after repair is as good as new. As soon as the repair of
the failed unit is completed, the system starts to operate immediately.
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(2) The repairman will take a random maximum number, denoted by H, of vacations
whenever there is no failed unit waiting for repair in the system. The probability
mass function of H is P(H = j) = cj , j = 1, 2, . . .. The random variable H may
represent the maximum number tasks or jobs available for repairman to work on
if the system is operating. Denote the repairman’s ith vacation time by Vi, i ≥ 1.
Assume that Vi, i ≥ 1 are independent and identically distributed random variables
eachwith the probability distribution function V (t) and amean vacation time E(V ).
At each vacation completion instant, the repairman checks the system to see if there
is a failed unit waiting and decides the action to take according to the state of the
system. There are three cases: (a) if there is a failed unit waiting, the repairman will
repair it immediately; (b) if there is no failed unit waiting and the total number
of vacations is still less than H, the repairman will take another vacation; (c) if
there is no failed unit waiting and the total number of vacations is equal to H, the
repairman will stay idle and wait for the next failure.

(3) The lifetime Xi of unit i follows an exponential distribution Fi(t) = 1 − e−λit, t ≥ 0,
0 ≤ λi < ∞. The repair time Yi of the failed unit i obeys a general distribution
function Gi(t), t ≥ 0 with a mean repair time E(Yi), i = 1, 2, . . . , n.

(4) It is assumed that the repair facility neither fails nor deteriorates in its idle periods
and fails only during its “generalized busy periods” presented by this paper. The
life spanU of the repair facility has an exponential distributionU(t) = 1− eαt, t ≥ 0,
0 ≤ α < ∞.

(5) When the repair facility fails, it is replaced by a new and identical one immediately
and the unit that is being repaired has to wait for repair. The replacement time B of
the repair facility has an arbitrary distribution B(t) with a mean replacement time
E(B). After replacement, the new repair facility starts its repair to the failed unit
whose repair was stopped. The repair time for the failed unit is cumulative, that is,
the repaired time of this failed unit is still valid.

(6) Initially, the system with n new units begins to operate, the new repair facility
is during its idle period, and the repairman begins to take multiple adaptive
vacations. All random variables are mutually independent.

Remark 2.1. The multiple adaptive vacation policy presented by this paper is introduced by
Tian and Zhang [16], which is a generalization of single vacation, multiple vacations and
variant vacation, and so forth. The analysis in this work shows that our method is valid in
studying the reliability indices of the repair facility of complex vacation systems with an
unreliable repair facility.

For ease of reference, we list some notations and state two definitions as shown at the
end of the paper.

Definition 2.2. The “generalized repair time of unit i” ˜Yi, i = 1, 2, . . . , n denotes the time
interval from the time when the repair facility begins to repair the failed unit i until the repair
of the failed unit i ends, which includes some possible replacement times due to the facility
failures in the process of repairing the failed unit i.
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For t ≥ 0, let ˜Gi(t) = P( ˜Yi ≤ t), then (see [1])

˜Gi(t) =
∞
∑

k=0

∫ t

0
B(k)(t − x)

(αx)k

k!
e−αxdGi(x). (2.1)

The Laplace-Stieltjes transform of ˜Gi(t) is given by

g̃i(s) =
∫∞

0
e−std ˜Gi(t) = gi(s + α − αb(s)), �(s) > 0, (2.2)

where gi(s) =
∫∞
0 e−stdGi(t) and b(s) =

∫∞
0 e−stdB(t) are the Laplace-Stieltjes transforms of

Gi(t) and B(t), respectively. The mean of the generalized repaired time of the failed unit i is
given by

E
(

˜Yi

)

= − dg̃i(s)
ds

∣

∣

∣

∣

s=0
= E(Yi)(1 + αE(B)), i = 1, 2, . . . , n. (2.3)

Definition 2.3. The “generalized busy period of the repair facility”D denotes the time interval
from the timewhen the repair facility begins to repair a failed unit until the repair of the failed
unit completes, whereD contains some possible replacement times due to the facility failures
in the process of repairing the failed unit.

Remark 2.4. If the system’s operating time min1≤i≤nXi = Xl, then D = ˜Yl, l = 1, 2, . . . , n.

3. Reliability Analysis of the Repair Facility

In this section, by means of a decomposition method we will discuss the probability that
the repair facility is during its generalized busy period at time t. On this basis, we study
the unavailability and the replacement number during (0, t] of the repair facility. Finally, we
analyze the structures of the facility indices in our system.

3.1. The Probability That the Facility Is during Its Generalized Busy Period

For t ≥ 0, let

A(t) = P
(

the repair facility is during its generalized busy period at time t
)

. (3.1)

Theorem 3.1. If �(s) > 0, then the Laplace transform of A(t) is

a∗(s) =
Θ(s)

s
[

1 −Θ(s)
∑n

l=1(λl/Λ)g̃l(s)
]

n
∑

l=1

λl
Λ
[

1 − g̃l(s)
]

, (3.2)
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and, in steady state, the probability that the repair facility is during its generalized busy period is given
by

lim
t→∞

A(t)

=
(1/Λ)

∑n
i=1 λiE(Yi)(1 + αE(B))

(1/Λ)
∑n

i=1 λiE(Yi)(1 + αE(B)) + E(V )/(1 − v(Λ)) + [1/Λ − E(V )/(1 − v(Λ))]H(v(Λ))
,

(3.3)

where

Θ(s) =
Λ

s + Λ
H(v(s + Λ)) +

v(s) − v(s + Λ)
1 − v(s + Λ)

[1 −H(v(s + Λ))]. (3.4)

Proof. Let Δt be the event that the repair facility is during its generalized busy period at
time t. Denote ξ1 and η1 be the first operating time and the first repair time of the system,
respectively. By applying the total probability decomposition technique and noting that the
time points that the system begins to operate are renewal ones, we have

A(t) = P(Δt, ξ1 > t) + P(Δt, ξ1 ≤ t)

= P

(

Δt, ξ1 ≤ t, ξ1 >
H
∑

i=1

Vi

)

+ P

(

Δt, ξ1 ≤ t, ξ1 ≤
H
∑

i=1

Vi

)

.
(3.5)

The first term of (3.5) can be decomposed as

∞
∑

j=1

cj

{

P

(

ξ1 >
j
∑

i=1

Vi, ξ1 ≤ t < ξ1 + η1

)

+ P

(

Δt, ξ1 >
j
∑

i=1

Vi, t ≥ ξ1 + η1

)}

=
∞
∑

j=1

cj
n
∑

l=1

{

P

(

ξ1 = Xl,Xl >
j
∑

i=1

Vi, Xl ≤ t < Xl + ˜Yl

)

+P

(

Δt, ξ1 = Xl,Xl >
j
∑

i=1

Vi, t ≥ Xl + ˜Yl

)}

=
∞
∑

j=1

cj
n
∑

l=1

{

∫ t

0

[

1 − ˜Gl(t − x)
]

λle
−ΛxV (j)(x)dx

+
∫ t

0

∫ t−x

0
A
(

t − x − y
)

d ˜Gl

(

y
)

λle
−ΛxV (j)(x)dx

}

.

(3.6)
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Similarly, we can decompose the second term of (3.5) as

∞
∑

j=1

cj

j
∑

k=1

{

P

(

k−1
∑

i=1

Vi ≤ ξ1 <
k
∑

i=1

Vi,
k
∑

i=1

Vi < t ≤
k
∑

i=1

Vi + η1

)

+P

(

Δt,
k−1
∑

i=1

Vi ≤ ξ1 <
k
∑

i=1

Vi, t ≥
k
∑

i=1

Vi + η1

)}

=
∞
∑

j=1

cj

j
∑

k=1

n
∑

l=1

{

P

(

ξ1 = Xl,
k−1
∑

i=1

Vi ≤ Xl <
k
∑

i=1

Vi,
k
∑

i=1

Vi < t ≤
k
∑

i=1

Vi + ˜Yl

)

+P

(

Δt, ξ1 = Xl,
k−1
∑

i=1

Vi ≤ Xl <
k
∑

i=1

Vi, t ≥
k
∑

i=1

Vi + ˜Yl

)}

=
∞
∑

j=1

cj

j
∑

k=1

n
∑

l=1

λl
Λ

{

∫ t

0

∫ t−x

0

[

1 − ˜Gl(t − x − u)
][

1 − e−Λu
]

dV (u)e−ΛxdV (k−1)(x)

+
∫ t

0

∫ t−x

0

∫ t−x−u

0
A
(

t − x − u − y
)

d ˜Gl

(

y
)

×
[

1 − e−Λu
]

dV (u) e−ΛxdV (k−1)(x)

}

.

(3.7)

Taking the Laplace transforms of (3.5)–(3.7) and simplifying lead to

a∗(s) =
∞
∑

j=1

cj
n
∑

l=1

{

λl
(

1 − g̃l(s)
)

s(s + Λ)
[v(s + Λ)]j +

λla
∗(s)g̃l(s)
s + Λ

[v(s + Λ)]j
}

+
∞
∑

j=1

cj

j
∑

k=1

n
∑

l=1

λl
Λ

{

1 − g̃l(s)
s

[v(s + Λ)]k−1[v(s) − v(s + Λ)]

+a∗(s)g̃l(s)[v(s) − v(s + Λ)][v(s + Λ)]k−1
}

.

(3.8)

Solving (3.8), we can get (3.2). Applying the well-known Tauberian theorem [17], we have

lim
t→∞

A(t) = lim
s→ 0

s a∗(s). (3.9)

Putting (3.2) into the above equation and using L’ Hospital’s rule complete the proof of
Theorem 3.1.

To study the unavailability and the replacement number during (0, t] of the repair
facility, we first consider a classical one-unit replaceable system [18, 19]. When the unit fails,
it is replaced by a new and identical one immediately. The lifetime U of the unit has an
exponential distribution U(t) = 1 − e−αt (t ≥ 0, 0 ≤ α < ∞), and the replacement time B of
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the failed unit obeys an arbitrary distribution B(t)with a mean replacement time E(B).U and
B are mutually independent. After replacement, the new unit begins to operate immediately.
For t ≥ 0, let

Φ0(t) = P
(

the unit is being replaced at time t
)

,

M0(t) = E
(

the replacement number of the unit during (0, t]
)

,
(3.10)

and ϕ∗
0(s) =

∫∞
0 e−stΦ0(t)dt,m0(s) =

∫∞
0 e−stdM0(t).

Lemma 3.2 (see [18, 19]). If �(s) > 0, then

ϕ∗
0(s) =

α[1 − b(s)]
s[s + α − αb(s)]

, m0(s) =
α

s + α − αb(s)
,

lim
t→∞

Φ0(t) = lim
s→ 0

sϕ∗
0(s) =

αE(B)
1 + αE(B)

, lim
t→∞

M0(t)
t

= lim
s→ 0

sm0(s) =
α

1 + αE(B)
.

(3.11)

3.2. The Unavailability of the Repair Facility

Now, we discuss the unavailability of the repair facility at time t, that is, the probability that
the repair facility is being replaced at time t. For t ≥ 0, let

Φ(t) = P
(

the repair facility is being replaced at time t
)

. (3.12)

Theorem 3.3. Let ϕ∗(s) =
∫∞
0 e−stΦ(t)dt. If �(s) > 0, then

ϕ∗(s) = ϕ∗
0(s)[sa

∗(s)], (3.13)

and the steady-state unavailability of the repair facility is given by

lim
t→∞

Φ(t)

=
(α/Λ)

∑n
l=1 λlE(Yl)E(B)

(1/Λ)
∑n

l=1 λlE(Yl)(1 + αE(B)) + E(V )/(1 − v(Λ)) + [1/Λ − E(V )/(1 − v(Λ))]H(v(Λ))
,

(3.14)

where ϕ∗
0(s) and a∗(s) are given by Lemma 3.2 and (3.2), respectively.

Proof. (i) In the light of the assumptions, the repair facility neither fails nor deteriorates in
its idle period and it is available at the beginning time as well as the ending time of each
generalized busy period, then the repair facility is replaced at time t if and only if the time t is
during one generalized busy period of the repair facility, and the repair facility is replaced
at time t. Therefore, according to total probability decomposition and the renewal point
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technique, Φ(t) is decomposed as

Φ(t) = P

(

the repair facility is being replaced at time t, ξ1 >
H
∑

i=1

Vi, ξ1 ≤ t

)

+ P

(

the repair facility is being replaced at time t, ξ1 ≤
H
∑

i=1

Vi, ξ1 ≤ t

)

=
∞
∑

j=1

cj
n
∑

l=1

{

P

(

the repair facility is being replaced at time t, ξ1 = Xl,

Xl >
j
∑

i=1

Vi, Xl ≤ t < Xl + ˜Yl

)

+ P

(

the facility is being replaced at time t,

ξ1 = Xl,Xl >
j
∑

i=1

Vi, Xl + ˜Yl ≤ t

)}

+
∞
∑

j=1

cj

j
∑

k=1

n
∑

l=1

{

P

(

the repair facility is being replaced at time t, ξ1 = Xl,

k−1
∑

i=1

Vi ≤ Xl <
k
∑

i=1

Vi,
k
∑

i=1

Vi ≤ t <
k
∑

i=1

Vi + ˜Yl

)

+ P

(

the repair facility is being replaced at time t, ξ1 = Xl,

k−1
∑

i=1

Vi ≤ Xl <
k
∑

i=1

Vi,
k
∑

i=1

Vi + ˜Yl ≤ t

)}

=
∞
∑

j=1

cj
n
∑

l=1

{

∫ t

0
Sl(t − x)λle−ΛxV (j)(x)dx

+
∫ t

0

∫ t−x

0
Φ
(

t − x − y
)

d ˜Gl

(

y
)

λle
−ΛxV (j)(x)dx

}

+
∞
∑

j=1

cj

j
∑

k=1

n
∑

l=1

λl
Λ

{

∫ t

0

∫ t−x

0
Sl(t − x − u)

[

1 − e−Λu
]

dV (u)e−ΛxdV (k−1)(x)

+
∫ t

0

∫ t−x

0

∫ t−x−u

0
Φ
(

t − x − u − y
)

d ˜Gl

(

y
)

×
[

1 − e−Λu
]

dV (u)e−ΛxdV (k−1)(x)

}

,

(3.15)

where Sl(t) = P(D = ˜Yl > t ≥ 0; the repair facility is being replaced at time t).
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(ii) For t ≥ 0,

Sl(t) = Φ0(t) −
∫ t

0
Φ0(t − x)d ˜Gl(x), (3.16)

where Φ0(t) is determined by Lemma 3.2.
In fact, in the generalized busy period the repair facility may be in one of two states:

operation or replacement, and it is available at the beginning and ending times of each
generalized busy period. According to the fact that the life span of the repair facility has
an exponential distribution, and conditioning on the generalized busy period, we have the
decomposition of Φ0(t) as follows:

Φ0(t) = P
(

the repair facility is being replaced at time t; D = ˜Yl ≤ t
)

+ P
(

the repair facility is being replaced at time t; D = ˜Yl > t
)

=
∫ t

0
P
(

the repair facility is being replaced at time t − x | D = x
)

d ˜Gl(x) + Sl(t)

=
∫ t

0
Φ0(t − x)d ˜Gl(x) + Sl(t).

(3.17)

So (3.16) holds.
(iii) Substituting (3.16) into (3.15) and making the Laplace transform we get (3.13).

Equation (3.14) is obtained by the Tauberian theorem, Lemma 3.2 and (3.3).

3.3. The Replacement Number of the Repair Facility

For t ≥ 0, let

M(t) = E
(

the replacement number of the repair facility during (0, t]
)

. (3.18)

Theorem 3.4. Letm(s) =
∫∞
0 e−stdM(t). If �(s) > 0, then

m(s) = m0(s)[sa∗(s)], (3.19)

and the steady-state replacement frequency of the repair facility is

lim
t→∞

M(t)
t

=
(α/Λ)

∑n
l=1 λlE(Yl)

(1/Λ)
∑n

l=1 λlE(Yl)(1 + αE(B)) + E(V )/(1 − v(Λ)) + [(1/Λ) − E(V )/(1 − v(Λ))]H(v(Λ))
.

(3.20)
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Proof. (1) For t ≥ 0, let

Il(t) = E
(

0 ≤ t < ˜Yl; the replacement number of the repair facility during (0, t]
)

,

Jl(t) = E
(

˜Yl ≤ t; the replacement number of the repair facility during
(

0, ˜Yl

])

,

(3.21)

then similar to (3.16) above, by conditioning on the generalized busy period we have

Il(t) + Jl(t) = M0(t) −
∫ t

0
M0(t − x)d ˜Gl(x), (3.22)

where M0(t) is determined by Lemma 3.2.
(2) Using total probability decomposition, we have the decomposition of M(t) as

follows:

M(t) =
∞
∑

j=1

cj

j
∑

k=1

n
∑

l=1

E

(

the replacement number of the facility during (0, t],

ξ1 = Xl,
k−1
∑

i=1

Vi < Xl ≤
k
∑

i=1

Vi,
k
∑

i=1

Vi ≤ t <
k
∑

i=1

Vi + ˜Yl

)

+
∞
∑

j=1

cj
n
∑

l=1

E

(

the replacement number of the facility during (0, t],

ξ1 = Xl,Xl >
j
∑

i=1

Vi, Xl ≤ t < Xl + ˜Yl

)

+
∞
∑

j=1

cj

j
∑

k=1

n
∑

l=1

E

(

the replacement number of the facility during (0, t],

ξ1 = Xl,
k−1
∑

i=1

Vi < Xl ≤
k
∑

i=1

Vi, t ≥
k
∑

i=1

Vi + ˜Yl

)

+
∞
∑

j=1

cj
n
∑

l=1

E

(

the replacement number of the facility during (0, t],

ξ1 = Xl,Xl >
j
∑

i=1

Vi, t ≥ Xl + ˜Yl

)

.

(3.23)
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Based on the definition of Il(t) and the renewal point technique, the sum of the first and
second terms of (3.23) gives

∞
∑

j=1

cj

j
∑

k=1

n
∑

l=1

λl
Λ

∫ t

0

∫ t−x

0
Il(t − x − u)

(

1 − e−Λu
)

dV (u)e−ΛxdV (k−1)(x)

+
∞
∑

j=1

cj
n
∑

l=1

∫ t

0
Il(t − x)λle−ΛxV (j)(x)dx.

(3.24)

Similarly, by the definitions of Jl(t) and M(t), the sum of the third and fourth terms of (3.23)
is decomposed as

∞
∑

j=1

cj

j
∑

k=1

n
∑

l=1

{

E

(

the replacement number of the facility during

(

0,
k
∑

i=1

Vi + ˜Yl

]

,

ξ1 = Xl,
k−1
∑

i=1

Vi < Xl ≤
k
∑

i=1

Vi, t ≥
k
∑

i=1

Vi + ˜Yl

)

+ E

(

the replacement number of the facility during

(

k
∑

i=1

Vi + ˜Yl, t

]

,

ξ1 = Xl,
k−1
∑

i=1

Vi< Xl ≤
k
∑

i=1

Vi, t ≥
k
∑

i=1

Vi + ˜Yl

)}

+
∞
∑

j=1

cj
n
∑

l=1

{

E

(

the replacement number of the facility during
(

0, Xl + ˜Yl

]

,

ξ1 = Xl,Xl >
j
∑

i=1

Vi, t ≥ Xl + ˜Yl

)

,

+ E

(

the replacement number of the facility during
(

Xl + ˜Yl, t
]

,

ξ1 = Xl,Xl >
j
∑

i=1

Vi, t ≥ Xl + ˜Yl

)}

=
∞
∑

j=1

cj

j
∑

k=1

n
∑

l=1

λl
Λ

{

∫ t−x

0
Jl(t − x − u)

(

1 − e−Λu
)

dV (u) e−ΛxdV (k−1)(x)

+
∫ t

0

∫ t−x

0

∫ t−x−u

0
M

(

t − x − u − y
)

d ˜Gl

(

y
)

(

1 − e−Λu
)

×dV (u)e−ΛxdV (k−1)(x)

}
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+
∞
∑

j=1

cj
n
∑

l=1

{

∫ t

0
Jl(t − x)λle−ΛxV (j)(x)dx

+
∫ t

0

∫ t−x

0
M

(

t − x − y
)

d ˜Gl

(

y
)

λle
−ΛxV (j)(x)dx

}

.

(3.25)

Inserting (3.24), (3.25), and (3.22) in (3.23), taking the Laplace-Stieltjes transform of (3.23)
and simplifying lead to

m(s) =
∞
∑

j=1

cj

j
∑

k=1

n
∑

l=1

λl
Λ

{

m(s)g̃l(s)[v(s) − v(s + Λ)][v(s + Λ)]k−1

+m0(s)
[

1 − g̃l(s)
]

[v(s) − v(s + Λ)][v(s + Λ)]k−1
}

+
∞
∑

j=1

cj
n
∑

l=1

{

m0(s)
[

1 − g̃l(s)
] λl
s + Λ

[v(s + Λ)]j

+m(s)g̃l(s)
λl

s + Λ
[v(s + Λ)]j

}

.

(3.26)

Solving (3.26) and using (3.2)we get (3.19). By the Tauberian theorem, we have

lim
t→∞

M(t)
t

= lim
s→ 0

sm(s). (3.27)

Substituting (3.19) into the above equation and applying Lemma 3.2 and (3.3) give (3.20).

Remark 3.5. Taking the Laplace and Laplace-Stieltjes inverse transforms of (3.13) and (3.19),
respectively, we obtain two convolution relations as follows:

Φ(t) = Φ0(t) ∗A(t) =
∫ t

0
Φ0(t − x)dA(x), t ≥ 0,

M(t) = M0(t) ∗A(t) =
∫ t

0
M0(t − x)dA(x), t ≥ 0.

(3.28)

Clearly, (3.28) turn studying the unavailability and the replacement number during
(0, t] of the repair facility into studying the corresponding indices in the classical one-unit
system and the probability that the repair facility is during its generalized busy period
presented in this paper. It is important that the above results are not derived by the
supplementary variable method in [13, 14].

Remark 3.6. It is seen from (3.3), (3.14), and (3.20), that the steady-state relation equations
limt→∞Φ(t) = limt→∞Φ0(t)limt→∞A(t) and limt→∞(M(t)/t) = limt→∞(M0(t)/t)limt→∞A(t)
also hold. The two steady-state relations are also new, which are not obtained in [13, 14].
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Remark 3.7. By the decomposition method used in this paper, we can also analyze the
reliability indices of the series system presented by this paper.

4. Special Cases

Case 1. IfH = ∞,H(z) = 0, that is, the repairman in the system takes multiple vacations, then
(3.3), (3.14), and (3.20), can be simplified as

lim
t→∞

A(t) =
1
δΛ

n
∑

l=1

λlE(Yl)(1 + αE(B)), lim
t→∞

Φ(t) =
α

δΛ

n
∑

l=1

λlE(Yl)E(B),

lim
t→∞

M(t)
t

=
α

δΛ

n
∑

l=1

λlE(Yl),

(4.1)

where δ = (1/Λ)
∑n

l=1 λlE(Yl)(1 + αE(B)) + E(V )/(1 − v(Λ)).
In this case, the steady-state unavailability limt→∞Φ(t) and steady-state replacement

frequency limt→∞((M(t))/t) are identical to those in [13], which are analyzed with the help
of the supplementary variable method. Also, the steady-state probability limt→∞A(t) is not
obtained in [13].

Case 2. IfH = 1, H(z) = z, that is, the repairman in the system takes a single vacation, then

lim
t→∞

A(t) =
1
δΛ

n
∑

l=1

λlE(Yl)(1 + αE(B)), lim
t→∞

Φ(t) =
α

δΛ

n
∑

l=1

λlE(Yl)E(B),

lim
t→∞

M(t)
t

=
α

δΛ

n
∑

l=1

λlE(Yl),

(4.2)

where δ = (1/Λ)
∑n

l=1 λlE(Yl)(1 + αE(B)) + E(V ) + (1/Λ)v(Λ).
In this case, limt→∞Φ(t) and limt→∞(M(t)/t) are in accordance with the results

obtained by Liu et al. [14], which are discussed by means of the supplementary variable
method. In addition, limt→∞A(t) is a new result.

Case 3. IfH = 1,H(z) = z and V (t) = 1 − e−rt, t ≥ 0, then letting r → ∞, we get the following
indices of the repair facility of the series system without vacation:

lim
t→∞

A(t) =
1
δΛ

n
∑

l=1

λlE(Yl)(1 + αE(B)), lim
t→∞

Φ(t) =
α

δΛ

n
∑

l=1

λlE(Yl)E(B),

lim
t→∞

M(t)
t

=
α

δΛ

n
∑

l=1

λlE(Yl),

(4.3)

where δ = (1/Λ)
∑n

l=1 λlE(Yl)(1 + αE(B)) + (1/Λ).
In this special case, limt→∞Φ(t) and limt→∞(M(t)/t) coincide with the results

obtained in [13] or [14], which are derived using the supplementary variable method.
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Table 1: Reliability indices for varying value of E(Y ) with (α, E(B)) = (0.2, 0.6).

E(Y ) limt→∞A(t) limt→∞Φ(t) limt→∞(M(t))/t
0.4 0.1650 0.0177 0.0295
0.5 0.1981 0.0212 0.0354
0.6 0.2287 0.0245 0.0408
0.7 0.2570 0.0275 0.0459
0.8 0.2833 0.0304 0.0506

Table 2: Reliability indices for varying value of αwith (E(Y ), E(B)) = (0.5, 0.6).

α limt→∞A(t) limt→∞Φ(t) limt→∞(M(t))/t
0.1 0.1895 0.0107 0.0179
0.2 0.1981 0.0212 0.0354
0.3 0.2065 0.0315 0.0525
0.4 0.2148 0.0416 0.0693
0.5 0.2229 0.0514 0.0857

Table 3: Reliability indices for varying value of E(B) with (E(Y ), α) = (0.5, 0.2).

E(B) limt→∞A(t) limt→∞Φ(t) limt→∞(M(t))/t
0.2 0.1866 0.0072 0.0359
0.4 0.1924 0.0143 0.0356
0.6 0.1981 0.0212 0.0354
0.8 0.2037 0.0281 0.0351
1.0 0.2093 0.0349 0.0349

5. Numerical Examples

In this section, some numerical examples are presented to analyze the effects of various
parameters on the derived steady-state results, including the probability that the repair
facility is during its generalized busy period limt→∞A(t), the unreliability limt→∞Φ(t) and
the replacement frequency limt→∞((M(t))/t). For convenience, we consider an n-identical-
component series system with a nonreliable repair facility and multiple adaptive vacations.
Let

(1) n = 3, λ1 = λ2 = λ3 = 0.3, E(Y1) = E(Y2) = E(Y3) = E(Y );

(2) H follows a geometric distribution with probability generating function H(z) =
0.4z/(1 − 0.6z), |z| ≤ 1;

(3) V obeys an exponential distribution with a mean E(V ) = 1.

Numerical results are reported in Tables 1–3. Table 1 shows that the effects of varying
mean repair time E(Y ) on the reliability indices of the facility for the set of parameters
(α, E(B)) = (0.2, 0.6). We observe that the probability limt→∞A(t), the unreliability
limt→∞Φ(t) and the replacement frequency limt→∞(M(t)/t) all increase monotonously as
the value E(Y ) increases. The effects of varying failure rate α on the reliability indices of the
facility are shown in Table 2, where we set (E(Y ), E(B)) = (0.5, 0.6). As is to be expected,
the probability limt→∞A(t), the unreliability limt→∞Φ(t), and the replacement frequency
limt→∞((M(t))/t) all decrease monotonously as the rate α decreases. Table 3 reports the
effects of varying mean replacement time E(B) on the reliability indices of the facility for the



Journal of Applied Mathematics 15

set of parameters (E(Y ), α) = (0.5, 0.2). We note that when E(B) increases, both limt→∞A(t)
and limt→∞Φ(t) increase, while limt→∞(M(t)/t) decreases. The trends shown by the tables
are as expected.

6. Conclusions

In this paper, based on the renewal process theory we develop a new approach—the
decomposition method. According to the method, we analyze the unavailability and average
replacement number during (0, t] of the repair facility in a series vacation system with an
unreliable repair facility. On this basis, we derive two convolution relations, which make
us see clearly the structures of the facility indices in our system. Special cases and numerical
examples show that our method is valid in studying the reliability indices of the repair facility
of complex vacation systems with a nonreliable repair facility.

Notations

g(s): The Laplace-Stieltjes transform of G(t), that is, g(s) =
∫∞
0 e−stdG(t)

g∗(s): The Laplace transform of G(t), that is, g∗(s) =
∫∞
0 e−stG(t)dt

G(k)(t): The k-fold convolution of G(t)with itself (k ≥ 1) and G(0)(t) = 1, t ≥ 0
E(X): The mean of random variable X
Λ: Λ = λ1 + λ2 + · · · + λn
�(s): The real part of complex number s
ξ1: The first operating time length of the system
η1: The first repair time length of the system
P(Q): The probability of event Q
H(z), |z| ≤ 1: The probability generating function of H. That is, H(z) =

∑∞
i=0 ciz

i.
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