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An iterative algorithm is constructed to solve the linear matrix equation pair AXB = E, CXD = F
over generalized reflexive matrix X. When the matrix equation pair AXB = E, CXD = F is
consistent over generalized reflexive matrix X, for any generalized reflexive initial iterative matrix
X1, the generalized reflexive solution can be obtained by the iterative algorithm within finite
iterative steps in the absence of round-off errors. The unique least-norm generalized reflexive
iterative solution of the matrix equation pair can be derived when an appropriate initial iterative
matrix is chosen. Furthermore, the optimal approximate solution of AXB = E, CXD = F for
a given generalized reflexive matrix X0 can be derived by finding the least-norm generalized
reflexive solution of a new corresponding matrix equation pair A ˜XB = ˜E, C ˜XD = ˜F with
˜E = E − AX0B, ˜F = F − CX0D. Finally, several numerical examples are given to illustrate that
our iterative algorithm is effective.

1. Introduction

Let Rm×n denote the set of all m-by-n real matrices. In denotes the n order identity matrix.
Let P ∈ Rm×m and Q ∈ Rn×n be two real generalized reflection matrices, that is, PT = P, P 2 =
Im, Q

T = Q, Q2 = In. A matrix A ∈ Rm×n is called generalized reflexive matrix with respect
to the matrix pair (P,Q) if PAQ = A. For more properties and applications on generalized
reflexive matrix, we refer to [1, 2]. The set of all m-by-n real generalized reflexive matrices
with respect to matrix pair (P,Q) is denoted by Rm×n

r (P,Q). We denote by the superscripts T
the transpose of a matrix. In matrix spaceRm×n, define inner product as tr(BTA) = trace(BTA)
for all A,B ∈ Rm×n; ‖A‖ represents the Frobenius norm of A. R(A) represents the column
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space of A. vec(·) represents the vector operator; that is, vec(A) = (aT
1 , a

T
2 , . . . , a

T
n)

T ∈ Rmn for
the matrix A = (a1, a2, . . . , an) ∈ Rm×n, ai ∈ Rm, i = 1, 2, . . . , n. A ⊗ B stands for the Kronecker
product of matrices A and B.

In this paper, we will consider the following two problems.

Problem 1. For given matrices A ∈ Rp×m, B ∈ Rn×q, C ∈ Rs×m, D ∈ Rn×t, E ∈ Rp×q, F ∈ Rs×t,
find matrix X ∈ Rm×n

r (P,Q) such that

AXB = E, CXD = F. (1.1)

Problem 2. When Problem 1 is consistent, let SE denote the set of the generalized reflexive
solutions of Problem 1. For a given matrix X0 ∈ Rm×n

r (P,Q), find ̂X ∈ SE such that

∥

∥

∥

̂X −X0

∥

∥

∥ = min
X∈SE

‖X −X0‖. (1.2)

The matrix equation pair (1.1) may arise in many areas of control and system theory.
Dehghan and Hajarian [3] presented some examples to show a motivation for studying (1.1).
Problem 2 occurs frequently in experiment design; see for instance [4]. In recent years, the
matrix nearness problem has been studied extensively (e.g., [3, 5–19]).

Research on solving the matrix equation pair (1.1) has been actively ongoing for last 40
or more years. For instance, Mitra [20, 21] gave conditions for the existence of a solution and
a representation of the general common solution to the matrix equation pair (1.1). Shinozaki
and Sibuya [22] and vander Woude [23] discussed conditions for the existence of a common
solution to the matrix equation pair (1.1). Navarra et al. [11] derived sufficient and necessary
conditions for the existence of a common solution to (1.1). Yuan [18] obtained an analytical
expression of the least-squares solutions of (1.1) by using the generalized singular value
decomposition (GSVD) of matrices. Recently, some finite iterative algorithms have also been
developed to solve matrix equations. Deng et al. [24] studied the consistent conditions and
the general expressions about the Hermitian solutions of the matrix equations (AX,XB) =
(C,D) and designed an iterative method for its Hermitian minimum norm solutions. Li
and Wu [25] gave symmetric and skew-antisymmetric solutions to certain matrix equations
A1X = C1, XB3 = C3 over the real quaternion algebra H. Dehghan and Hajarian [26]
proposed the necessary and sufficient conditions for the solvability of matrix equations
A1XB1 = D1,A1X = C1, XB2 = C2 and A1X = C1, XB2 = C2, A3X = C3, XB4 = C4 over the
reflexive or antireflexive matrix X and obtained the general expression of the solutions for a
solvable case. Wang [27, 28] gave the centrosymmetric solution to the system of quaternion
matrix equationsA1X = C1, A3XB3 = C3. Wang [29] also solved a system of matrix equations
over arbitrary regular rings with identity. For more studies on iterative algorithms on coupled
matrix equations, we refer to [6, 7, 15–17, 19, 30–34]. Peng et al. [13] presented iterative
methods to obtain the symmetric solutions of (1.1). Sheng and Chen [14] presented a finite
iterative method when (1.1) is consistent. Liao and Lei [9] presented an analytical expression
of the least-squares solution and an algorithm for (1.1) with the minimum norm. Peng et al.
[12] presented an efficient algorithm for the least-squares reflexive solution. Dehghan and
Hajarian [3] presented an iterative algorithm for solving a pair of matrix equations (1.1) over
generalized centrosymmetric matrices. Cai and Chen [35] presented an iterative algorithm for
the least-squares bisymmetric solutions of the matrix equations (1.1). However, the problem
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of finding the generalized reflexive solutions of matrix equation pair (1.1) has not been
solved. In this paper, we construct an iterative algorithm by which the solvability of Problem
1 can be determined automatically, the solution can be obtained within finite iterative steps
when Problem 1 is consistent, and the solution of Problem 2 can be obtained by finding the
least-norm generalized reflexive solution of a corresponding matrix equation pair.

This paper is organized as follows. In Section 2, we will solve Problem 1 by
constructing an iterative algorithm; that is, if Problem 1 is consistent, then for an arbitrary
initial matrix X1 ∈ Rm×n

r (P,Q), we can obtain a solution X ∈ Rm×n
r (P,Q) of Problem 1

within finite iterative steps in the absence of round-off errors. Let X1 = ATHBT + CT
̂HDT +

PATHBTQ+PCT
̂HDTQ, whereH ∈ Rp×q, ̂H ∈ Rs×t are arbitrarymatrices, ormore especially,

letting X1 = 0 ∈ Rm×n
r (P,Q), we can obtain the unique least norm solution of Problem 1.

Then in Section 3, we give the optimal approximate solution of Problem 2 by finding the
least norm generalized reflexive solution of a corresponding new matrix equation pair. In
Section 4, several numerical examples are given to illustrate the application of our iterative
algorithm.

2. The Solution of Problem 1

In this section, wewill first introduce an iterative algorithm to solve Problem 1 and then prove
that it is convergent. The idea of the algorithm and it’s proof in this paper are originally
inspired by those in [13]. The idea of our algorithm is also inspired by those in [3]. When
P = Q, R = S, XT = X and YT = Y , the results in this paper reduce to those in [3].

Algorithm 2.1. Step 1. Input matrices A ∈ Rp×m, B ∈ Rn×q, C ∈ Rs×m, D ∈ Rn×t, E ∈ Rp×q, F ∈
Rs×t, and two generalized reflection matrix P ∈ Rm×m, Q ∈ Rn×n.

Step 2. Choose an arbitrary matrix X1 ∈ Rm×n
r (P,Q). Compute

R1 =
(

E −AX1B 0
0 F − CX1D

)

,

P1 =
1
2

(

AT (E −AX1B)BT + CT (F − CX1D)DT + PAT (E −AX1B)BTQ

+PCT (F − CX1D)DTQ
)

,

(2.1)

k := 1.
Step 3. If R1 = 0, then stop. Else go to Step 4.
Step 4. Compute

Xk+1 = Xk +
‖Rk‖2
‖Pk‖2

Pk,

Rk+1 =
(

E −AXk+1B 0
0 F − CXk+1D

)

= Rk − ‖Rk‖2
‖Pk‖2

(

APkB 0
0 CPkD

)

,
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Pk+1 =
1
2

(

AT (E −AXk+1B)BT + CT (F − CXk+1D)DT + PAT (E −AXk+1B)BTQ

+PCT (F − CXk+1D)DTQ
)

+
‖Rk+1‖2
‖Rk‖2

Pk.

(2.2)

Step 5. If Rk+1 = 0, then stop. Else, letting k := k + 1, go to Step 4.

Obviously, it can be seen that Pi ∈ Rm×n
r (P,Q), Xi ∈ Rm×n

r (P,Q), where i = 1, 2, . . . .

Lemma 2.2. For the sequences {Ri} and {Pi} generated in Algorithm 2.1, one has

tr
(

RT
i+1Rj

)

= tr
(

RT
i Rj

)

− ‖Ri‖2
‖Pi‖2

tr
(

PT
i Pj

)

+
‖Ri‖2

∥

∥Rj

∥

∥

2

‖Pi‖2
∥

∥Rj−1
∥

∥

2
tr
(

PT
i Pj−1

)

,

tr
(

PT
i+1Pj

)

=

∥

∥Pj

∥

∥

2

∥

∥Rj

∥

∥

2

(

tr
(

RT
i+1Rj

)

− tr
(

RT
i+1Rj+1

))

+
‖Ri+1‖2
‖Ri‖2

tr
(

PT
i Pj

)

.

(2.3)

Proof. By Algorithm 2.1, we have

tr
(

RT
i+1Rj

)

= tr

⎛

⎝

(

Ri − ‖Ri‖2
‖Pi‖2

(

APiB 0
0 CPiD

)

)T

Rj

⎞

⎠

= tr
(

RT
i Rj

)

− ‖Ri‖2
‖Pi‖2

tr
((

BTPT
i A

T 0
0 DTPT

i C
T

)

Rj

)

= tr
(

RT
i Rj

)

− ‖Ri‖2
‖Pi‖2

tr
((

BTPT
i A

T 0
0 DTPT

i C
T

)(

E −AXjB 0
0 F − CXjD

))

= tr
(

RT
i Rj

)

− ‖Ri‖2
‖Pi‖2

tr
(

BTPT
i A

T(E −AXjB
)

+DTPT
i C

T(F − CXjD
)

)

= tr
(

RT
i Rj

)

− ‖Ri‖2
‖Pi‖2

tr
(

PT
i

(

AT(E −AXjB
)

BT + CT(F − CXjD
)

DT
))

= tr
(

RT
i Rj

)

− ‖Ri‖2
‖Pi‖2
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× tr

(

PT
i

(

AT
(

E −AXjB
)

BT + CT
(

F − CXjD
)

DT

2

+
PAT

(

E −AXjB
)

BTQ + PCT
(

F − CXjD
)

DTQ

2

+
AT
(

E −AXjB
)

BT + CT
(

F − CXjD
)

DT

2

+
−PAT

(

E −AXjB
)

BTQ − PCT
(

F − CXjD
)

DTQ

2

))

= tr
(

RT
i Rj

)

− ‖Ri‖2
‖Pi‖2

× tr

(

PT
i

{

AT
(

E −AXjB
)

BT + CT
(

F − CXjD
)

DT

2

+
PAT

(

E −AXjB
)

BTQ + PCT
(

F − CXjD
)

DTQ

2

})

= tr
(

RT
i Rj

)

− ‖Ri‖2
‖Pi‖2

tr

(

PT
i

(

Pj −
∥

∥Rj

∥

∥

2

∥

∥Rj−1
∥

∥

2
Pj−1

))

= tr
(

RT
i Rj

)

− ‖Ri‖2
‖Pi‖2

tr
(

PT
i Pj

)

+
‖Ri‖2

∥

∥Rj

∥

∥

2

‖Pi‖2
∥

∥Rj−1
∥

∥

2
tr
(

PT
i Pj−1

)

,

tr
(

PT
i+1Pj

)

= tr

((

AT (E −AXi+1B)BT + CT (F − CXi+1D)DT

2

+
PAT (E −AXi+1B)BTQ + PCT (F − CXi+1D)DTQ

2
+
‖Ri+1‖2
‖Ri‖2

Pi

)T

Pj

⎞

⎠

= tr

((

AT (E −AXi+1B)BT + CT (F − CXi+1D)DT

2

+
PAT (E −AXi+1B)BTQ + PCT (F − CXi+1D)DTQ

2

)T

Pj

⎞

⎠

+
‖Ri+1‖2
‖Ri‖2

tr
(

PT
i Pj

)

= tr
(

PT
j

(

AT (E −AXi+1B)BT + CT (F − CXi+1D)DT
))

+
‖Ri+1‖2
‖Ri‖2

tr
(

PT
i Pj

)
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= tr
(

(E −AXi+1B)TAPjB + (F − CXi+1D)TCPjD
)

+
‖Ri+1‖2
‖Ri‖2

tr
(

PT
i Pj

)

= tr

((

(E −AXi+1B)T 0
0 (F − CXi+1D)T

)

(

APjB 0
0 CPjD

)

)

+
‖Ri+1‖2
‖Ri‖2

tr
(

PT
i Pj

)

=

∥

∥Pj

∥

∥

2

∥

∥Rj

∥

∥

2
tr
(

RT
i+1

(

Rj − Rj+1
)

)

+
‖Ri+1‖2
‖Ri‖2

tr
(

PT
i Pj

)

=

∥

∥Pj

∥

∥

2

∥

∥Rj

∥

∥

2

(

tr
(

RT
i+1Rj

)

− tr
(

RT
i+1Rj+1

))

+
‖Ri+1‖2
‖Ri‖2

tr
(

PT
i Pj

)

.

(2.4)

This completes the proof.

Lemma 2.3. For the sequences {Ri} and {Pi} generated by Algorithm 2.1, and k ≥ 2, one has

tr
(

RT
i Rj

)

= 0, tr
(

PT
i Pj

)

= 0, i, j = 1, 2, . . . , k, i /= j. (2.5)

Proof. Since tr(RT
i Rj) = tr(RT

j Ri) and tr(PT
i Pj) = tr(PT

j Pi) for all i, j = 1, 2, . . . , k, we only need
to prove that tr(RT

i Rj) = 0, tr(PT
i Pj) = 0 for all 1 ≤ j < i ≤ k. We prove the conclusion by

induction, and two steps are required.
Step 1.We will show that

tr
(

RT
i+1Ri

)

= 0, tr
(

PT
i+1Pi

)

= 0, i = 1, 2, . . . , k − 1. (2.6)

To prove this conclusion, we also use induction.
For i = 1, by Algorithm 2.1 and the proof of Lemma 2.2, we have that

tr
(

RT
2R1

)

= tr

⎛

⎝

(

R1 − ‖R1‖2
‖P1‖2

(

AP1B 0
0 CP1D

)

)T

R1

⎞

⎠

= tr
(

RT
1R1

)

− ‖R1‖2
‖P1‖2
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× tr

(

PT
1

{

AT (E −AX1B)BT + CT (F − CX1D)DT

2

+
PAT (E −AX1B)BTQ + PCT (F − CX1D)DTQ

2

})

= ‖R1‖2 − ‖R1‖2
‖P1‖2

tr
(

PT
1 P1

)

= 0,

tr
(

PT
2 P1

)

=
‖P1‖2
‖R1‖2

(

tr
(

RT
2R1

)

− tr
(

RT
2R2

))

+
‖R2‖2
‖R1‖2

‖P1‖2

= 0.

(2.7)

Assume (2.6) holds for i = s − 1, that is, tr(RT
sRs−1) = 0, tr(PT

s Ps−1) = 0. When i = s, by
Lemma 2.2, we have that

tr
(

RT
s+1Rs

)

= tr
(

RT
sRs

)

− ‖Rs‖2
‖Ps‖2

tr
(

PT
s Ps

)

+
‖Rs‖4

‖Ps‖2‖Rs−1‖2
tr
(

PT
s Ps−1

)

= ‖Rs‖2 − ‖Rs‖2 + ‖Rs‖4
‖Ps‖2‖Rs−1‖2

tr
(

PT
s Ps−1

)

= 0,

tr
(

PT
s+1Ps

)

=
‖Ps‖2
‖Rs‖2

(

tr
(

RT
s+1Rs

)

− tr
(

RT
s+1Rs+1

))

+
‖Rs+1‖2
‖Rs‖2

tr
(

PT
s Ps

)

= − ‖Ps‖2
‖Rs‖2

‖Rs+1‖2 + ‖Rs+1‖2
‖Rs‖2

‖Ps‖2

= 0.

(2.8)

Hence, (2.6) holds for i = s. Therefor, (2.6) holds by the principle of induction.
Step 2. Assuming that tr(RT

sRj) = 0, tr(PT
s Pj) = 0, j = 1, 2, . . . , s − 1, then we show that

tr
(

RT
s+1Rj

)

= 0, tr
(

PT
s+1Pj

)

= 0, j = 1, 2, . . . , s. (2.9)



8 Journal of Applied Mathematics

In fact, by Lemma 2.2 we have

tr
(

RT
s+1Rj

)

= tr
(

RT
sRj

)

− ‖Rs‖2
‖Ps‖2

tr
(

PT
s Pj

)

+
‖Rs‖2

∥

∥Rj

∥

∥

2

‖Ps‖2
∥

∥Rj−1
∥

∥

2
tr
(

PT
s Pj−1

)

= 0.

(2.10)

From the previous results, we have tr(RT
s+1Rj+1) = 0. By Lemma 2.2 we have that

tr
(

PT
s+1Pj

)

=

∥

∥Pj

∥

∥

2

∥

∥Rj

∥

∥

2

(

tr
(

RT
s+1Rj

)

− tr
(

RT
s+1Rj+1

))

+
‖Rs+1‖2
‖Rs‖2

tr
(

PT
s Pj

)

=

∥

∥Pj

∥

∥

2

∥

∥Rj

∥

∥

2

(

tr
(

RT
s+1Rj

)

− tr
(

RT
s+1Rj+1

))

= 0.

(2.11)

By the principle of induction, (2.9) holds. Note that (2.5) is implied in Steps 1 and 2 by
the principle of induction. This completes the proof.

Lemma 2.4. Supposing X is an arbitrary solution of Problem 1, that is, AXB = E and CXD = F,
then

tr
(

(

X −Xk

)T
Pk

)

= ‖Rk‖2, k = 1, 2, . . . , (2.12)

where the sequences {Xk}, {Rk}, and {Pk} are generated by Algorithm 2.1.

Proof. We proof the conclusion by induction.
For k = 1, we have that

tr
(

(

X −X1

)T
P1

)

= tr
(

(

X −X1

)T 1
2

(

AT (E −AX1B)BT + CT (F − CX1D)DT

+PAT (E −AX1B)BTQ + PCT (F − CX1D)DTQ
)

)
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= tr
(

(

X −X1

)T(

AT (E −AX1B)BT + CT (F − CX1D)DT
)

)

= tr
(

(

X −X1

)T
AT (E −AX1B)BT +

(

X −X1

)T
CT (F − CX1D)DT

)

= tr
(

(E −AX1B)TA
(

X −X1

)

B + (F − CX1D)TC
(

X −X1

)

D
)

= tr

⎛

⎝

(

(E −AX1B)T 0
0 (F − CX1D)T

)

⎛

⎝

A
(

X −X1

)

B 0

0 C
(

X −X1

)

D

⎞

⎠

⎞

⎠

= tr

((

(E −AX1B)T 0
0 (F − CX1D)T

)

(

E −AX1B 0
0 F − CX1D

)

)

= tr
(

RT
1R1

)

= ‖R1‖2.
(2.13)

Assume (2.12) holds for k = s. By Algorithm 2.1, we have that

tr
(

(

X −Xs+1

)T
Ps+1

)

= tr
(

(

X −Xs+1

)T

×
((

AT (E −AXs+1B)BT + CT (F − CXs+1D)DT

2

+
PAT(E −AXs+1B)BTQ + PCT (F − CXs+1D)DTQ

2

)

+
‖Rs+1‖2
‖Rs‖2

Ps

))

= tr

(

(

X −Xs+1

)T
(

AT (E −AXs+1B)BT + CT (F − CXs+1D)DT +
‖Rs+1‖2
‖Rs‖2

Ps

))

= tr

((

(E −AXs+1B)T 0
0 (F − CXs+1D)T

)

(

E −AXs+1B 0
0 F − CXs+1D

)

)

+
‖Rs+1‖2
‖Rs‖2

tr
(

(

X −Xs+1

)T
Ps

)

= tr
(

RT
s+1Rs+1

)

+
‖Rs+1‖2
‖Rs‖2

tr
(

(

X −Xs

)T
Ps

)

− ‖Rs+1‖2
‖Rs‖2

‖Rs‖2
‖Ps‖2

tr
(

PT
s Ps

)
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= ‖Rs+1‖2 + ‖Rs+1‖2
‖Rs‖2

‖Rs‖2 − ‖Rs+1‖2
‖Rs‖2

‖Rs‖2
‖Ps‖2

‖Ps‖2

= ‖Rs+1‖2.
(2.14)

Therefore, (2.12) holds for k = s+1. By the principle of induction, (2.12) holds. This completes
the proof.

Theorem 2.5. Supposing that Problem 1 is consistent, then for an arbitrary initial matrix X1 ∈
Rm×n

r (P,Q), a solution of Problem 1 can be obtained with finite iteration steps in the absence of round-
off errors.

Proof. If Ri /= 0, i = 1, 2, . . . , pq + st, by Lemma 2.4 we have Pi /= 0, i = 1, 2, . . . , pq + st, then we
can compute Xpq+st+1, Rpq+st+1 by Algorithm 2.1.

By Lemma 2.3, we have

tr
(

RT
pq+st+1Ri

)

= 0, i = 1, 2, . . . , pq + st,

tr
(

RT
i Rj

)

= 0, i, j = 1, 2, . . . , pq + st, i /= j.

(2.15)

Therefore, R1, R2, . . . , Rpq+st is an orthogonal basis of the matrix space

S =
{

W | W =
(

W1 0
0 W4

)

, W1 ∈ Rp×q, W4 ∈ Rs×t
}

, (2.16)

which implies that Rpq+st+1 = 0; that is, Xpq+st+1 is a solution of Problem 1. This completes the
proof.

To show the least norm generalized reflexive solution of Problem 1, we first introduce
the following result.

Lemma 2.6 (see [8, Lemma 2.4]). Supposing that the consistent system of linear equationMy = b
has a solution y0 ∈ R(MT ), then y0 is the least norm solution of the system of linear equations.

By Lemma 2.6, the following result can be obtained.

Theorem 2.7. Suppose that Problem 1 is consistent. If one chooses the initial iterative matrix X1 =
ATHBT +CT

̂HDT +PATHBTQ +PCT
̂HDTQ, whereH ∈ Rp×q, ̂H ∈ Rs×t are arbitrary matrices,

especially, let X1 = 0 ∈ Rm×n
r , one can obtain the unique least norm generalized reflexive solution of

Problem 1 within finite iterative steps in the absence of round-off errors by using Algorithm 2.1.

Proof. By Algorithm 2.1 and Theorem 2.5, if we let X1 = ATHBT + CT
̂HDT + PATHBTQ +

PCT
̂HDTQ, where H ∈ Rp×q, ̂H ∈ Rs×t are arbitrary matrices, we can obtain the solution X∗

of Problem 1 within finite iterative steps in the absence of round-off errors, and the solution
X∗ can be represented that X∗ = ATGBT + CT

̂GDT + PATGBTQ + PCT
̂GDTQ.

In the sequel, we will prove that X∗ is just the least norm solution of Problem 1.
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Consider the following system of matrix equations:

AXB = E,

CXD = F,

APXQB = E,

CPXQD = F.

(2.17)

If Problem 1 has a solution X0 ∈ Rm×n
r (P,Q), then

PX0Q = X0,

AX0B = E, CX0D = F.
(2.18)

Thus

APX0QB = E, CPX0QD = F. (2.19)

Hence, the systems of matrix equations (2.17) also have a solution X0.
Conversely, if the systems of matrix equations (2.17) have a solution X ∈ Rm×n, let

X0 = (X + PXQ)/2, then X0 ∈ Rm×n
r (P,Q), and

AX0B =
1
2
A
(

X + PXQ
)

B =
1
2

(

AXB +APXQB
)

=
1
2
(E + E) = E,

CX0D =
1
2
C
(

X + PXQ
)

D =
1
2

(

CXD + CPXQD
)

=
1
2
(F + F) = F.

(2.20)

Therefore, X0 is a solution of Problem 1.
So the solvability of Problem 1 is equivalent to that of the systems of matrix equations

(2.17), and the solution of Problem 1 must be the solution of the systems of matrix equations
(2.17).

Letting S′
E denote the set of all solutions of the systems of matrix equations (2.17),

then we know that SE ⊂ S′
E, where SE is the set of all solutions of Problem 1. In order to prove

that X∗ is the least-norm solution of Problem 1, it is enough to prove that X∗ is the least-
norm solution of the systems of matrix equations (2.21). Denoting vec(X) = x, vec(X∗) =
x∗, vec(G) = g1, vec( ̂G) = g2, vec(E) = e, vec(F) = f , then the systems of matrix equations
(2.17) are equivalent to the systems of linear equations

⎛

⎜

⎜

⎝

BT ⊗A
DT ⊗ C

BTQ ⊗AP
DTQ ⊗ CP

⎞

⎟

⎟

⎠

x =

⎛

⎜

⎜

⎝

e
f
e
f

⎞

⎟

⎟

⎠

. (2.21)
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Noting that

x∗ = vec
(

ATGBT + CT
̂GDT + PATGBTQ + PCT

̂GDTQ
)

=
(

B ⊗AT
)

g1 +
(

D ⊗ CT
)

y2 +
(

QB ⊗ PAT
)

g1 +
(

QD ⊗ PCT
)

g2

=
(

B ⊗AT D ⊗ CT QB ⊗ PAT QD ⊗ PCT
)

⎛

⎜

⎜

⎝

g1
g2
g1
g2

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

BT ⊗A
DT ⊗ C

BTQ ⊗AP
DTQ ⊗ CP

⎞

⎟

⎟

⎠

T⎛

⎜

⎜

⎝

g1
g2
g1
g2

⎞

⎟

⎟

⎠

∈ R

⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎝

BT ⊗A
DT ⊗ C

BTQ ⊗AP
DTQ ⊗ CP

⎞

⎟

⎟

⎠

T⎞

⎟

⎟

⎟

⎠

,

(2.22)

by Lemma 2.6 we know that X∗ is the least norm solution of the systems of linear equations
(2.21). Since vector operator is isomorphic and X∗ is the unique least norm solution of the
systems of matrix equations (2.17), then X∗ is the unique least norm solution of Problem
1.

3. The Solution of Problem 2

In this section, we will show that the optimal approximate solution of Problem 2 for a given
generalized reflexive matrix can be derived by finding the least norm generalized reflexive
solution of a new corresponding matrix equation pair A ˜XB = ˜E, C ˜XD = ˜F.

When Problem 1 is consistent, the set of solutions of Problem 1 denoted by SE is not
empty. For a given matrixX0 ∈ Rm×n

r (P,Q) andX ∈ SE, we have that the matrix equation pair
(1.1) is equivalent to the following equation pair:

A ˜XB = ˜E,

C ˜XD = ˜F,
(3.1)

where ˜X = X −X0, ˜E = E−AX0B, ˜F = F −CX0D. Then Problem 2 is equivalent to finding the
least norm generalized reflexive solution ˜X∗ of the matrix equation pair (3.1).

By using Algorithm 2.1, let initially iterative matrix ˜X1 = ATHBT + CT
̂HDT +

PATHBTQ + PCT
̂HDTQ, or more especially, letting ˜X1 = 0 ∈ Rm×n

r (P,Q), we can obtain the
unique least norm generalized reflexive solution ˜X∗ of the matrix equation pair (3.1); then we
can obtain the generalized reflexive solution ̂X of Problem 2, and ̂X can be represented that
̂X = ˜X∗ +X0.
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4. Examples for the Iterative Methods

In this section, we will show several numerical examples to illustrate our results. All the tests
are performed by MATLAB 7.8.

Example 4.1. Consider the generalized reflexive solution of the equation pair (1.1), where

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 3 −5 7 −9
2 0 4 6 −1
0 −2 9 6 −8
3 6 2 27 −13
−5 5 −22 −1 −11
8 4 −6 −9 −19

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, B =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

4 0 8 −5 4
−1 5 0 −2 3
4 −1 0 2 5
0 3 9 2 −6
−2 7 −8 1 11

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

C =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

6 32 −5 7 −9
2 10 4 6 −11
9 −12 9 3 −8
13 6 4 27 −15
−5 15 −22 −13 −11
2 9 −6 −9 −19

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, D =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

7 1 8 −6 14
−4 5 0 −2 3
3 −12 0 8 25
1 6 9 4 −6
−5 8 −2 9 17

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

E =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

592 −1191 1216 −244 −1331
305 431 1234 −518 221
814 −407 1668 −1176 537
1434 −179 4083 −1374 −808
242 −3150 −1362 1104 −2848
423 −2909 1441 −182 −3326

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

F =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−2882 2830 299 2291 −4849
409 670 1090 −783 −793
3363 −126 2979 −3851 246
2632 173 4553 −3709 −100
−1774 −4534 −4548 1256 −6896
864 −2512 −1136 −1633 −5412

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(4.1)

Let

P =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 1 0
0 0 0 0 1
0 0 −1 0 0
1 0 0 0 0
0 1 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, Q =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 −1
0 0 0 1 0
0 0 −1 0 0
0 1 0 0 0
−1 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (4.2)
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We will find the generalized reflexive solution of the matrix equation pair AXB =
E, CXD = F by using Algorithm 2.1. It can be verified that the matrix equation pair is
consistent over generalized reflexivematrix and has a solutionwith respect to P, Q as follows:

X∗ =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

5 3 −6 12 −5
−11 8 −1 9 7
13 −4 −8 4 13
5 12 6 3 −5
−7 9 1 8 11

⎞

⎟

⎟

⎟

⎟

⎟

⎠

∈ R5 × 5
r (P,Q). (4.3)

Because of the influence of the error of calculation, the residual Ri is usually unequal
to zero in the process of the iteration, where i = 1, 2, . . . . For any chosen positive number ε,
however small enough, for example, ε = 1.0000e − 010, whenever ‖Rk‖ < ε, stop the iteration,
and Xk is regarded to be a generalized reflexive solution of the matrix equation pair AXB =
E, CXD = F. Choose an initially iterative matrix X1 ∈ R5 × 5

r (P,Q), such as

X1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 10 −6 12 −5
−6 8 −1 14 9
13 −4 −8 4 13
5 12 6 10 −1
−9 14 1 8 6

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (4.4)

By Algorithm 2.1, we have

X17 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

5.0000 3.0000 −6.0000 12.0000 −5.0000
−11.0000 8.0000 −1.0000 9.0000 7.0000
13.0000 −4.0000 −8.0000 4.0000 13.0000
5.0000 12.0000 6.0000 3.0000 −5.0000
−7.0000 9.0000 1.0000 8.0000 11.0000

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

‖R17‖ = 3.2286e − 011 < ε.

(4.5)

So we obtain a generalized reflexive solution of the matrix equation pairAXB = E, CXD = F
as follows:

X =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

5.0000 3.0000 −6.0000 12.0000 −5.0000
−11.0000 8.0000 −1.0000 9.0000 7.0000
13.0000 −4.0000 −8.0000 4.0000 13.0000
5.0000 12.0000 6.0000 3.0000 −5.0000
−7.0000 9.0000 1.0000 8.0000 11.0000

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (4.6)

The relative error of the solution and the residual are shown in Figure 1, where the relative
error rek = ‖Xk −X∗‖/‖X∗‖ and the residual rk = ‖Rk‖.
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Figure 1: The relative error of the solution and the residual for Example 4.1 with X1 /= 0.

Letting

X1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (4.7)

by Algorithm 2.1, we have

X17 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

5.0000 3.0000 −6.0000 12.0000 −5.0000
−11.0000 8.0000 −1.0000 9.0000 7.0000
13.0000 −4.0000 −8.0000 4.0000 13.0000
5.0000 12.0000 6.0000 3.0000 −5.0000
−7.0000 9.0000 1.0000 8.0000 11.0000

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

‖R17‖ = 3.1999e − 011 < ε.

(4.8)

So we obtain a generalized reflexive solution of the matrix equation pairAXB = E, CXD = F
as follows:

X =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

5.0000 3.0000 −6.0000 12.0000 −5.0000
−11.0000 8.0000 −1.0000 9.0000 7.0000
13.0000 −4.0000 −8.0000 4.0000 13.0000
5.0000 12.0000 6.0000 3.0000 −5.0000
−7.0000 9.0000 1.0000 8.0000 11.0000

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (4.9)

The relative error of the solution and the residual are shown in Figure 2.
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Figure 2: The relative error of the solution and the residual for Example 4.1 with X1 = 0.

Example 4.2. Consider the least norm generalized reflexive solution of the matrix equation
pair in Example 4.1. Let

H =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 1 0 2
0 −1 0 1 0
1 −1 0 0 1
2 0 1 0 −3
0 1 2 1 0
−1 0 −2 −1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, ̂H =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−1 1 −1 0 0
0 1 0 −1 3
1 −1 0 −2 0
2 0 1 0 −3
0 1 2 1 0
−1 0 −2 1 2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

X1 = ATHBT + CT
̂HDT + PATHBTQ + PCT

̂HDTQ.

(4.10)

By using Algorithm 2.1, we have

X19 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

5.0000 3.0000 −6.0000 12.0000 −5.0000
−11.0000 8.0000 −1.0000 9.0000 7.0000
13.0000 −4.0000 −8.0000 4.0000 13.0000
5.0000 12.0000 6.0000 3.0000 −5.0000
−7.0000 9.0000 1.0000 8.0000 11.0000

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

‖R19‖ = 6.3115e − 011 < ε.

(4.11)



Journal of Applied Mathematics 17

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

k (iteration step)

19 20

R
el

at
iv

e 
er

ro
r/

re
si

d
ua

l

log re
log r

−38
−34
−30
−26
−22
−18
−14
−10
−6
−2

2
6

10
14
18

Figure 3: The relative error of the solution and the residual for Example 4.2.

So we obtain the least norm generalized reflexive solution of the matrix equation pairAXB =
E, CXD = F as follows:

X∗ =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

5.0000 3.0000 −6.0000 12.0000 −5.0000
−11.0000 8.0000 −1.0000 9.0000 7.0000
13.0000 −4.0000 −8.0000 4.0000 13.0000
5.0000 12.0000 6.0000 3.0000 −5.0000
−7.0000 9.0000 1.0000 8.0000 11.0000

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (4.12)

The relative error of the solution and the residual are shown in Figure 3.

Example 4.3. Let SE denote the set of all generalized reflexive solutions of the matrix equation
pair in Example 4.1. For a given matrix,

X0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−3 3 1 1 1
0 −7 1 6 10
10 −9 0 9 10
−1 1 −1 3 3
−10 6 −1 −7 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

∈ R5 × 5
r (P,Q), (4.13)

we will find ̂X ∈ SE, such that

∥

∥

∥

̂X −X0

∥

∥

∥ = min
X∈SE

‖X −X0‖. (4.14)

That is, find the optimal approximate solution to the matrix X0 in SE.

Letting ˜X = X − X0, ˜E = E − AX0B, ˜F = F − CX0D, by the method mentioned
in Section 3, we can obtain the least norm generalized reflexive solution ˜X∗ of the matrix
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Figure 4: The relative error of the solution and the residual for Example 4.3.

equation pair A ˜XB = ˜E, C ˜XD = ˜F by choosing the initial iteration matrix ˜X1 = 0, and ˜X∗ is
that

˜X∗
17 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

8.0000 −0.0000 −7.0000 11.0000 −6.0000
−11.0000 15.0000 −2.0000 3.0000 −3.0000
3.0000 5.0000 −8.0000 −5.0000 3.0000
6.0000 11.0000 7.0000 −0.0000 −8.0000
3.0000 3.0000 2.0000 15.0000 11.0000

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

‖R17‖ = 3.0690e − 011 < ε = 1.0000e − 010,

̂X = ˜X∗
17 +X0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

5.0000 3.0000 −6.0000 12.0000 −5.0000
−11.0000 8.0000 −1.0000 9.0000 7.0000
13.0000 −4.0000 −8.0000 4.0000 13.0000
5.0000 12.0000 6.0000 3.0000 −5.0000
−7.0000 9.0000 1.0000 8.0000 11.0000

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

(4.15)

The relative error of the solution and the residual are shown in Figure 4, where the relative
error rek = ‖ ˜Xk +X0 −X∗‖/‖X∗‖ and the residual rk = ‖Rk‖.
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