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By using the stronger Meir-Keeler mapping, we introduce the concepts of the sMK-G-cyclic
mappings, SMK-K-cyclic mappings, and sMK-C-cyclic mappings, and then we prove some best
proximity point theorems for these various types of contractions. Our results generalize or improve
many recent best proximity point theorems in the literature (e.g., Elderd and Veeramani, 2006;
Sadiq Basha et al., 2011).

1. Introduction and Preliminaries

Let A and B be nonempty subsets of a metric space (X, d). Consider a mapping T : AUB —
AUB, T is called a cyclic map if T(A) C Band T(B) C A. x € A is called a best proximity
point of T in A if d(x,Tx) = d(A, B) is satisfied, where d(A,B) = inf{d(x,y) : x € A, y €
B}. In 2005, Eldred et al. [1] proved the existence of a best proximity point for relatively
nonexpansive mappings using the notion of proximal normal structure. In 2006, Eldred and
Veeramani [2] proved the following existence theorem.

Theorem 1.1 (see Theorem 3.10 in [2]). Let A and B be nonempty closed convex subsets of a
uniformly convex Banach space. Suppose f : AUB — AUB is a cyclic contraction, that is, f(A) C B
and f(B) C A, and there exists k € (0, 1) such that

d(fx, fy) <kd(x,y)+ (1 -k)d(A,B) foreveryx € A, y € B. (1.1)

Then there exists a unique best proximity point in A. Further, for each x € A, { f*"x} converges to
the best proximity point.
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Later, best proximity point theorems for various types of contractions have been
obtained in [3-7]. Particularly, in [8], the authors prove some best proximity point theorems
for K-cyclic mappings and C-cyclic mappings in the frameworks of metric spaces and
uniformly convex Banach spaces, thereby furnishing an optimal approximate solution to the
equations of the form Tx = x, where T is a non-self-K-cyclic mapping or a non-self-C-cyclic

mapping.

Definition 1.2 (see [8]). A pair of mappings T : A — Band S : B — A is said to form a
K-cyclic mapping between A and B if there exists a nonnegative real number k < 1/2 such
that

d(Tx,Sy) < k[d(x,Tx) +d(y,Sy)] + (1 -2k)d(A, B), (1.2)

forxe Aand y € B.

Definition 1.3 (see [8]). A pair of mappingsT : A — Band S : B — A is said to form a
C-cyclic mapping between A and B if there exists a nonnegative real number k < 1/2 such
that

d(Tx,Sy) <k[d(x,Sy) +d(y, Tx)] + (1 - 2k)d(A, B), (1.3)

forxe Aand y € B.

In this paper, we also recall the notion of Meir-Keeler mapping (see [9]). A function
¢ :[0,00) — [0,00) is said to be a Meir-Keeler mapping if, for each 7 > 0, there exists 6 > 0
such that, for t € [0, 00) with 77 <t < 17+ 6, we have ¢(t) < 1. Generalization of the above
function has been a heavily investigated branch of research. In this study, we introduce the
below notion of the stronger Meir-Keeler function ¢ : [0,00) — [0,1/2).

Definition 1.4. We call ¢ : [0,00) — [0,1/2) a stronger Meir-Keeler mapping if the mapping
¢ satisfies the following condition:

V>0 36>0 ay,le[o,%> Vte[0,00) (n<t<b+n=g(t)<y,). (14)

The following provides two example of a stronger Meir-Keeler mapping.

Example 1.5. Let ¢ : [0,00) — [0,1/2) be defined by

0, ift<1,
t-1
@) = — ifl<t<?2, (1.5)
%, ift >2.

Then ¢ is a stronger Meir-Keeler mapping which is not a Meir-Keeler function.
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Example 1.6. Let ¢ : [0,00) — [0,1/2) be defined by

t

. 1.6
3t+1 (16)

@) =

Then ¢ is a stronger Meir-Keeler mapping.

In this paper, by using the stronger Meir-Keeler mapping, we introduce the concepts
of the sSMK-G-cyclic mappings, sMK-K-cyclic mappings and sMK-C-cyclic mappings, and
then we prove some best proximity point theorems for these various types of contractions.
Our results generalize or improve many recent best proximity point theorems in the literature

(e.g., [2,8]).

2. sMK-G-Cyclic Mappings

In this section, we prove the best proximity point theorems for the sMK-G-cyclic non-self
mappings.

Definition 2.1. Let (X, d) be a metric space, and let A and B be nonempty subsets of X. A pair
of mappingsT: A — Band S: B — Ais said to form an sMK-G-cyclic mapping between A
and B if there is a stronger Meir-Keeler function ¢ : R* — [0,1/2) in X such that for x € A
and y € B,

d(Tx,Sy) -d(A,B) < ¢(d(x,y)) - [G(x,y) - 2d(A, B)], (2.1)

where G(x,y) = max{d(x,v),d(x,Tx),d(y,Sy),d(x,Sy),d(y, Tx)}.

Lemma 2.2. Let A and B be nonempty subsets of a metric space (X, d). Suppose that the mappings
T:A — Band S : B — A form an sMK-G-cyclic mapping between A and B. Then there exists a
sequence {x,} in X such that

Tim d(x,, %5.1) = d(4, B). 2.2)

Proof. Let xo € A be given and let xp,,,1 = Tx2, and X2,,42 = Sxp,41 for each n € NU{0}. Taking
into account (2.1) and the definition of the stronger Meir-Keeler function ¢ : R* — [0,1/2),
we have that for each n € NU {0}

A(Xons1, Xons2) — d(A, B) = d(Tx24, Sxops1) — d(A, B)

< g (d(x2n, X2n41)) - [G(x2n, Xons1) — 2d(A, B)],

(2.3)
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where

G(xan, X2n41) = max{d(x2n, Xan+1), d(X2n, TX2n), d(X2n+1, SX2n+1), d(X2n, SX20+1),
d(xan+1, Tx2n) }
= max{d (X2n, X2n+1), A(X2n, X2n41), A(X2n41, Xo2ns2), A(X2n, X2n42), A(X2ns1, Xons1) )
< max{d(xan, Xans1), d(X2n, X2n41), d(Xans1, Xans2), A(X2n, X2n41)
+d(x2n41, X2n+2), 0}
< 2 max{d(x2n, X2n+1), d(X2n+1, Xon+2) }-

(2.4)

Taking into account (2.3) and (2.4), we have that for each n € NU {0}

d(Xons1, Xons2) — A(A, B) < ¢ (d(x2n, Xons1)) - 2 - [max{d (xon, X2n+1), (X241, Xons2) } — (A, B)]

< max{d(xzn, X2n41), A(X2n41, X2n42) } — A(A, B),

(2.5)
and so we conclude that
A(x2n+1, Xons2) — (A, B) < d(x2n, X2n41) — d(A, B), (2.6)
and, for each n € N,
d(xon, X2n1) = d(A, B) = d(Sx2p-1, Tx2n) — d(A, B)
= d(Tx2y, Sx24-1) — d(A, B) (2.7)

< @ (d(x2n, x21-1)) - [G(x20, X2n-1) — 2d(A, B)],

where
G(x2n, Xon-1) = max{d(x2n, X2n-1), (X2, TX21), d(X2n-1, SX2-1), A(X21, SX20-1), A(X20-1, TX21) }
< max{d(xzn, x2n—1)1 d(xZn/ x2n+1)/ d(xZn—ll xZn)/ d(x2n/ xZn)r d(x2n—1r x2n+1) }
< max{d(x2n, X2n-1), (X2, Xon+1), A(X2n-1, X21), 0, A (X201, X2n) + A(X2, X2041) }
<2 -max{d(x2n-1,%2n), A(X2n, X2n11) }.
2.8)
Taking into account (2.7) and (2.8), we have that for each n € N
d(x2n, Xon+1) — d(A, B) < ¢(d(x2n-1,X2n)) - 2 - [max{d(x2n, X2n-1), d(X2n, X2n+1) } — d(A, B)]

< max{d(x2n-1, X21), A(X2n, X2n41) } — d(A, B),
(2.9)
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and so we conclude that

d(x2n+1,x2n+2) - d(A, B) < d(.‘X'zn, x2n+1) — d(A, B) (210)

Generally, by (2.6) and (2.10), we have that for each n € N

d(xn+1/ xn+2) < d(xn/ xn+1)/

d(xp+1, Xpe2) —d(A, B) < ¢(d(xn, Xpe1)) - 2 [d(xp, Xn1) — d(A, B)].

(2.11)

Thus the sequence {d(xyn, Xu+1)}yenujo) 1S decreasing and bounded below and hence it is
convergent. Let lim,, . d(x,, Xx5+1) = 11 > 0. Then there exists np € N and 6 > 0 such that
for all n € N with n > ny

1 < d(xy, Xpe1) <1+ 6. (2.12)

Taking into account (2.12) and the definition of stronger Meir-Keeler function ¢, correspond-
ing to 77 use, there exists y;, € [0,1/2) such that

¢ (d(xn, Xn41)) <y Yn2>no. (2.13)

Thus, we can deduce that for each n € Nwithn > ng+ 1

d(xn/ xn+1) - d(Ar B) < (If(d(xn—lr xn)) <2 [d(xn—ll xn) - d(A/ B)]

(2.14)
<Yy-2-[d(xn-1,xn) —d(A,B)],
and so
A (X, Xns1) — (A, B) <y -2+ [d(xp-1,%,) — d(A, B)]
< (21,)* - [d(Xno2, Xn_1) — d(A, B
(2yy)" - [d(xp-2, x41) — d(A, B)] (2.15)
<...
< (21y)" ™ - [d(ny Xngi1) — d(A, B)].
Since y, € [0,1/2), we get
Tim d(x,, %,:1) — d(A, B) =0, (2.16)

that is, lim,, , o d(xy, X,11) = d(A, B). O
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Lemma 2.3. Let A and B be nonempty closed subsets of a metric space (X, d). Suppose that the map-
pings T : A — Band S : B — A form an sMK-G-cyclic mapping between A and B. For a fixed
point xg € A, let xop41 = Txoy and Xopip = Sxope1. Then the sequence {x,,} is bounded.

Proof. 1t follows from Lemma 2.2 that {d(x2,-1, X2,) } is convergent and hence it is bounded.
SinceT: A — Band S: B — A form an sMK-G-cyclic mapping between A and B, there is a
stronger Meir-Keeler function ¢ : R* — [0,1/2) in X such that

d(x2n, Tx0) = d(Sx2n-1, Tx0)
= d(TxO, szn_l) (2.17)
< ¢(d(x0, X2n-1)) - [G(d(x0, X2n-1)) = 2d(A, B)] +d(A, B),

where

G(d(x0, x2n-1)) = max{d(xo, x2n-1), d(x0, Tx0), d(x2n-1, SxX2n-1), d(x0, Sx2n-1), d(xX2n-1, Tx0) }
= max{d(xo, X2n-1), d(x0, Tx0), d(X2n-1, X2n), d (X0, X2n), d(x2n-1, TX0) }
< max{d(xo, Txo) + d(Txo, x2n) + d(X2n, Xon-1), d(x0, Tx0), d(X2n-1, X2n),
d(xo, Txo) + d(Txo, X2n), A(X2n-1, Xon) + d(x2n, TX0) }

= d(xg, Txo) + d(Txo, X2n) + d(X2n, X2n-1).

(2.18)
Taking into account (2.17) and (2.18), we get
¢ (d(x0, X2n-1))
d(x2n, Txo) < 1= g (d(xo, m1)) [d(x0, Txo) + d(x2n, X2n-1)]
(2.19)

1 —2¢s(d(x0, X2n-1))
1 =g (d(xo, x2n-1))

d(A, B).

Therefore, the sequence {x,,} is bounded. Similarly, it can be shown that {x7,.1} is also
bounded. So we complete the proof. O

Theorem 2.4. Let A and B be nonempty closed subsets of a metric space. Let the mappings T : A —
Band S : B — A form an sMK-G-cyclic mapping between A and B. For a fixed point xy € A, let
Xons1 = TXoy and Xopso = Sxopi1. Suppose that the sequence {x,,} has a subsequence converging to
some element x in A. Then, x is a best proximity point of T.

Proof. Suppose that a subsequence {x,,, } converges to x in A. It follows from Lemma 2.2 that
d(x2p,-1, X2m, ) converges to d(A, B). SinceT: A — Band S: B — A form an sMK-G-cyclic
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mapping between A and B and taking into account (2.13), we have that for each 2n; € N with
21’lk >ng+ 1

d(xon,, Tx) = d(Tx, x2p,)
<@ (d(x, xom-1)) - [G(x, X2, -1) —2d(A, B)] + d(A, B) (2.20)
<Yy [G(x, x2n,-1) —2d(A, B)] + d(A, B),

where

G(x, xan-1) = max{d(x, xon,-1),d(x, Tx), d(x2n,-1, SX2n,-1), A(X, Sx2p,-1), A (X2, -1, Tx) }
= max{d(x, xon,-1), d(x, Tx), d(X2n,-1, X2n, ), A(X, X2, ), A (X251, Tx) }
= max{d(x, xan,) + d(Xan,, X2n,-1), d(x, Tx), d(X2m,-1, X2m, ),
d(x, xom,), d(x2n., Tx) + d(X2me-1, X2m,) }
< d(x, xom) + d(Xon, Xan-1) + d(x2n,, Tx).

(2.21)

Following from (2.20) and (2.21), we obtain that

d(xan,, Tx) < yyld(x, xon,) + d(X2n,, X2n-1) + d(X2n,, Tx) = 2d(A, B)] + d(A, B), (2.22)

that is, we have that

d(A/ B) < d(x2nk/ Tx) < le : [d(x, x2nk) + d(x2nk/x2nk—1)] + [1 - Y"l ] ' d(Ar B),
I-yy L=y (2.23)
letting k — oo. Then we conclude that
d(A,B) < d(x,Tx) < — . [d(A,B) +0] + [1- —V | . a(A, B). (2.24)
-y T-1
Therefore, d(x,Tx) = d(A, B), that is, x is a best proximity point of T O

3. sMK-K-Cyclic Mappings

In this section, we prove the best proximity point theorems for the sMK-K-cyclic non-self
mappings.

Definition 3.1. Let (X, d) be a metric space, and let A and B be nonempty subsets of X. A pair
of mappingsT: A — Band S: B — Aissaid to form an sMK-K-cyclic mapping between A
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and B if there is a stronger Meir-Keeler function ¢ : R* — [0,1/2) in X such that, for x € A
and y € B,

d(Tx,Sy) —d(A,B) <¢(d(x,y)) - [K(x,y) -2d(A,B)], (3.1)

where K(x,y) = d(x,Tx) + d(y, Sy).

Lemma 3.2. Let A and B be nonempty subsets of a metric space (X, d). Suppose that the mappings
T:A — Band S : B — A form an sMK-K-cyclic mapping between A and B. Then there exists a
sequence {x,} in X such that

Tim d(xy, Xi1) = d(A, B). (32)

Proof. Let xo € A be given and let xp,,41 = Tx2, and X420 = Sx2441 for each n € NU {0}. Taking
into account (3.1) and the definition of the stronger Meir-Keeler function ¢ : R* — [0,1/2),
we have that n € NU {0}

d(xops1, Xons2) — d(A, B) = d(Tx24, Sxops1) — d(A, B)

< ¢ (d(x2n, X2n41)) - [K(X2n, X2n41) — 2d(A, B)], o
where
K (x2n, Xon41) = d(x2n, Tx2y) + d(X2n41, SX2041) (3.4
= d(x2n, X2n41) + d(X2n41, X2n42)-
Taking into account (3.3) and (3.4), we have that
d(xX2n41, Xons2) < A(X2n, X2n41)- (3.5)
Similarly, we can conclude that
d(Xon, X2n41) < d(X2n-1, X2n)- (3.6)
Generally, by (3.5) and (3.6), we have that for each n € NU {0}
A(Xn+1, Xns2) < d(Xn, Xp11)- (3.7)

Thus the sequence {d(xu, Xn+1)}nenuio) 18 decreasing and bounded below and hence it is
convergent. Let lim,,_, . d(xy,, Xp+1) — d(A,B) = 1 > 0. Then there exists np € Nand 6 > 0
such that for all n € N with n > ng

n< d(xn, Xn41) < n+ 0. (3.8)



Journal of Applied Mathematics 9

Taking into account (3.8) and the definition of stronger Meir-Keeler function ¢, correspond-
ing to 77 use, there exists y, € [0,1/2) such that

(P(d(xn/ Xpi1)) < Yn Vn > ny. (3.9)

Thus, we can deduce that for each n € Nwithn > ng+ 1

d(xn/ xn+1) - d(A/ B) < (If(d(xn—lr xn)) : [K(xn—h xn) - Zd(A/ B)]
<Yy [d(xn-1,Txp-1) + d(xn, Sxy) — 2d(A, B)] (3.10)
=Yy - [A(xXn-1,%Xn) + A(Xn, Xn11) — 2d(A, B)],

that is,

Y

1-yy

d(xy, xn+1) —d(A,B) <

-[d(xp-1,xn) — d(A, B)], (3.11)

since y, € [0,1/2). Therefore we get that for each n € Nwithn > ng +1

Y

1-vyy

d(xn, Xn1) —d(A, B) < ~(d(xn-1,%u) — d(A, B))

2
<< Y > - (d(xp-2,xn1) — d(A, B))

1=n (3.12)
< .
n—np
< (- (Ad(Xny, Xnps1) — A(A, B)).
I-yy
Since y, € [0,1/2), we get
nhg}c}od(xnr xn+1) - d(A/ B) = 0/ (313)
that is, lim, _, o d(xy, X,11) = d(A, B). O

Lemma 3.3. Let A and B be nonempty closed subsets of a metric space (X, d). Suppose that the
mappings T : A — Band S : B — A form an sMK-K-cyclic mapping between A and B. For a fixed
point xo € A, let xp1 = Txpp, and X240 = Sxppi1. Then the sequence {x,} is bounded.
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Proof. It follows from Lemma 3.2 that {d(x2,-1, X2,)} is convergent and hence it is bounded.
SinceT: A — Band S: B — A form an sMK-K-cyclic mapping between A and B, there is
a stronger Meir-Keeler function ¢ : R* — [0,1/2) in X such that, for xg € A and x2,-1 € B,
d(xz,l, T.X'()) - d(A, B) = d(stn_l,TxO) - d(A, B)
= d(Txo, Sx21) - d(A, B) (3.14)
< g (d(x0, x20-1)) - [K(x0, X2n-1) = 2d(A, B)],

where K (xg, x24-1) = d(x0, Txo) + d(x2n-1, Sx2n-1). So we get that

d(xan, Txo) < ¢s(d(x0, x20-1)) [d(x0, Tx0) + d(X2n-1, X2n)]

(3.15)
+ [1 - 2¢s(d(x0, X2n-1))] (A, B).

Therefore, the sequence {xy,} is bounded. Similarly, it can be shown that {x;,.1} is also
bounded. So we complete the proof. O

Theorem 3.4. Let A and B be nonempty closed subsets of a metric space. Let the mappings T : A —
Band S : B — A form an sMK-K-cyclic mapping between A and B. For a fixed point xq € A, let
Xont1 = Txoy and Xoyso = SXoys1. Suppose that the sequence {x2,} has a subsequence converging to
some element x in A. Then, x is a best proximity point of T.

Proof. Suppose that a subsequence {x,,, } converges to x in A. It follows from Lemma 2.2 that
d(x2p-1, Xom, ) converges to d(A,B). SinceT: A — Band S : B — A form an sMK-K-cyclic
mapping between A and B and taking into account (3.9), we have that for each 2n; € N with
2n > nop+1

d(xznk/ Tx) = d(Txl x2nk)
< g (d(x, x2m-1)) - [K(x, X2n,-1) — 2d(A, B)] + d(A, B) (3.16)

<Yy [K(x,x2n,-1) —2d(A, B)] +d(A, B),

where

K(x, Xan_l) = d(x, Tx) + d(.ink_l, SXan_l)

(3.17)
=d(x,Tx) + d(xX2n,-1, Xon, )-
Following from (3.16) and (3.17), we obtain that for each 2ny € N with 2n, > ng +1
d(A, B) < d(xan., Tx) < yy[d(x, Tx) + d(x2n,, Xon,-1)] + (1 = 2y,)d(A, B), (3.18)

Letting k — oo. Then we conclude that d(x, Tx) = d(A, B), that is, x is a best proximity point
of T. O
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4. sMK-C-Cyclic Mappings

In this section, we prove the best proximity point theorems for the sMK-C-cyclic non-self
mappings.

Definition 4.1. Let (X, d) be a metric space, and let A and B be nonempty subsets of X. A pair
of mappingsT: A — Band S: B — Ais said to form an sMK-C-cyclic mapping between A
and B if there is a stronger Meir-Keeler function ¢ : R* — [0,1/2) in X such that, for x € A
and y € B,

d(Tx,Sy) —d(A,B) <¢(d(x,y)) - [C(x,y) - 2d(A,B)], (4.1)
where C(x,y) =d(x,Sy) +d(y, Tx).
Lemma 4.2. Let A and B be nonempty subsets of a metric space (X, d). Suppose that the mappings

T:A — Band S : B — A form an sMK-C-cyclic mapping between A and B. Then there exists a
sequence {x,} in X such that

lim d(x,, %) = d(A, B). (4.2)

Proof. Let xg € A be given and let 3,41 = Tx2, and x2,42 = Sxpp1 for each n € NU {0}. Taking
into account (4.1) and the definition of the stronger Meir-Keeler function ¢ : R* — [0,1/2),
we have that n € NU {0}

d(x2p41, Xon+2) —d(A, B) = d(Tx24, Sx2p41) — d(A, B)

< @ x0) - [CCom ) - 2(A B,
where
C(x2n, Xon+1) = d(x2n, Sxon41) + d(X2n4+1, Tx20)
= d(xXon, X2n42) + d(X2n41, X2n+1) (4.4)
< d(xXon, Xon41) + A(X2n41, X2n42).-
Taking into account (4.3) and (4.4), we conclude that
A(X2n41, Xons2) < A(X2n, X2n41)- (4.5)
Similarly, we can conclude that
d(x2n, Xon+1) < d(X2n-1, X2n)- (4.6)

Generally, by (4.5) and (4.6), we have that for each n € NU {0}

d(Xps1, Xne2) < d(Xp, Xp41)- (4.7)
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Thus the sequence {d(xyn, Xu+1)}yenujo) 1S decreasing and bounded below and hence it is

convergent. Let lim,, . d(x,, X5+1) = 11 > 0. Then there exists np € N and 6 > 0 such that
for all n € N with n > ny

1 < d(xXn, Xns1) <1 +0. (4.8)

Taking into account (4.5) and the definition of stronger Meir-Keeler function ¢, correspond-
ing to 71 use, there exists y, € [0,1/2) such that

¢ (d(xn, xp41)) <Yy Vn2ny. (4.9)

Thus, we can deduce that for each n € Nwithn > ng+ 1

d(xy, xp1) —d(A,B) <@ (d(xp-1,xn)) - [C(xp-1,xn) —2d(A, B)]
< ¥y - [d(xn-1, Sxp) + d(x, Txp-1) — 2d(A, B)]
(4.10)
= ¥y - [d(Xn-1, Xns1) + d(xn, Xn) — 2d(A, B)]

<Yy - [d(xn-1, xn) + (X, Xp1) +0—-2d(A, B)],

that is,

Y
1-vy

A(xu, xn1) — d(A, B) < -[d(xp1, xn) —d(A, B)], (4.11)

since ¥, € [0,1). Therefore we get that for each n € N with n > no + 1

Y

d(xn/xn+l) = d(A,B) < - ”

~(d(xp-1,xn) — d(A, B))

2
<< 1L > (d(xy-2,xp1) —d(A,B))

1=m (4.12)

< <1 iﬂm) +(d(Xny, Xnp+1) — d(A, B)).

Since y; € [0,1/2), we obtain that lim,, . od (xy, X4+1) = d(A, B). O

Lemma 4.3. Let A and B be nonempty closed subsets of a metric space (X, d). Suppose that the
mappings T : A — Band S : B — A form an sMK-C-cyclic mapping between A and B. For a fixed
point xo € A, let xpp1 = TXop and Xoyps2 = Sxoni1. Then the sequence {x,} is bounded.
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Proof. It follows from Lemma 4.2 that {d(x2,-1, X2,)} is convergent and hence it is bounded.
SinceT: A — Band S: B — A form an sMK-C-cyclic mapping between A and B, there is a
stronger Meir-Keeler function ¢ : R* — [0,1/2) in X such that for xy € A and x7,-1 € B,

d(xan, Txo) — d(A, B) = d(Sxan-1,Tx0) — d(A, B)
= d(Txo, Sx2n-1) — d(A, B) (4.13)

< g (d(x0,x2n-1)) - [C(x0, X20-1) — 2d(A, B)],

where
C(x0, 2X2-1) = d((x0, Sx20-1) + (21, Txo)
(4.14)
= d('xO/ xZn) + d(xznfl, TXO),
So we get that
d(XZnI Txo) < (P(d(x()/ x2n—1)) [d(xo, xZn) + d(X2n_1, Tx())]
+ [1 = 2¢5(d(x0, x20-1))] d(A, B)
(4.15)

< ‘P(d(XO/ Xon-1)) [Ad(X2n-1, X21) + 2d(x25,, Tx0) + d (50, Tx0)]
+ [1 = 2¢5(d(x0, X20-1))] d(A, B).

Therefore, the sequence {xy,} is bounded. Similarly, it can be shown that {x;,.1} is also
bounded. So we complete the proof. O

Theorem 4.4. Let A and B be nonempty closed subsets of a metric space. Let the mappings T : A —
Band S : B — A form an sMK-C-cyclic mapping between A and B. For a fixed point xy € A, let
Xont1 = TXoy and Xopso = SXoy41. Suppose that the sequence {x2,} has a subsequence converging to
some element x in A. Then, x is a best proximity point of T.

Proof. Suppose that a subsequence {x,,, } converges to x in A. It follows from Lemma 2.2 that
d(x2p-1, Xom, ) converges to d(A,B). SinceT: A — Band S : B — A form an sMK-C-cyclic
mapping between A and B and taking into account (4.9), we have that, for each 2n; € N with
2n >np+1,

d(xon,, Tx) = d(Tx, xop, )
< g(d(x, x2m,-1)) - [C(x, x20,-1) —2d (A, B)] + d(A, B) (4.16)
<Yy - [C(x, x2n,1) —2d(A,B)] +d(A,B),

where

C(.’X‘, xan—l) = d(x, Sxan—l) + d(xan_1, Tx)
(4.17)
= d(x, xop, ) + d(xop-1, TX).
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Following from (4.16) and (4.17), we obtain that

d(xan,, Tx) < yyld(x, Xon,) + d(X2n, X2n,-1) + d(X2n,, Tx) = 2d(A, B)] + d(A, B), (4.18)

that is, we have that

d(A, B) < d(xon, Tx) < LU [d(x, x2n,) + d(x2n,, X2m—1)] + [1 -y ] -d(A, B).
-y, L=y (4.19)
Letting k — oo. Then we conclude that
d(A,B) <d(x,Tx) < - Y“Y [d(A,B) +0] + [1 = L ] .d(A, B). (4.20)
T T
Therefore, d(x,Tx) = d(A, B), that is, x is a best proximity point of T O
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