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This paper investigates reliability analysis of wireless sensor networks whose topology is
switching among possible connections which are governed by a Markovian chain. We give the
quantized relations between network topology, data acquisition rate, nodes’ calculation ability,
and network reliability. By applying Lyapunov method, sufficient conditions of network reliability
are proposed for such topology switching networks with constant or varying data acquisition rate.
With the conditions satisfied, the quantity of data transported over wireless network node will
not exceed node capacity such that reliability is ensured. Our theoretical work helps to provide a
deeper understanding of real-world wireless sensor networks, which may find its application in
the fields of network design and topology control.

1. Introduction

The wireless sensor network (WSN), consisting of spatially distributed autonomous sensors
to monitor physical or environmental conditions, is recently arousing lots of attention with
flourishing results achieved. The development of wireless sensor network ascends to the 19th
century and now can find its wide applications in many industrial and consumption fields,
such as industrial process monitoring and control machine health monitoring and [1, 2]. The
WSN is built of “nodes”—from a few to several hundred or even thousand which therefore
compose a large-scaled complex network [3]. An important point can be drawn from above
achievements that the complexity of network topology has great effect on the reliability or
stability of WSN with many effective topology control methods proposed [4, 5]. Meanwhile,
node’s calculation capacity as well as data acquisition rate is an important index for node
ability and is also concerned with the network’s reliability. However in most cases, network
topology is stochastic and it varies with random events occurring which are due to changes in
sensor nodes’ position, reachability (due to jamming, noise, moving obstacles, etc.), available
energy, malfunctioning, and task details. This variation alters not only the nodes’ ability
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of calculation and data acquisition rate, but also the network topology. Obviously, such
changes are unpredictable whichmay cause network congestion and lead to network collapse
in worst cases. How the holistic WSN can maintain reliable despite of all these stochastic
perturbations, is of course, a big challenge for researchers.

For reliability of such WSN with topology switching, some feasible assumptions are
necessary. As we know, network topology remains unchanged until next event breaks out
and the occurrence of these events is usually governed by aMarkov chain [6]. For this reason,
such kind of special stochastic pattern is given the name “Markovian jump model” [7]. This
model is now being used to solve many problems in network, such as approximation [8],
synchronization [9], and stabilization [10]. By assuming the concerned complex network is
a Markovian jump system with UNIQUE equilibrium, sufficient conditions for stability are
proposed using Lyapunov method. However for practical WSN used to acquire sensory data
from outside environment, failure of nodes or change of environment will cause topology
switching and also change the data acquisition rate, for each node. Thus the considered
WSN can be modelled as a Markovian jump complex network with switching equilibrium
instead of UNIQUE, and its reliability analysis remains unsolved. In this paper, we focus on
establishing quantized relations betweenWSN reliability and network parameters, especially
network topology and data acquisition rate. From the point of system analysis, Lyapunov
method is applied and the possible maximum date transport quantity over network node
can be calculated for two cases: with constant data acquisition rate and with varying data
acquisition rate. This quantity is certainly concerned with network topology, data acquisition
rate, and nodes’ calculation capacity. Sufficient conditions for the reliability analysis of
networks are proposed ensuring this calculated quantity will not exceed network capacity
such that buffer zone is bounded and network congestion is avoided. For WSNwhich cannot
satisfy the sufficient conditions, for example, to maintain network reliability, we should
improve the nodes’ calculation capacity to a desired level, perform network topology control,
or decrease the frequency of acquiring sensory data from outside environment. This work
investigates WSN from the point of system analysis and will be of help for WSN topology
design as well as traffic control.

The following of this paper is organized as follows: Section 2 begins with problem
description. In Section 3, network model is given and reliability criteria are discussed.
Section 4 presents a numerical example and a brief conclusion is drawn in Section 5.

Notation. Throughout the paper, unless otherwise specified, we denote by (Ω,F, P), a
complete probability space. The superscript T will denote transpose and matrix P > 0 (≥ 0)
denotes P is positive(nonnegative) definite matrix. Let | · | stand for the Euclidean norm for
vectors and λmin(P) denote the minimal eigenvalue of matrix P .

2. System Model Description

Consider the followingWSNwithN nodes as shown in Figure 1 where WSN hasM possible
topologies which switch randomly among set S = {1, 2, . . . ,M}. Each possible topology k ∈ S
corresponds to one regime and this topology(regime) switching is governed by a Markovian
chain r(t) characterized by transition rate matrix Π = [πkl]M×M, k, l ∈ S as

P(r(t + dt) = l | r(t) = k) =

⎧
⎨

⎩

πkldt + o(dt) if k /= l

1 + πkkdt + o(dt) if k = l,
(2.1)



Journal of Applied Mathematics 3

Data acquisition rate D1 D2

D3

Connection

Con
nec

tio
n

x1
x2

x3

Figure 1: Wireless sensor network.

where dt > 0 and o(dt) satisfie limdt→ 0(o(dt)/dt) = 0. Notice that the total probability axiom
imposes πkk negative and

∑M
l=1 πkl = 0, for all k ∈ S.

xi(t) is the data length, that is, quantity of data waiting to be transported in each nodes
i; fi(xi(t), t, r(t)) is the calculation capacity of node i. For each possible network topology r(t),
fi(xi(t), t, r(t))may be different.Gij(r(t)) is specified as follows: if there is a physical transport
path or connection between node i and node j(i /= j), Gji(r(t)) = Gij(r(t)) = 1; otherwise
Gji(r(t)) = Gij(r(t)) = 0 (i /= j). And data transported between node i and j satisfy that data
will be transported from node j to i only if the quantity of data in node j is larger than that of
node i, that is, xj ≥ xi. Weighted value c(r(t)) represents network status for data transport, if
network status is good, c(r(t)) = 1 and all data transported can be received; otherwise c(r(t))
takes values in (0, 1) and partial data will be lost during the transport process. Parameter
di(r(t)) represents the data acquired from outside environment for node i under regime r(t).
Thus the data flow equation is described as follows:

ẋi(t) = fi(xi(t), r(t)) + c(r(t))
N∑

j=1

Gij(r(t))xj(t) + di(r(t)),

i = 1, 2, . . .N r(t) ∈ S = {1, 2, . . .M}.
(2.2)

In (2.2), Gii(r(t)) = −∑N
j=1 Gij(r(t)), for all i /= j. Noticing the fact that for all Gij(r(t))/= 0,

which means there is a transport path between nodes i and j, data will be transported from i
to j under the condition xi(t) > xj(t) and otherwise from j to i with xi(t) < xj(t).

Rewrite (2.2) in matrix form as

ẋ(t) = f(x(t), r(t)) + c(r(t))G(r(t))x(t) +D(r(t)). (2.3)

Here vector x(t) = [x1(t), x2(t), . . . xN(t)]T ∈ R
N denotes the node data variables; f(x(t),

r(t)) = [f1(x1, r(t)), f2(x2, r(t)), . . . , fN(xN, r(t))]T , and D(r(t)) = [d1(r(t)), d2(r(t)),
. . . dN(r(t))]T . Matrix G(r(t)) ∈ R

N×N is coupling matrix and for each regime r(t) ∈ S, the
elements Gij(r(t)) are specified as above which means that the network is fully connected in
the sense of having no isolated clusters. Obviously, zero is the largest eigenvalue of G with
multiplicity. For simplicity, we write f(x(t), r(t) = k) as f(x(t), k) and so on.
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Because of calculation capacity limitation for nodes, assume that for each regime k ∈ S,
the function f(x(t), k) in (2.2) satisfies the following sector condition:

∣
∣f(x(t), k) − f

(
y(t), k

)∣
∣ ≤ m

∣
∣x(t) − y(t)

∣
∣, ∀x, y ∈ R

N, k ∈ S. (2.4)

It is known by [11] that with inequality (2.4) established, there exists a unique solution
x(t, r(t)) for network (2.3).

For reliability analysis, the following definitions and lemmas are introduced.

Definition 2.1. Wireless sensor network (2.3) is stochastically reliable in mean-square sense if
there exists a bounded positive constant C such that for node data variable x(t, r(t)), there is

lim
t→∞

E
{
xT (t, r(t))x(t, r(t))

}
< C. (2.5)

Definition 2.2. Wireless sensor network (2.3) is asymptotically reliable almost surely if there
exists a bounded positive constant C such that

P

{

lim
t→∞

x(t, r(t)) = C

}

= 1. (2.6)

Lemma 2.3 (see [12]). Given any real matrices Q1, Q2, Q3 with appropriate dimensions such that
0 < Q3 = QT

3 , the following inequality holds:

QT
1Q2 +QT

2Q1 ≤ QT
1Q3Q1 +QT

2Q
−1
3 Q2. (2.7)

Lemma 2.4 (Schur complement). Let X = XT ∈ R
(n+m)×(n+m) be a symmetric matrix given by

X =
[
A BT

B C

]
, where A ∈ R

n×n, B ∈ R
m×n, C ∈ R

m×m, and C is nonsingular, then X is positive
definite if and only if C > 0 and A − BTC−1B > 0.

3. Reliability Analysis

Considering WSN (2.3) with topology switching, since for each different topology, D(r(t))
may be different, thus the equilibrium for network (2.3) will not necessarily be the same.
Assuming that for each regime r(t), the equilibrium is given as u∗(r(t)) with u∗(r(t)) =
[u∗

1(r(t)), u
∗
2(r(t)), . . . u

∗
N(r(t))] ∈ R

N , where u∗(r(t)) can be different or the same for each
different regime r(t), thus there is

f(u∗(r(t), t)) + c(r(t))G(r(t))u∗(r(t)) +D(r(t)) = 0, ∀k ∈ S. (3.1)

In order to shift u∗(r(t)) to the origin, define

z(t, r(t)) = x(t) − u∗(r(t)), (3.2)

g(z(t, r(t)), r(t)) = f(x(t), r(t)) − f(u∗(r(t)), r(t)). (3.3)
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Therefore g(z(t, k), k) = [g1(z1(t, k), k), g2(z2(t, k), k), . . . , gN(zN(t, k), k)]T and for each
regime k ∈ S, there is g(0, k) = 0. Substituting (3.1)–(3.3) into (2.3), we have

ż(t, k) = g(z(t, k), k) + c(k)G(k)z(t, k). (3.4)

Through this substituting, network (2.3) with switching equilibrium u∗(k) is transferred to
network (3.4) with common equilibrium 0. Thus we study stability of network (2.3) around
equilibria u∗(k) by investigating stability of network (3.4) around origin. For simplicity, we
write z(t, k) as z(k) and matrix c(r(t) = k), G(r(t) = k), D(r(t) = k) as ck, Gk, Dk.

Let Pk, k ∈ S be a series of symmetric positive definite matrices and construct
Lyapunov function as follows:

V (z(k), t, k) = z(k)TPkz(k). (3.5)

According to infinitesimal generator [11], there is

LV (z(k), t, k) = żT (k)Pkz(k) + zT (k)Pkż(k) +
M∑

l=1

πklV (z(l), t, l)

=
[
g(z(k), k) + ckGkz(k)

]T
Pkz(k) + zT (k)Pk

[
g(z(k), k) + ckGkz(k)

]

+
M∑

l=1

πklz
T (l)Plz(l)

= z(k)T [ckGkPk + ckPkGk]z(k) + gT (z(k), k)Pkz(k)

+ zT (k)Pkg(z(k), k) +
M∑

l=1

πklz
T (l)Plz(l)

≤ z(k)T [ckGkPk + ckPkGk]z(k)

+
[
gT (z(k), k)Q3kg(z(k), k) + zT (k)PkQ

−1
3kPkz(k)

]
+

M∑

l=1

πklz
T (l)Plz(l)

≤ zT (k)[ckGkPk + ckPkGk]z(k)

+
[
m2zT (k)Q3kz(k) + zT (k)PkQ

−1
3kPkz(k)

]
+

M∑

l=1

πklz
T (l)Plz(l)

= z(k)T
[
ckGkPk + ckPkGk +m2Q3k + PkQ

−1
3kPk

]
z(k)

+
M∑

l=1

πkl[x(t) − u∗(l)]TPl[x(t) − u∗(l)]
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= z(k)T
[
ckGkPk + ckPkGk +m2Q3k + PkQ

−1
3kPk

]
z(k)

+
M∑

l=1

πkl[x(t) − u∗(k) + u∗(k) − u∗(l)]TPl[x(t) − u∗(k) + u∗(k) − u∗(l)]

= z(k)T
[
ckGkPk + ckPkGk +m2Q3k + PkQ

−1
3kPk

]
z(k)

+
M∑

l=1

πkl[z(k) + u∗(k) − u∗(l)]TPl[z(k) + u∗(k) − u∗(l)].

(3.6)

The “derivative” of Lyapunov function is given by (3.6), and here Q3k are a series of
symmetric positive definite matrices. For the stability analysis, we will discuss its property
from two situations: u∗(k) ≡ u∗(l), which means for each possible topology, theWSN acquires
the same quantity of data from environment, and u∗(k)/=u∗(l), k, l ∈ S where the WSN
acquires different quantity of data because of topology switching.

3.1. Constant Date Acquisition Rate

Consider the date acquisition rate is constant, which means D(k) ≡ D(l) and u∗(k) ≡ u∗(l),
for all k, l ∈ S, thus (3.6) has the following form:

LV (z(k), t, k) = zT (k)Pkz(k)

≤ z(k)T
[

ckGkPk + ckPkGk +m2Q3k + PkQ
−1
3kPk +

M∑

l=1

πklPl

]

z(k).
(3.7)

In [13], Lasalle theorem of stochastic version was deduced for nonjump case and this theorem
can be extended to Markovian jump case as follows.

Theorem 3.1 (Lasalle theorem). Consider Markovian jump system (3.4) with u∗(k) ≡ u∗(l), for
all k, l ∈ S, and Lyapunov function V (x(t, k), t, k) satisfies that V (x(t, k), t, k) ∈ C2,1 (Rn × R+ ×
S;R+), if there exists K∞ function W1(x(t, k)), W2(x(t, k)) and nonnegative continuous function
W(x(t, k)) such that

V (0, t, k) = 0 W1(x(t, k)) ≤ V (x(t, k), t, k) ≤ W2(x(t, k))

LV (x(t, k), t, k) ≤ −W(x(t, k)) ∀k ∈ S W(0) = 0,
(3.8)

then the following equation stands:

lim
t→∞

W(x(t, r(t))) = 0 a.s. (3.9)

Proof. Please refer to the appendix.
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By combining Theorem 3.1 and (3.7), we have the following theorem about the stabi-
lity for network (2.3)with unique equilibrium.

Theorem 3.2. Consider wireless sensor network (2.3) with constant date acquisition rate D, if there
exist a series of symmetric positive definite matrices Pk, Q3k, k ∈ S such that

[
Jk Pk

Pk Q3k

]

> 0, (3.10)

the network (2.3) is asymptotically reliable almost surely, that is, there is

lim
t→∞

x(t, r(t)) = u∗ a.s., (3.11)

where Jk is defined as

Jk = −
(

ckGkPk + ckPkGk +m2Q3k +
M∑

l=1

πklPl

)

. (3.12)

Proof. Since u∗(k) ≡ u∗(l) = u∗, for all k, l ∈ S, thus (3.6) is translated to

LV (z(k), t, k) = zT (k)Pkz(k)

≤ zT (k)

[

ckGkPk + ckPkGk +m2Q3k + PkQ
−1
3kPk +

M∑

l=1

πklPl

]

z(k)

� −W(z(t, k)) ≤ 0.

(3.13)

By checking the definition of V (z(k), t, k), LV (z(k), t, k) and applying Lemma 2.3 as well as
Lemma 2.4, we have immediately:

lim
t→∞

W(z(t, k)) = 0 a.s.

that is P

{

lim
t→∞

W(z(t, k)) = 0
}

= 1 ∀k ∈ S.
(3.14)

And it is easily seen thatW(z(t, k)) is a classicK function of z(t, k). According to the quality
of K function (seen in [14]), W(z(t, k)) is strictly positive if z(t, k)/= 0, thus W(z(t, k)) = 0
implies that z(t, k) = 0, which means sample set {ω : W(z(t, k)) = 0} ⊆ {ω : z(t, k) = 0} and
we have

P

{

lim
t→∞

z(t, k) = 0
}

≥ P

{

lim
t→∞

W(z(t, k)) = 0
}

. (3.15)



8 Journal of Applied Mathematics

Combined with (3.14), the following stands:

P

{

lim
t→∞

z(t, k) = 0
}

≥ P

{

lim
t→∞

W(z(t, k)) = 0
}

= 1 (3.16)

Immediately we have

P

{

lim
t→∞

z(t, k) = 0
}

= 1,

that is P

{

lim
t→∞

x(t, r(t)) = u∗
}

= 1.

(3.17)

3.2. Varying Date Acquisition Rate

In most cases, the distribution of equilibria u∗(k) will differ with different network topology.
Obviously this difference will bring effects on the trajectory of node state in network (2.3).
For example, network regime is r(t1) = k at time point t1 and behavior of state trajectory is
determined by the corresponding dynamic ẋ(t) = f(x(t, k), k) + ckG(k)x(t, k) + D(k), t ≥ t1
such that the trajectory x(t) is going towards the desired equilibrium u∗(k) with reliability
criteria satisfied. After a random timeΔt, a sudden event occurs and now the regime is lwith
new network topology described as ẋ(t) = f(x(t, l), l) + clG(l)x(t, l) + D(l), t ≥ t1 + Δt; thus
the trajectory x(t) will going towards a new equilibrium u∗(l) following the new topology.
Intuitively, node state x(t) will keep going towards the corresponding equilibrium u∗(j) for
each regime j with reliability criteria ensured. Thus it will finally run into a region which is
concerned with the distribution of all the equilibria. It is obvious that reliability criteria only
guarantee the node trajectory goes towards the equilibrium and cannot explain how close it
can be near the equilibrium. For quantitative analysis, we have the following theorem.

Theorem 3.3. Consider stochastic network (2.3) with switching equilibria u∗(k), if there exist a
series of symmetric positive-definite matrices Pk, Q3k and positive scalar εk such that the following
inequality is ensured:

[
J∗
k

Pk

Pk Q3k

]

> 0. (3.18)

This network is stochastically reliable in mean-square sense, that is, there exists a positive constant C
such that

lim
t→∞

E
{
xT (t)x(t)

}
≤ C, (3.19)

where Jk is defined as

J∗k = −
(

ckGkPk + ckPkGk +m2Q3k +
M∑

l=1

(1 + εl)πklPl

)

. (3.20)

Constant C is determined by u∗(k) with network parameters f(k), Gk, ck given and Pk, Q3k, εk
taken.
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Proof. According to inequality (3.6), there is

LV (z(k), t, k) ≤ z(k)T
[
ckGkPk + ckPkGk +m2Q3k + PkQ

−1
3kPk

]
z(k)

+
M∑

l=1

πkl[z(k) + u∗(k) − u∗(l)]TPl[z(k) + u∗(k) − u∗(l)]

= z(k)T
[
ckGkPk + ckPkGk +m2Q3k + PkQ

−1
3kPk

]
z(k)

+
M∑

l=1

πklz(k)
TPlz(k) +

M∑

l=1

πklz
T (k)Pl[u∗(k) − u∗(l)]

+
M∑

l=1

πkl[u∗(k) − u∗(l)]TPlz(k) +
M∑

l=1

πkl[u∗(k) − u∗(l)]TPl[u∗(k) − u∗(l)]

≤ z(k)T
[
ckGkPk + ckPkGk +m2Q3k + PkQ

−1
3kPk

]
z(k)

+
M∑

l=1

πklz(k)
TPlz(k) +

M∑

l=1

πkl

[
εlz

T (k)Plz
T (k)

]

+
M∑

l=1

πkl
1
εl
[u∗(k) − u∗(l)]TPl[u∗(k) − u∗(l)]

+
M∑

l=1

πkl[u∗(k) − u∗(l)]TPl[u∗(k) − u∗(l)]

= z(k)T
{

ckGkPk + ckPkGk +m2Q3k + PkQ
−1
3kPk +

M∑

l=1

(1 + εl)πklPl

}

z(k)

+
M∑

l=1

(

1 +
1
εl

)

πkl[u∗(k) − u∗(l)]TPl[u∗(k) − u∗(l)]

≤ −αV (z(k), t, k) + β,

(3.21)

where

α � min
k∈S

{

λmin

[

−ckGkPk − ckPkGk −m2Q3k + PkQ
−1
3kPk −

M∑

l=1

(1 + εl)πklPl

]}

β � max
k∈S

{
M∑

l=1

(

1 +
1
εl

)

πkl[u∗(k) − u∗(l)]TPl[u∗(k) − u∗(l)]

}

.

(3.22)
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Similar to [15], apply generalized Itô formula and result that

E
{
eαtV (z(t, k), t, k)

}
= V (z(0, r(0)), t, r(0)) + E

∫ t

0
eαsLV (z(s, r(s)), s, r(s))ds

+ αE

∫ t

0
V (z(s, r(s)), s, r(s))ds.

(3.23)

Substitute (3.21) into (3.23) and we have

E
{
eαtV (z(t, k), t, k)

} ≤ V (z(0, r(0)), t, r(0)) + β

∫ t

0
eαsds

= V (z(0, r(0)), t, r(0)) +
β

α

[
eαt − 1

]
(3.24)

which immediately generates

E{V (z(t, k), t, k)} ≤ e−αt
[

V (z(0, r(0)), t, r(0)) − β

α

]

+
β

α
. (3.25)

Let t → ∞ in above inequality, there is

lim
t→∞

E{V (z(t, k), t, k)} = lim
t→∞

E
{
zT (t, k)Pkz

T (t, k)
}
≤ β

α

that is lim
t→∞

E
{
xT (t)x(t)

}
≤ β

αλmin{Pk} + u∗T
k u∗

k � C.

(3.26)

The proof is complete.

Remark 3.4. In above analysis, we give the sufficient conditions for network (2.3) to be reliable
inmean-square sense. It can be seenwith (3.18) ensured, the trajectory of each regime k is sure
to enter an attractive region around the equilibrium u∗(k), and the radius of attractive region
is an increasing function of the distance of all equilibria

∑M
l=1 |u∗(k)−u∗(l)|2, and this distance

reflects the intrinsic characteristic of network which is determined by network topology. In
order to decrease the radius, one possible way is to increase the value of α. From (3.25), we
know that α determines how fast the trajectory can converge to the attractive region, and α is
concerned with node calculation capacity f , network topology G, and network status c. The
larger the parameter α is, the faster the convergence speed is, and also the smaller radius is.
For these reasons, we request a larger parameter α for convergence speed and convergence
precision.

Remark 3.5. Neither control variable nor decision action appears in the model of network
(2.3), and the above analysis reflects the natural property of autonomous network. Note that
parameter C is a conservative result for the bound of node state, and the radius of attractive
region for practical network will be less than C. Consider a network with performance
demand that E{|x(t)|2} ≤ γ after calculating we know C ≤ γ ; thus we need to do nothing
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Figure 2: Network topology switching.

and just let the network work by itself. Otherwise, there may be a need taking control or
decision to change either the network topology Gk or the transition rate matrix Π for the
satisfaction of performance. This work will be of some help for network topology design and
decision making.

4. Numerical Example

Consider the following 2-regime wireless sensor network as shown in Figure 2:

ẋ(t) = f(x(t), k) + ckGkx(t) +Dk k = 1, 2, (4.1)

where this network consists of 6 nodes (N = 6), and its topology switches between regime
1 and regime 2 with transition rate matrix as Π =

[ −12 12
20 −20

]
. Initial node state is x(0) =

[10, 20,−10,−20,−7, 33]T and parameters are given as

Regime 1 : G1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2 1 0 1 0 0
1 −3 1 0 1 0
0 1 −3 0 1 1
1 0 0 −1 0 0
0 1 1 0 −2 0
0 0 1 0 0 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, c1 = 0.05, (4.2)

f1 = −diag(6 + 1/20, 6 + 2/20, 6 + 3/20, 6 + 4/20, 6 + 5/20, 6 + 6/20)x(t),

Regime 2 : G2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2 1 0 0 1 0
1 −2 0 0 0 1
0 0 −2 0 1 1
0 0 0 −1 1 0
1 0 1 1 −3 0
0 1 1 0 0 −2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, c2 = 0.02, (4.3)

f2 = −diag(1 + 1/10, 1 + 2/10, 1 + 3/10, 1 + 4/10, 1 + 5/10, 1 + 6/10)x(t), and m = 6 for
both regimes. For comparison of unique equilibrium case and multiple equilibria case, we
adopt the same sample path, that is, Markovian jump is the same throughout numerical
experiments as in Figure 3.
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Figure 3: Simulation of Markovian jump.

4.1. Constant Date Acquisition Rate

We investigate network (2.3) with unique equilibrium u∗
i = 0, i = 1, . . . , 6, where D1 = D2 =

[0, 0, 0, 0, 0, 0]T . It is easy to see that positive definite matric P1 = P2 = Q31 = Q32 = I can satisfy

− c1G1P1 − c1P1G1 −m2Q31 + P1Q
−1
31P1 −

2∑

l=1

π1lPl

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

10.2917 1.5000 −0.3000 0.9000 −0.3000 0
1.5000 8.5917 1.5000 −0.3000 1.2000 −0.3000
−0.3000 1.5000 8.6917 0 1.2000 1.2000
0.9000 −0.3000 0 11.7917 0 0
−0.3000 1.2000 1.2000 0 10.6917 −0.3000

0 −0.3000 1.2000 0 −0.3000 11.9917

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

> 0

− c2G2P2 − c2P2G2 −m2Q32 + P2Q
−2
32P2 −

2∑

l=1

π2lPl

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.4767 0.4800 −0.1200 −0.1200 0.6000 −0.1200
0.4800 1.6767 −0.1200 0 −0.12000 0.4800
−0.1200 −0.1200 1.8767 −0.1200 0.6000 0.4800
−0.1200 0 −0.1200 2.5567 0.4800 0
0.6000 −0.1200 0.6000 0.4800 1.5567 −0.1200
−0.1200 0.4800 0.4800 0 −0.1200 2.4767

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

> 0.

(4.4)

Thus all the parameters satisfy the reliability criteria in Theorem 3.2, and node state trajectory
is shown as follows in Figure 4.
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Figure 4: Node state trajectory of constant data acquisition rate.

4.2. Varying Date Acquisition Rate

In this subsection, we simulate the case that Markovian jumps change not only the topology
structure of network, but also date acquisition rate. And this network has two regimes
with two different equilibria: u∗

i (1) = 0, u∗
i (2) = 5, i = 1, 2, . . . , 6 with D1 = 0, D2 =

[5.4861, 5.9917, 6.4861, 6.9972, 7.5194, 8.0194]T . Positive definite matric P1 = P2 = Q31 = Q32 =
I and scalar ε1 = 0.2, ε2 = 0.5 can satisfy

− c1G1P1 − c1P1G1 −m2Q31 + P1Q
−1
31P1 −

2∑

l=1

(1 + εl)π1lPl

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

6.6917 1.5000 −0.3000 0.9000 −0.3000 0
1.5000 4.9917 1.5000 −0.3000 1.2000 −0.3000
−0.3000 1.5000 5.0917 0 1.2000 1.2000
0.9000 −0.3000 0 8.1917 0 0
−0.3000 1.2000 1.2000 0 7.0917 −0.3000

0 −0.3000 1.2000 0 −0.3000 8.3917

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

> 0

− c2G2P2 − c2P2G2 −m2Q32 + P2Q
−1
32P2 −

2∑

l=1

(1 + ε2)π2lPl

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

7.4767 0.4800 −0.1200 −0.1200 0.6000 −0.1200
0.4800 7.6767 −0.1200 0 −0.12000 0.4800
−0.1200 −0.1200 7.8767 −0.1200 0.6000 0.4800
−0.1200 0 −0.1200 8.5567 0.4800 0
0.6000 −0.1200 0.6000 0.4800 7.5567 −0.1200
−0.1200 0.4800 0.4800 0 −0.1200 8.4767

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

> 0.

(4.5)
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Figure 5: Node state trajectory of multiple equilibria u∗
i (1) = 0, u∗

i (2) = 5.

Thus all the parameters satisfy the reliability criteria in Theorem 3.3, and node sate trajectory
is shown in Figure 5

Consider network (2.3) has multiple equilibria u∗
i (1) = 0, u∗

i (2) = 10, i = 1, . . . , 6,
thus D1 = [0, 0, 0, 0, 0, 0]T , D2 = [10.9722, 11.9833, 12.9722, 13, 9944, 15.0389, 16.0389]T while
other parameters keep unchanged as well as the Markovian jump sample. Noticing that the
reliability criteria are the same as the case of u∗

i (1) = 0, u∗
i (2) = 5, i = 1, 2, . . . , 6. According to

Theorem 3.3, such network is also stable in mean-square sense, and its node state trajectory
is shown in Figure 6.

It can be seen from Figures 5 and 6 that with the same parameters P1, P2, Q31, Q32, ε1,
ε2 satisfying the reliability criteria in Theorem 3.2, the node state trajectory can converge to
the attractive region with the same convergence speed, which is dependent on parameter
f(k), Gk, ck, N, m, Π with the same Pk, Q3k, εk, that is, this speed is determined by the
natural property of network. However, the radius of this region is different: for the former
case u∗

i (1) = 0, u∗
i (2) = 5, the radius is smaller while for the latter case u∗

i (1) = 0, u∗
i (2) = 10,

the radius is larger, which means the radius of attractive region is an increasing function of
the distance between the equilibria.

5. Conclusion

Reliability problems of stochastically switching wireless sensor network are studied in this
paper. This switching, governed byMarkovian chain, changes not only network topology, but
also the data acquisition rate from outside environment. Our work reveals that reliability is
dependent on three elements: network topology, network parameters and Markovian chain.
When data acquisition rate keeps unchanged so that all network topologies share a common
equilibrium despite of regime jump, network node state can be asymptotically reliable almost
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Figure 6: Node state trajectory of multiple equilibria u∗
i (1) = 0, u∗

i (2) = 10.

surely if the above three elements satisfy sufficient conditions. For varying data acquisition
rate case, node state can converge to an attractive region similarly with sufficient conditions
ensured, while its radius is concerned with the distribution of all the equilibria. Numerical
simulations present an intuitive understanding of these relations and all the reliability criteria
in this paper can be feasible for a general network.

Appendix

Lasalle Theorem in Markovian Jump Systems

Lemma A.1 (Supermartingale inequality [16]). Let ξt, t ∈ R+ be a right-continuous super-
martingale, there is for all s0 < t0 ∈ R+, λ > 0, one has

P

{

ω : sup
s0≤t≤t0

ξt(ω) ≥ λ

}

≤ 1
λ
E

{

ξs0 | ω : sup
s0≤t≤t0

ξt(ω) ≥ λ

}

≤ 1
λ
Eξs0 .

(A.1)

Lemma A.2 (Fatou’s lemma). Let {fk(x)} be a series of measurable nonnegative functions defined
on R

n, one has

∫

Rn

lim
k→∞

fk(x)dx ≤ lim
k→∞

∫

Rn

fk(x)dx. (A.2)
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Now we introduce the Lasalle theorem in Markovian jump systems as follows.

Theorem A.3 (Lasalle theorem). Considering Markovian jump system of the form:

dx = f(x, t, r(t))dt + g(x, t, r(t))dB(t), (A.3)

where B(t) is a standard Wiener process which is independent of Markov process r(t), suppose there
exist a function V (x, t, i) ∈ C2,1(Rn × R+ × S;R+) and classK∞ functions W1,W2, such that

W1(|x|) ≤ V (x, t, i) ≤ W2(|x|), (A.4)

LV (x, t, i) ≤ −W(x),

V (0, t, i) = 0, ∀(x, t, i) ∈ R
n × R+ × S,

(A.5)

whereW(·) ∈ C(Rn;R+). Then the equilibrium x = 0 is globally stable in probability and there is

P

{

lim
t→∞

W(x(x0, i0, t)) = 0
}

= 1, ∀x0 ∈ R
n, r0 ∈ S. (A.6)

Proof. First we will prove the global stability in probability of the Markovian jump system
(A.3).

By (A.4) and (A.5), we have LV ≤ 0 and V ≥ 0,which means V is a supermartingale
on probability space (Ω,F, {Ft}t≥0, P). For any class K∞ function γ(·), with supermartingale
inequality applied, there is

P

{

sup
0≤s≤t

V (x, s, i) ≥ W1
(
γ(|x0|)

)
}

≤ V (x0, 0, i0)
W1
(
γ(|x0|)

) . (A.7)

According to the quality of K∞ function, we have

P

{

sup
0≤s≤t

|x| ≥ γ(|x0|)
}

≤ P

{

W1

(

sup
0≤s≤t

|x|
)

≥ W1
(
γ(|x0|)

)
}

. (A.8)

Connect the above inequality with (A.4) and (A.7)

P

{

sup
0≤s≤t

|x| ≥ γ(|x0|)
}

≤ P

{

W1

(

sup
0≤s≤t

|x|
)

≥ W1
(
γ(|x0|)

)
}

≤ P

{

sup
0≤s≤t

V (x, s, i) ≥ W1
(
γ(|x0|)

)
}

≤ V (x0, 0, i0)
W1
(
γ(|x0|)

) .

(A.9)
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Thus there is

P

{

sup
0≤s≤t

|x| < γ(|x0|)
}

≥ 1 − V (x0, 0, i0)
W1
(
γ(|x0|)

) . (A.10)

For any given ζ > 0, choose γ(·) such that

γ(|x0|) ≥ W−1
1

(
V (x0, 0, i0)

ζ

)

,

W1
(
γ(|x0|)

) ≥ V (x0, 0, i0)
ζ

.

(A.11)

Then we have

P
{|x(x0, r0, t)| < γ(|x0|)

} ≥ 1 − ζ ∀t ≥ 0, ∀x0, i0 ∈ R
n × S (A.12)

and the global stability in probability is proved.
Next we would prove the establishment of (A.6).
We decompose the sample space into three mutually exclusive events:

(1) A1 = {ω : lim supt→∞W(x(t, ω)) = 0},
(2) A2 = {ω : lim inft→∞W(x(t, ω)) > 0},
(3) A3 = {ω : lim inft→∞W(x(t, ω)) = 0 and lim supt→∞W(x(t, ω)) > 0}.

and our aim is to prove that P{A2} = P{A3} = 0.
Let h = 1, 2, . . . be a positive integer. Define the stopping time as

τh = inf{t > 0 : |x(t)| ≥ h} (A.13)

and it could been easily seen that as h → ∞, τh → ∞ (a.s.). According to (A.10)we have

P

{

Ω1 =

{

ω : sup
0≤t<∞

|x(t)| < ∞
}}

= 1. (A.14)

By generalized Itô formula and (A.5)

EVth = V (x0, 0, i0) + E

{∫ th

0
LV (x, s, r(s))ds

}

≤ V (x0, 0, i0) − E

{∫ th

0
W(x(s))ds

}

.

(A.15)
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Here th is defined as th = t ∧ τh, for all t ≥ 0. Since EVth ≥ 0, therefore,

E

{∫ th

0
W(x(s))ds

}

≤ V (x0, 0, i0). (A.16)

Let t → ∞, h → ∞, by applying Fatou’s lemma, there is

E

{∫∞

0
W(x(s))ds

}

≤ V (x0, 0, i0). (A.17)

Hence

∫∞

0
W(x(s))ds < ∞ a.s. (A.18)

which follows immediately that P{A2} = 0.
Now we proceed to show that P{A3} = 0 by contradiction. Suppose P{A3} > 0, then

there exists ε > 0 such that

P
{
W(x(t)) crosses from below ε to above 2ε and back infinitely many times

} ≥ 2ε .
(A.19)

It is easily seen that P{Ω1 ∩A3} ≥ 2ε. We now define a sequence of stopping times

σ1 = inf{t ≥ 0 : W(x(t)) ≥ 2ε},
σ2k = inf{t ≥ σ2k−1 : W(x(t)) ≤ ε},
σ2k+1 = inf{t ≥ σ2k : W(x(t)) ≥ 2ε}.

(A.20)

By hypothesis (H), for any |x| ≤ h, there exists a constant Kh > 0 such that

∣
∣f(x, t, r(t))

∣
∣ ∨ ∣∣g(x, t, r(t))∣∣ ≤ Kh|x|. (A.21)

From (A.3), we compute

E

{

sup
0≤t≤T

|x(τh ∧ (σ2k−1 + t)) − x(τh ∧ σ2k−1)|2
}

= E

⎧
⎨

⎩
sup
0≤t≤T

∣
∣
∣
∣
∣

∫ τh∧(σ2k−1+t)

τh∧σ2k−1
f(x, t, r(t))dt + g(x, t, r(t))dB(t)

∣
∣
∣
∣
∣

2
⎫
⎬

⎭

≤ 2E

⎧
⎨

⎩
sup
0≤t≤T

∣
∣
∣
∣
∣

∫ τh∧(σ2k−1+t)

τh∧σ2k−1
f(x, t, r(t))dt

∣
∣
∣
∣
∣

2
⎫
⎬

⎭
+ 2E

⎧
⎨

⎩
sup
0≤t≤T

∣
∣
∣
∣
∣

∫ τh∧(σ2k−1+t)

τh∧σ2k−1
g(x, t, r(t))dB(t)

∣
∣
∣
∣
∣

2
⎫
⎬

⎭
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≤ 2K2
hT

2 + 2E

⎧
⎨

⎩
sup
0≤t≤T

∣
∣
∣
∣
∣

∫ τh∧(σ2k−1+t)

τh∧σ2k−1
g(x, t, r(t))dB(t)

∣
∣
∣
∣
∣

2
⎫
⎬

⎭

= 2E

⎧
⎨

⎩
sup
0≤t≤T

∣
∣
∣
∣
∣

∫ τh∧(σ2k−1+T)

τh∧σ2k−1
g(x, t, r(t))dB(t) −

∫ τh∧(σ2k−1+T)

τh∧(σ2k−1+t)
g(x, t, r(t))dB(t)

∣
∣
∣
∣
∣

2
⎫
⎬

⎭
+ 2K2

hT
2

≤4E
⎧
⎨

⎩
sup
0≤t≤T

∣
∣
∣
∣
∣

∫ τh∧(σ2k−1+T)

τh∧σ2k−1
g(x, t, r(t))dB(t)

∣
∣
∣
∣
∣

2

+ sup
0≤t≤T

∣
∣
∣
∣
∣

∫ τh∧(σ2k−1+T)

τh∧(σ2k−1+t)
g(x, t, r(t))dB(t)

∣
∣
∣
∣
∣

2
⎫
⎬

⎭
+2K2

hT
2

≤ 8E

{∣
∣
∣
∣
∣

∫ τh∧(σ2k−1+T)

τh∧σ2k−1
sup
0≤t≤T

∣
∣
∣
∣
∣
g(x, t, r(t))|dB(t)|2

}

+ 2K2
hT

2

= 8E

{∫ τh∧(σ2k−1+T)

τh∧σ2k−1
sup
0≤t≤T

∣
∣g(x, t, r(t))

∣
∣2dt

}

+ 2K2
hT

2

≤ 2K2
hT

2 + 8K2
hT.

(A.22)

Since W(·) is continuous in R
n, it must be uniformly continuous in the closed ball Bh = {x ∈

R
n : |x| ≤ h}. We can therefore choose δ = δ(ε) > 0 small enough such that

∣
∣W(x) −W

(
y
)∣
∣ < ε, ∀x, y ∈ Bh,

∣
∣x − y

∣
∣ < δ. (A.23)

We furthermore choose T = T(ε, δ, h) sufficiently small for

2K2
hT

2 + 8K2
hT

δ2
< ε. (A.24)

By Chebyshev’s inequality, it can be deduced that

P

{

sup
0≤t≤T

|x(σ2k−1 + t) − x(σ2k−1)| ≥ δ

}

≤
E
{
sup0≤t≤T |x(σ2k−1 + t) − x(σ2k−1)|2

}

δ2

≤ 2K2
hT

2 + 8K2
hT

δ2
< ε.

(A.25)
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According to operation principle of sets, we have

1 ≥ P

{

{Ω1 ∩A3} ∪
{

sup
0≤t≤T

|x(σ2k−1 + t) − x(σ2k−1)| < δ

}}

= P{Ω1 ∩A3} + P

{

sup
0≤t≤T

|x(σ2k−1 + t) − x(σ2k−1)| < δ

}

− P

{

{Ω1 ∩A3} ∩
{

sup
0≤t≤T

|x(σ2k−1 + t)x(σ2k−1)| < δ

}}

≥ 2ε + (1 − ε) − P

{

{Ω1 ∩A3} ∩
{

sup
0≤t≤T

|x(σ2k−1 + t) − x(σ2k−1)| < δ

}}

.

(A.26)

Thus

P

{

{Ω1 ∩A3} ∩
{

sup
0≤t≤T

|x(σ2k−1 + t) − x(σ2k−1)| < δ

}}

≥ ε. (A.27)

According to (A.23), we have

P

{

{Ω ∩A3} ∩
{

sup
0≤t≤T

|W(x(σ2k−1 + t)) −W(x(σ2k−1))| < ε

}}

≥ ε. (A.28)

Define probability sample set as

Ωk =

{

sup
0≤t≤T

|W(x(σ2k−1 + t)) −W(x(σ2k−1))| < ε

}

. (A.29)

Let 1(·) denote the indicator function of set, and noticed that σ2k − σ2k−1 ≥ T , we derive from
(A.18) and (A.26) that

∞ > E

{∫∞

0
W(x(t))dt

}

≥
∞∑

k=1

E

{

1{Ω1∩A3}

∫σ2k

σ2k−1
W(x(t))dt

}

≥ ε
∞∑

k=1

E
{
1{Ω1∩A3}(σ2k − σ2k−1)

}

≥ ε
∞∑

k=1

E
{
1{Ω1∩A3}∩Ωk

(σ2k − σ2k−1)
}

≥ εT
∞∑

k=1

P
{
{Ω1 ∩A3} ∩Ωk

}

≥ εT
∞∑

k=1

ε = ∞

(A.30)
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which is a contradiction. Thus P{A3} = 0. Therefore P{A1} = 1 and the proof is therefore
completed.
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