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We consider that the surplus of an insurer follows compound Poisson process and the insurer
would invest its surplus in risky assets, whose prices satisfy the Black-Scholes model. In the risk
process, we decompose the ruin probability into the sum of two ruin probabilities which are caused
by the claim and the oscillation, respectively. We derive the integro-differential equations for these
ruin probabilities these ruin probabilities. When the claim sizes are exponentially distributed,
third-order differential equations of the ruin probabilities are derived from the integro-differential
equations and a lower bound is obtained.

1. Introduction

In classical risk models, the surplus process is defined as U(t) = u + ct − ∑N(t)
i=1 Xi, where

U(0) = u ≥ 0 is the initial surplus, c > 0 is the premium rate, {N(t), t ∈ R
+} is a homogeneous

Poisson process with rate λ > 0, and {Xi, i ∈ N
+} is a sequence of independent and identically

distributed (i.i.d.) nonnegative random variables with distribution F, denoting claim sizes.
In this paper, we assume that the surplus can be invested in risky assets. The price of

the nth risky asset follows

dRn(t) = μnRn(t)dt + σnRn(t)dBn(t), R(0) > 0, (1.1)

where R(0) denotes the initial value of the risky asset, μn and σn are fixed constants, and
{Bn(t), t > 0} are standard Brownian motions. Moreover, Bn(t) and Bm(t) are correlated with
dBm(t)dBn(t) = ρmndt, n,m = 1, 2, . . .. Furthermore, we assume that the insurance company
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invests a fixed proportion ωn in nth risky asset. It is natural that
∑N

n=1 ωn = 1, but here we
think that ωn < 0 is reasonable, which means that the investor can borrow money from risky
market. Thus, the surplus of the insurance company can be expressed as

S(t) = u + ct −
N(t)∑

i=1

Xi +
N∑

n=1

∫ t

0

ωnS(s)
Rn(s)

dRn(s),

S(0) = u.

(1.2)

Letting T denote the time of ruin, we have T = inf{t | S(t) < 0} and T = ∞ for all t ≥ 0. The
probability of ruin from initial surplus u is defined as

Ψ(u) = P(T < ∞ | S(0) = u). (1.3)

In this paper, we decompose the ruin probability into the sum of two ruin probabilities which
are caused by the claim and the oscillation, respectively (see [1–3]). We denote by Ts = inf{t |
S(t) < 0, S(h) > 0, 0 < h < t} and Ts = ∞ for all t ≥ 0; namely, Ts is the ruin time at which ruin
is caused by a claim. We also denote by Td = inf{t | S(t) = 0, S(h) > 0, 0 < h < t} and Td = ∞
for all t ≥ 0; namely, Td is the ruin time at which ruin is caused by oscillation. Clearly, T =
min{Ts, Td}. Moreover, we denote ruin probabilities in the two situations, respectively, by
Ψs(u) = P(Ts < ∞ | S(0) = u) and Ψd(u) = P(Td < ∞ | S(0) = u). Clearly, the ruin probability
Ψ(u) can be decomposed as

Ψ(u) = Ψs(u) + Ψd(u). (1.4)

In addition, it follows from the oscillating nature of the sample path of {S(t)} that

Ψd(0) = Ψ(0) = 1, Ψs(0) = 0. (1.5)

The ruin in the compound Poisson process by geometric Brownian motion has been studied
extensively in the literature (see [4–7] and references therein). In [8–11], ruin in the com-
pound Poisson risk process under interest force has been studied. In this paper, we investigate
the ruin probabilities in the risk process (1.2). We first derive integro-differential equation for
Ψ(u), Ψs(u), Ψd(u). Secondly, we consider the special case when the claim sizes are expo-
nentially distributed. Finally, we obtain a lower bound of Ψ(u).

2. Integro-Differential Equation for Ruin Probability

In this section, we will derive integro-differential equations for Ψ(u), Ψs(u), Ψd(u). These
equations will be used in Section 3.
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Theorem 2.1. Assume thatΨ(u) is twice continuously differentiable. Then, for any u > 0, Ψ(u) sat-
isfies the following integro-differential equation

λΨ(u) =

(

c +
N∑

n=1

ωnμnu

)

Ψ′(u) +
1
2

(
N∑

n=1

ω2
nσ

2
n

N∑

m=1

ρmn

)

u2Ψ′′(u) + λ

∫u

0
Ψ(u − x)dF(x) + λF(u)

(2.1)

and the boundary condition is as follows:

Ψ(+∞) = 0,

Ψ(0) = 1.
(2.2)

Proof. Denote

Ut = u + ct +
N∑

n=1

∫ t

0

ωnS(s)
Rn(s)

dRn(s), Wt =
N(t)∑

i=1

Xi. (2.3)

Consider the surplus process S(t) in an infinitesimal time interval (0, t]. Note that N(t) is a
homogeneous Poisson process, and there are three possible cases in (0, t] as follows.

Case one. The probability is 1 − λt if here is no claim in (0, t].
Case two. The probability is λt if there is only one claim in (0, t].
Case three. The probability is o(t) if there is more than one claim in (0, t].
Therefore,

Ψ(u) = (1 − λt)E[Ψ(Ut)] + λtE

[∫∞

0
Ψ(Ut − x)dF(x)

]

+ o(t)

= (1 − λt)E[Ψ(Ut)] + λtE

[∫Ut

0
Ψ(Ut − x)dF(x)

]

+ λtE
[
F(Ut)

]
+ o(t).

(2.4)

Let Δ = ct +
∑N

n=1

∫ t
0(ωnS(s)/Rn(s))dRn(s). It follows from Taylor’s formula that

E[Ψ(Ut)] = E[Ψ(u + Δ)] = Ψ(u) + Ψ′(u)E(Δ) +
1
2
Ψ′′(u)E

(
Δ2

)
+ E

(
o
(
Δ2

))
. (2.5)

By Ito’s formula, we have

lim
t→ 0

E(Δ)
t

= lim
t→ 0

ct + E
[∑N

n=1

∫ t
0(ωnS(s)/Rn(s))dRn(s)

]

t
= c +

N∑

n=1

ωnμnu,

lim
t→ 0

E
(
Δ2)

t
= lim

t→ 0

E
[∑N

n=1

∫ t
0(ωnS(s)/Rn(s))dRn(s)

]2
+ o(t)

t
=

N∑

n=1

ω2
nσ

2
nμnu

N∑

m=1

ρmnu
2.

(2.6)
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Similarly,

lim
t→ 0

E
[
o
(
Δ2)]

t
= 0. (2.7)

Hence,

lim
t→ 0

E[Ψ(Ut)] −Ψ(u)
t

=

(

c +
N∑

n=1

ωnμnu

)

Ψ′(u) +
1
2

(
N∑

n=1

ω2
nσ

2
n

N∑

m=1

ρmn

)

u2Ψ′′(u). (2.8)

According to (2.4) and (2.8), we have

λΨ(u) =

(

c +
N∑

n=1

ωnμnu

)

Ψ′(u) +
1
2

(
N∑

n=1

ω2
nσ

2
n

N∑

m=1

ρmn

)

u2Ψ′′(u)

+ λ

∫u

0
Ψ(u − x)dF(x) + λF(u).

(2.9)

From the definition of Ψ(u), we easily obtain the boundary condition.

Theorem 2.2. Assume that Ψs(u) is twice continuously differentiable. Then, for any u > 0, Ψs(u)
satisfies the following integro-differential equation:

λΨs(u) =

(

c +
N∑

n=1

ωnμnu

)

Ψ′
s(u) +

1
2

(
N∑

n=1

ω2
nσ

2
n

N∑

m=1

ρmn

)

u2Ψ′′
s(u)

+ λ

∫u

0
Ψs(u − x)dF(x) + λF(u),

(2.10)

and the boundary condition is as follows:

Ψs(+∞) = 0,

Ψs(0) = 0.
(2.11)

Proof. Since the proof of this theorem is similar to that of Theorem 2.1, we omit it.

Theorem 2.3. Assume that Ψd(u) is twice continuously differentiable. Then, for any u > 0, Ψd(u)
satisfies the following integro-differential equation:

λΨd(u) =

(

c +
N∑

n=1

ωnμnu

)

Ψ′
d(u) +

1
2

(
N∑

n=1

ω2
nσ

2
n

N∑

m=1

ρmn

)

u2Ψ′′
d(u)

+ λ

∫u

0
Ψd(u − x)dF(x),

(2.12)
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and the boundary condition is as follows:

Ψd(+∞) = 0,

Ψd(0) = 1.
(2.13)

Proof. It follows from (1.4) that Ψ′(u) = Ψ′
s(u) + Ψ′

d(u) and Ψ′′(u) = Ψ′
s(u) + Ψ′′

d(u). Adding
(2.1) to (2.10), we obtain (2.12). From the definition of Ψd(u), we easily obtain the boundary
condition.

3. Ruin with Exponential Claim Sizes

In this section, we will derive the differential equations for Ψ(u), Ψs(u), and Ψd(u) with
exponential claim sizes, respectively. When λ = 0, the surplus process (1.2) reduces to a pure
diffusion risk model, in which the surplus follows Brownian motions with drift, and we can
get lower bounds of the ruin probabilities. For simplicity, we denote

h1(u) = c + au,

h2(u) =
1
2
bu2,

(3.1)

where

a =
N∑

n=1

ωnμn,

b =
N∑

n=1

ω2
nσ

2
n

N∑

m=1

ρmn.

(3.2)

Corollary 3.1. Under the assumptions of Theorems 2.1–2.3, if F(x) = 1 − e−βx, x > 0, β > 0, then,
for any u > 0, Ψ(u), Ψs(u), and Ψd(u) satisfy the following integro-differential equation:

h2(u)ξ′′′(u) +
[
h1(u) + h′

2(u) + βh2(u)
]
ξ′′(u) +

[
βh1(u) + h′

1(u) − λ
]
ξ′(u) = 0, (3.3)

where ξ(u) is any of Ψ(u), Ψs(u), and Ψd(u). The boundary conditions of Ψ(u), Ψs(u) and Ψd(u)
are as follows:

cΨ′(0+) = 0,

cΨ′
s(0

+) = −λ,
cΨ′

d(0
+) = λ.

(3.4)
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Proof. When F is a exponential distribution, (2.1) can be expressed as Theorems 2.1–2.3, and
we obtain the following equation:

λΨ(u) − h1(u)Ψ′(u) − h2(u)Ψ′′(u) = λe−βu
(

β

∫u

0
Ψ(x)eβxdx + 1

)

. (3.5)

Taking derivative about u on both sides of (3.5), we obtain

λβΨ(u) − (
λ − h′

1(u)
)
Ψ′(u) +

[
h1(u) + h′

2(u)
]
Ψ′′(u) + h2(u)Ψ′′′(u)

= λβe−βu
(

β

∫u

0
Ψ(x)eβxdx + 1

)

.
(3.6)

According to the above expression and (2.1), (3.3) holds. The boundary condition of Ψ(u) in
(3.4) can be derived if we let u → 0+. Similarly, we can derive the third-order differential
equations for Ψs(u) and Ψd(u).

If λ = 0, then the surplus process (1.2) reduces to a pure diffusion risk model, in which
the surplus follows Brownian motions with drift. Denote the ruin probability in this pure
diffusion risk process by Ψ0(u). Clearly,

Ψ(u) ≥ Ψ0(u), u ≥ 0. (3.7)

Equation (2.1) implies that Ψ0(u) satisfies the following differential equation:

(c + au)Ψ′(u) +
1
2
bu2Ψ′′(u) = 0. (3.8)

The solution of (3.8) is given by Ψ0(u) = 1 − g(u)/g(+∞), where

g(u) =
∫u

0

(
bx2

)−(a/b)
e(2c/bx)dx. (3.9)

Thus, we obtain a lower bound for Ψ(u).
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