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Decisions in the real-world contexts are often made in the presence of multiple, conflicting, and
incommensurate criteria. Multiobjective programming methods such as multiple objective linear
programming (MOLP) are techniques used to solve such multiple-criteria decision-making
(MCDM) problems. One of the first interactive procedures to solve MOLP is STEMmethod. In this
paper we try to improve STEM method in a way that we search a point in reduced feasible region
whose criterion vector is closest to positive ideal criterion vector and furthest to negative ideal
criterion vector. Therefore the presented method tries to increase the rate of satisfactoriness of the
obtained solution. Finally, a numerical example for illustration of the newmethod is given to clarify
the main results developed in this paper.

1. Introduction

Managerial problems are seldom evaluated with a single or simple goal like profit maximiza-
tion. Today’s management systems are much more complex, and managers want to attain
simultaneous goals, in which some of them conflict. In the other words, decisions in the real-
world contexts are often made in the presence of multiple, conflicting, and incommensurate
criteria. Particularly, many decision problems at tactical and strategic levels, such as strategic
planning problems, have to consider explicitly the models that involve multiple conflicting
objectives or attributes.

Therefore, it is often necessary to analyse each alternative in light of its determination
of each of several goals. Multicriteria decision making (MCDM) refers to making decision in
the presence of multiple and conflicting criteria. Problems for MCDM may range from our
daily life, such as the purchase of a car, to those affecting entire nations, as in the judicious
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use of money for the preservation of national security. However, even with the diversity, all
the MCDM problems share the following common characteristics [1]:

(i) Multiple criteria: each problem has multiple criteria, which can be objectives or
attributes.

(ii) Conflicting among criteria: multiple criteria conflict with each other.

(iii) Incommensurable unit: criteria may have different units of measurement.

(iv) Design/selection: solutions to an MCDM problem are either to design the best alter-
native(s) or to select the best one among previously specified finite alternatives.

There are two types of criteria: objectives and attributes. Therefore, theMCDMproblems
can be broadly classified into two categories:

(i) Multiobjective decision making (MODM).

(ii) Multiattribute decision making (MADM).

The main difference between MODM and MADM is that the former concentrates on
continuous decision spaces, primarily on mathematical programming with several objective
functions, and the latter focuses on problems with discrete decision spaces.

For the further discussion about MODM and MADM, some basic solution concepts
and terminologies are supplied by Hwang and Masud [2] and Hwang and Yoon [1].

Criteria are the standard of judgment or rules to test acceptability. In the MCDM litera-
ture, it indicates attributes and/or objectives. In this sense, anyMCDMproblemmeans either
MODM or MADM, but is more used for MADM.

Objectives are the reflections of the desire of decision makers and indicate the direction
in which decision makers want to work. An MODM problem, as a result, involves the design
of alternatives that optimises or most satisfies the objectives of decision makers.

Goals are things desired by decision makers expressed in terms of a specific state in
space and time. Thus, while objectives give the desired direction, goals give a desired (or
target) level to achieve.

Attributes are the characteristics, qualities, or performance parameters of alternatives.
An MADM problem involves the selection of the best alternative from a pool of preselected
alternatives described in terms of their attributes.

We also need to discuss the term alternatives in detail. How to generate alternatives is
a significant part of the process of MODM and MADM model building. In almost MODM
models, the alternatives can be generated automatically by the models. In most MADM
situations, however, it is necessary to generate alternatives manually. Multiobjective prog-
ramming method such as multiple objective linear programming (MOLP) are techniques
used to solve such multiple-criteria decision-making (MCDM) problems.

The future of multiple-objective programming is in its interactive application. In inter-
active procedures, we conduct an exploration over the region of feasible alternatives for an
optimal or satisfactory near-optimal solution. Interactive procedures are characterized by
phases of decision making alternating with phases of computation. At each iteration, a solu-
tion, or group of solutions, is generated for examination. As a result of examination, the deci-
sion maker inputs information to the solution procedure. One of the first interactive proce-
dures to solve MOLP is STEM method.
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This paper discusses the STEM procedure. STEM or step method proposed by Benay-
oun et al. [3] is a reduced feasible region method for solving the MOLP

max
(
f1(x), . . . , fk(x)

)

s.t. x ∈ S,
(1.1)

where all objectives are bounded over S. Each iteration STEM makes a single probe of the
efficient set. This is done by computing the point in the iteration’s reduced feasible region
whose criterion vector is closest to ideal criterion vector. STEM is one first interactive pro-
cedure to have impact on the field of multiple-objective programming.

In this paper we try to improve STEM method in a way that we search a point in
reduced feasible region whose criterion vector is closest to positive ideal criterion vector and
furthest to negative ideal criterion vector. Therefore the presented method tries to increase
the rate of satisfactoriness of the obtained solution.

Rest of the paper is organized as follows. In Section 2 some preliminaries about the
following concept are given:

(i) MODM Problems,

(ii) Basic definitions,

(iii) STEM Method.

In Section 3, we will focus on the proposed method. In Section 4, a numerical example
is demonstrated. In Section 5 some conclusions are drawn for the study.

2. Preliminaries

In this section we express the following useful concepts that are taken from [4].

2.1. MODM Problems

Multiobjective decision making is known as the continuous type of the MCDM. The main
characteristics of MODM problems are that decision makers need to achieve multiple
objectives while these multiple objectives are noncommensurable and conflict with each
other.

An MODM model considers a vector of decision variables, objective functions, and
constrains. Decision makers attempt to maximize (or minimize) the objective functions. Since
this problem has rarely a unique solution, decision makers are expected to choose a solution
from among the set of efficient solutions (as alternatives). Generally, the MODM problem can
be formulated as follows:

(MODM)

⎧
⎨

⎩

max f(x)

s.t. x ∈ S,
(2.1)

where f(x) represents n conflicting objective functions and x is an n-vector of decision var-
iables, x ∈ R

n.
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Multiobjective linear programming (MOLP) is one of themost important forms to des-
cribe MODM problems, which are specified by linear objective functions that are to be maxi-
mized (or minimized) subject to a set of linear constrains. The standard form of an MOLP
problem can be written as follows:

(MOLP)

⎧
⎨

⎩

max f(x) = Cx

s.t. x ∈ S = {x ∈ R
nAx ≤ b, x ≥ 0},

(2.2)

where C is a k × n objective function matrix, A is anm × n constraint matrix, b is anm-vector
of right-hand side, and x is an n-vector of decision variables.

Example 2.1 (instance of MODM problem). For a profit-making company, in addition to
earning money, it also wants to develop new products, provide job security to its employees,
and serve the community. Managers want to satisfy the shareholders and, at the same time,
enjoy high salaries and expense accounts; employees want to increase their take-home pay
and benefits. When a decision is to be made, say, about an investment project, some of these
goals complement each other while others conflict.

2.2. Basic Definitions

We have the following notion for a complete optimal solution (for more details, see [5]).

Definition 2.2 (satisfactory solution). A satisfactory solution is a reduced subset of the feasible
set that exceeds all of the aspiration levels of each attribute. A set of satisfactory solutions is
composed of acceptable alternatives. Satisfactory solutions do not need to be nondominated.

Definition 2.3 (preferred solution). A preferred solution is a nondominated solution selected
as the final choice through decision maker’s involvement in the information processing.

In the presented method (and in traditional STEM method), in order to measure the
distance between two vectors we use the following metric.

Definition 2.4. Consider the weight vector θ where
∑k

i=1 θi = 1 and θi ≥ 0. These weights
define the weighted Tchebychev metric.

∥∥f∗ − f(x)
∥∥θ

∞ = max
i=1,...,k

{
θi
∣∣f∗

i − fi(x)
∣∣}. (2.3)

2.3. STEM Method

The STEM method [3] is based on minimizing the Tchebychev distance from the ideal point
to the criterion space. The parameters of the distance formula and the feasible space can be
changed by a normalized weighting method based on the DM’s preferences in the previous
solution. The procedure of STEM allows the DM to recognize good solutions and the relative
importance of the objectives.

At each iteration, the DM is able to improve some objectives, by sacrificing others. In
addition, the DM must provide the maximum amount by which the objective functions can
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be sacrificed, although it is not necessary to provide tradeoffs on objectives. To carry out an
iteration in the STEMmethod, given a solution x(h−1), the DMsmust provide their preferences
for objective functions to be improved {fi, i ∈ {1, . . . , s} − J(h)}, as well as the objective
functions to be relaxed fi, i ∈ J(h) with corresponding maximal amounts to relax Δf

(h)
i , i ∈

J(h).
The following problem can be solved using the above preferences:

min α

s.t. wi

(
f∗
i − fi(x)

) ≤ α, i ∈ {1, . . . , s} − J(h),

fj(x) ≥ fj
(
x(h−1)

)
−Δf

(h)
j , j ∈ J(h),

fj(x) ≥ fj
(
x(h−1)

)
, j ∈ {1, . . . , s} − J(h),

x ∈ S(h)

0 ≤ α ∈ R,

(2.4)

where f∗
i = maxx∈S(h)fi(x), i = 1, . . . , s are the ideal values, resulting from maximizing the

objective functions individually.

3. Improved STEM Method

The procedure for improving STEM method has been given in the following steps.

Step 1 (construct the first pay-off table). In this step we first maximize each objective function
and construct a pay-off table to obtain the positive ideal criterion vector f+ ∈ R

k.
Let f+

j , j = 1, . . . , k, be the solutions of the following k problems, namely, positive ideal
solution:

f+
j = max fj(x)

s.t. x ∈ S.
(3.1)

The first pay-off table is of the form of Table 1.

In Table 1, row j corresponds to the solution vector xj+ which maximizes the objective
function fj . A fij is the value taken by the ith objective fi when the jth objective function fj
reaches its maximum f+

j , that is, fij = fi(xj+).
Then the positive ideal criterion can be defined as follows:

f+ =
(
f+
1 , . . . , f

+
k

)
=
(
f1
(
x1+

)
, . . . , fk

(
xk+

))
. (3.2)

And consider that x+ is the inverse image of f+. Generally, we know maybe x+ dose not
belong to S(h).
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Table 1: First pay-off table.

f1 f2 · · · fk

f1 f+
1 f12 · · · f1k

f2 f21 f+
2 · · · f2k

...
...

...
. . .

...
fk fk1 fk2 · · · f+

k

Table 2: Second pay-off table.

f1 f2 · · · fk

f1 f−
1 z12 · · · z1k

f2 z21 f−
2 · · · z2k

...
...

...
. . .

...
fk zk1 zk2 · · · f−

k

Step 2 (construct the second pay-off table). Now, we maximize each objective function and
construct a second pay-off table to obtain the negative ideal criterion vector f− ∈ R

k.
Let f−

j , j = 1, . . . , k, be the solutions of the following k problems, namely, negative
ideal solution:

f−
j = min fj(x)

s.t. x ∈ S.
(3.3)

The second pay-off table is of the form of Table 2.

In Table 2, row j corresponds to the solution vector xj− which minimizes the objective
function fj . A zij is the value taken by the ith objective fi when the jth objective function fj
reaches its minimum f−

j , that is zij = fi(xj−).
Then the negative ideal criterion can be defined as follows:

f− =
(
f−
1 , . . . , f

−
k

)
=
(
f1
(
x1−

)
, . . . , fk

(
xk−

))
. (3.4)

And consider that x− is the inverse image of f−. Generally, we know maybe x− dose not
belong to S(h).

Let h be iteration counter and set h = 0 and go to Step 3.

Step 3 (first group of weights). Let mi be the minimum value in the ith column of the first
pay-off table (Table 1).
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Calculate πi values, where

πi =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f+
i −mi

f+
i

⎡

⎣
n∑

j=1

c2ij

⎤

⎦

−1/2

, if f+
i > 0,

mi − f+
i

mi

⎡

⎣
n∑

j=1

c2ij

⎤

⎦

−1/2

, if f+
i ≤ 0,

(3.5)

where cij are the coefficients of the ith objective.

Then, the weighting factors can be calculated as follows:

λi =
πi∑n

j=1 πj
, i = 1, . . . , k. (3.6)

The weighting factors defined as above are normalized; that is, they satisfy the following con-
ditions:

0 ≤ λi ≤ 1, i = 1, . . . , k,
k∑

i=1

λi = 1. (3.7)

The weights defined above reflects the impact of the differences of the objective values on
decision analysis. If the value (f+

i −mi) is relatively small, then the objective fi(x)will be rela-
tively insensitive to the changes of solution x. In other words, fi(x)will not play an important
role in determining the best compromise solution.

Step 4 (Second group of weights). Let ni be the maximum value in the ith column of the
second pay-off table (Table 2).

Calculate π ′
i values, where

π ′
i =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ni − f−
i

ni

⎡

⎣
n∑

j=1

c2ij

⎤

⎦

−1/2

, if f−
i > 0,

f−
i − ni

f−
i

⎡

⎣
n∑

j=1

c2ij

⎤

⎦

−1/2

, if f−
i ≤ 0,

(3.8)

where cij are the coefficients of the ith objective.
Then, the weighting factors can be calculated as follows:

λ′i =
π ′
i∑n

j=1 π
′
j

, i = 1, . . . , k. (3.9)

Also, the weighting factors defined as above are normalized; that is, they satisfy the following
conditions:

0 ≤ λ′i ≤ 1, i = 1, . . . , k,
k∑

i=1

λ′i = 1. (3.10)
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In a manner similar to that of the previous step, the weights defined above reflect the impact
of the differences of the objective values on decision analysis.

Step 5 (calculation phase). The weights defined by formula (3.6) and (3.9) are used to apply
theweighted Tchebycheffmetric, Definition 2.4, to obtain a compromise solution. This is done
in three steps.

Substep 5.1 (find the nearest criterion vector to positive ideal). We can obtain a criterion vec-
tor which is closest to the positive ideal one by solving the following model:

min α

s.t.
∥
∥f+ − f(x)

∥
∥λ

∞ ≤ α

x ∈ S(h)

0 ≤ α ∈ R.

(3.11)

This model can be converted to the following model:

min α

s.t. α ≥ λi
(
f+
i − fi(x)

)
, 1 ≤ i ≤ k

x ∈ S(h)

0 ≤ α ∈ R.

(3.12)

We solve the weighted minimax model (3.12) and obtain the solution w(h).
In this step, we solve for the point in the reduced feasible region S(h) whose criterion

vector is closest to f+.

Substep 5.2 (find the furthest criterion vector to negative ideal). We can obtain a criterion
vector which is furthest to the negative ideal one by solving the following model:

max β

s.t.
∥∥f− − f(x)

∥∥λ′

∞ ≥ β

x ∈ S(h)

0 ≤ β ∈ R.

(3.13)

This model can be converted to the following model:

max β

s.t. max
1≤i≤k

λ′i
(
fi(x) − f−

i

) ≥ β,

x ∈ S(h)

0 ≤ β ∈ R.

(3.14)
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The abovemodel can be converted to the followingmixed integer linear programmingmodel:

max β

s.t. λ′i
(
fi(x) − f−

i

)
+Myi ≥ β, i = 1, . . . , k

k∑

i=1

yi = k − 1,

x ∈ S(h)

yi ∈ {0, 1}, i = 1, . . . , k

0 ≤ β ∈ R.

(3.15)

By solving MILP model (3.15) we obtain the solution y(h).
In this step, we solve the problem for the point in the reduced feasible region S(h)

whose criterion vector is furthest to f−.

Substep 5.3 (obtain a compromise solution). We can obtain a criterion vector which is closest
to the positive ideal and furthest to the negative ideal by solving the following model:

min γ

s.t.
∥∥∥f(x) − f

(
w(h)

)∥∥∥
λ

∞
≤ γ

∥∥∥f(x) − f
(
y(h)

)∥∥∥
λ′

∞
≤ γ

x ∈ S(h)

0 ≤ γ ∈ R.

(3.16)

This model can be converted to the following model:

min γ

s.t.
∣∣∣λi

(
fi(x) − fi

(
w(h)

))∣∣∣ ≤ γ, i = 1, . . . , k

∣∣∣λ′i
(
fi(x) − fi

(
y(h)

))∣∣∣ ≤ γ, i = 1, . . . , k

x ∈ S(h)

0 ≤ γ ∈ R.

(3.17)
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1

c1c2

f−
2 x−

Figure 1: Graph of Example 3.1.

Model (3.17) can be converted to the following linear programming model:

min γ

s.t. λi
(
fi(x) − fi

(
w(h)

))
≤ γ, i = 1, . . . , k

λi
(
fi(x) − fi

(
w(h)

))
≥ −γ, i = 1, . . . , k

λ′i
(
fi(x) − fi

(
y(h)

))
≤ γ, i = 1, . . . , k

λ′i
(
fi(x) − fi

(
y(h)

))
≥ −γ, i = 1, . . . , k

x ∈ S(h)

0 ≤ γ ∈ R.

(3.18)

By solving model (3.18), we obtain a compromise solution as x(h). In the other words, we
obtain a compromise solution x(h) in the reduced feasible region S(h) whose criterion vector
is closest to f(w(h)) and f(y(h)). That is, we obtain a compromise solution x(h) whose criterion
vector is closest to positive ideal criterion vector f+ and is furthest to the negative ideal
criterion vector f−.

For more information about how we obtain a compromise solution, see the following
example.

Example 3.1 (Graphical Example). Consider Figure 1 in which x+ is the inverse image of f+

and x− is the inverse image of f−.
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Also, consider that w and y are the optimal solutions of models (3.12) and (3.15), res-
pectively.

w is a solutionwhose criterion vector is closest to f+ and y is a solutionwhose criterion
vector is furthest to f−.

Point xwhich is obtained bymodel (3.18) is a solution whose criterion vector is closest
to f+ and furthest to f− and therefore is a compromise solution.

Step 6 (decision phase). The compromise solution x(h) is presented to the decision maker,
who compares objective vector f(x(h))with the positive ideal criterion vector f+ and negative
ideal criterion vector f−. This decision phase has the following steps.

Substep 6.1. If all components of f(x(h)) are satisfactory, stop with (x(h), f(x(h))) as the final
solution and x(h) is the best compromise solution. Otherwise go to Substep 6.2.

Substep 6.2. If all components of f(x(h)) are not satisfactory, then terminate the interactive
process and use other methods to search for the best compromise solutions. Otherwise go to
Substep 6.3.

Substep 6.3. If some components of f(x(h)) are satisfactory and others are not, the DM must
relax an objective fj(x) to allow an improvement of the unsatisfactory objectives in the next
iteration. If the decision maker cannot find an objective to sacrifice, then the interactive pro-
cess will be terminated and other methods have to be used for identifying the best com-
promise solution, otherwise, the DM gives Δfj as the amount of acceptable relaxation. Δfj is
the maximum amount of fj(x)we are willing to sacrifice. Now go to Substep 6.4.

Substep 6.4. Define a new reduced feasible region as follows:

S(h+1) =

{

x ∈ S(h)

∣∣∣∣∣

fj(x) ≥ fj
(
x(h)) −Δfj

fi(x) ≥ fi
(
x(h)), i /= j, i = 1, . . . , k.

(3.19)

And the weights πj and π ′
j are set to zero. Set h = h + 1 and go to Step 3.

4. Numerical Example

In this section we investigate the capability of the proposed method.

4.1. The Problem Description

Consider a firm that manufactures two products: x1 and x2. The firm’s overall objective func-
tions have been estimated as follows:

f1(x) = −5x1 + 2x2,

f2(x) = x1 − 4x2.
(4.1)
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Table 3: First pay-off table of Section 4.

f1 f2 Solution Vector

f1 f+
1 = 6 f12 = −12 x1+

1 = 0 x1+
2 = 3

f2 f21 = −30 f+
2 = 6 x2+

1 = 6 x2+
2 = 0

The following describes the limitations on the firm’s operating environment.

−x1 + x2 ≤ 3,

x1 + x2 ≤ 8,

x1 ≤ 6,

x2 ≤ 4,

x1, x2 ≥ 0.

(4.2)

Then the MODM problem can be formulated as follows:

max f1(x) = −5x1 + 2x2

max f2(x) = x1 − 4x2

s.t. − x1 + x2 ≤ 3

x1 + x2 ≤ 8

x1 ≤ 6

x2 ≤ 4

x1, x2 ≥ 0.

(4.3)

We set h = 0 and

S(0) =

{

x = (x1, x2)

∣∣∣∣∣

−x1 + x2 ≤ 3, x1 + x2 ≤ 8,

x1 ≤ 6, x2 ≤ 4, x1, x2 ≥ 0

}

, (4.4)

4.2. Solve with the Proposed Method

In order to find a satisfactory solution, we carry out the following steps.

Iteration Number 1

Step 1 (first pay-off table). The first pay-off table of the problem is as shown in Table 3.
Table 3 is constructed using formula (3.1). Figure 2 shows the feasible region and

objectives. Also in Figure 2 we can see the negative ideal solution and positive ideal solution.
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x2

x1

x−

x+

c1

c2

Negative ideal solution

Positive ideal solution

Figure 2: Positive and negative ideal solutions.

Table 4: Second pay-off table of Section 4.

f1 f2 Solution Vector

f1 f−
1 = −30 z12 = 6 x1−

1 = 6 x1−
2 = 0

f2 z21 = 3 f−
2 = −15 x2−

1 = 1 x2−
2 = 4

Step 2 (second pay-off table). The second pay-off table of the problem is as shown in Table 4.
Table 4 is constructed using formula (3.3).

Step 3 (obtain the first group of weights). Since f+
1 = 6 and m1 = −30 and c11 = −5, c12 = 2,

then from formula (3.5)we have

π1 =
(
6 − (−30)

6

){[
(−5)2 + 22

]}−1/2
= 1.114. (4.5)

Similarly, we can get π2 = 0.728. From (3.6) there are

λ1 =
1.114
1.842

= 0.605, λ2 =
0.728
1.842

= 0.395. (4.6)

Step 4 (obtain the second group of weights). Since f−
1 = −30 and n1 = 3 and c11 = −5, c12 = 2,

then from formula (3.8)we have

π ′
1 =

(−30 − (3)
−30

){[
(−5)2 + 22

]}−1/2
= 0.204. (4.7)
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Similarly, we can get π ′
2 = 0.34. From (3.9) there are

λ′1 =
0.204
0.544

= 0.375, λ′2 =
0.34
0.544

= 0.625. (4.8)

Step 5 (calculation phase). Now we can start the iteration process. Therefore we have the
following steps.

Substep 5.6 (find the closest criterion vector to positive ideal). We can obtain a criterion vector
which is closest to the positive ideal one by solving model (3.12) as follows:

min α

s.t. 0.605(6 + 5x1 − 2x2) ≤ α,

0.395(6 − x1 + 4x2) ≤ α,

x ∈ S(0)

0 ≤ α ∈ R.

(4.9)

The optimal solution of the problem is w(0) = (0, 0.452) with criterion vector f(w(0)) =
{f1(w(0)), f2(w(0))} = {−0.904,−1.808}.

Substep 5.7 (find the furthest criterion vector to negative ideal). We can obtain a criterion
vector which is furthest to the negative ideal one by solving model (3.15) as follows:

max β

s.t. 0.375(−5x1 + 2x2 − (−30)) +My1 ≥ β,

0.625(x1 − 4x2 − (−15)) +My2 ≥ β,

y1 + y2 = 1

x ∈ S(0)

y1, y2 ∈ {0, 1}
0 ≤ β ∈ R.

(4.10)

The optimal solution of the problem is y(0) = (0, 3) with criterion vector f(y(0)) =
{f1(y(0)), f2(y(0))} = {6,−12}.

Substep 5.8 (obtain a compromise solution). We can obtain a criterion vector which is closest
to positive ideal and furthest to negative ideal by solving model (3.18) as follows:

min γ

s.t. 0.605(0.904 + 5x1 − 2x2) ≤ γ,

0.605(0.904 + 5x1 − 2x2) ≥ −γ,
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0.395(−1.808 − x1 + 4x2) ≤ γ,

0.395(−1.808 − x1 + 4x2) ≥ −γ,
0.375(−5x1 + 2x2 − (6)) ≤ γ,

0.375(−5x1 + 2x2 − (6)) ≥ −γ,
0.625(x1 − 4x2 − (−12)) ≤ γ,

0.625(x1 − 4x2 − (−12)) ≥ −γ,

x ∈ S(0)

0 ≤ β ∈ R.

(4.11)

The optimal solution of the problem is x(0) = (0, 2.013) with criterion vector f(x(0)) =
{f1(x(0)), f2(x(0))} = {4.026,−8.052}.

Step 6 (decision phase). The results x(0) = (0, 2.013) and f(x(0)) = {4.026,−8.052} are shown
to the decision maker. Suppose the solution is not satisfied as f2(x(0)) = −8.052 is too small.
Suppose f1(x) can be sacrificed by 2 units, or Δf1 = 2. Then the new search space is given by

S(1) =

{

x ∈ S(0)

∣∣∣∣∣

f1(x) = −5x1 + 2x2 ≥ 4.026 −Δf1

f2(x) = x1 − 4x2 ≥ −8.052.
(4.12)

We set π1 = π ′
1 = 0 and begin iteration 2.

In Figure 3 we can see the obtained solutions from iteration 1. Specially we can see the
compromise solution obtained from iteration 1 that is denoted by x(0).

Iteration Number 2

It is obvious that λ2 = λ′2 = 1, and we go to Step 5. It is done in three steps.

Substep 6.6 (find the closest criterion vector to positive ideal). In this step we solve model
(3.7) as follows:

min α

s.t. (6 − x1 + 4x2) ≤ α,

x ∈ S(1)

0 ≤ α ∈ R.

(4.13)

The optimal solution of the problem is w(1) = (0, 1.013) with criterion vector f(w(1)) =
{f1(w(1)), f2(w(1))} = {2.026,−4.052}.
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Figure 3: Compromise solution in iteration 1.

Substep 6.7 (find the furthest criterion vector to negative ideal). Solve model (3.7) as follows:

max β

s.t. (x1 − 4x2 − (−15)) ≥ β,

x ∈ S(1)

0 ≤ β ∈ R.

(4.14)

The optimal solution of the problem is y(1) = (0, 1.013) with criterion vector f(y(1)) =
{f1(y(1)), f2(y(1))} = {2.026,−4.052}.

Substep 6.8 (obtain a compromise solution). In order to obtain a criterion vector which is
closest to the positive ideal and furthest to the negative ideal, we solve model (3.7) as follows:

min γ

s.t. (−4.052 − x1 + 4x2) ≤ γ,

(−4.052 − x1 + 4x2) ≥ −γ,
(x1 − 4x2 − (−4.052)) ≤ γ,

(x1 − 4x2 − (−4.052)) ≥ −γ,

x ∈ S(1)

0 ≤ γ ∈ R.

(4.15)

The optimal solution of the problem is x(1) = (0, 1.013) with criterion vector f(x(1)) =
{f1(x(1)), f2(x(1))} = {2.026,−4.052}.
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Figure 4: Compromise solution in iteration 2.

Table 5: The results of classic STEM method.

Iteration (h) x(h) f(x(h))

1 (0.000, 0.452) (0.904,−1.808)
2 (0.000, 0.952) (1.904,−3.808)

Note that x(1) is the point in feasible region whose criterion vector is closet to criterion
vector w(1) and y(1) and therefore whose criterion vector has minimum distance to positive
ideal and has maximum distance to negative ideal one.

In Figure 4 we can see the obtained solutions from iteration 2. Specially we can see the
compromise solution and other solutions obtained from iteration 1 coincide. The compromise
solution that is denoted by x(1) is also the preferred solution.

According to the behavioral assumptions of the STEM method (discussed in decision
phase), the decision maker should be satisfied with the solution x(1); otherwise, there would
be no best compromise solution.

For this two-objective problem, this conclusion may be acceptable as f1(x) can be
sacrificed by as much as 2 units from f1(x(0)), and his sacrifice has been fully used to benefit
the objective f2(x). In general, such conclusion may not be rational for problems having more
than two objectives. In such circumstances, whether the decision maker is satisfied with a
solution depends on the range of solutions he has investigated. Also, the sacrifices of multiple
objectives should also be investigated in addition to the sacrifice of a single objective at each
iteration.

4.3. Solving with the Classic STEM Method

Suppose we want to solve the above problem with the classic STEM method. Therefore the
iterations of solving this problem are as shown in Table 5.

In iteration 2, we set Δf1 = 2. By comparing with the results of proposed method, we
can see that the optimal objective is further to the negative ideal objective.
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5. Conclusion

The suggested method in this paper improves the STEM method by finding a point in
reduced feasible region whose criterion vector is closest to the positive ideal criterion vector
and furthest to the negative ideal criterion vector. Therefore the presented method increases
the rate of satisfactoriness of the obtained solution.
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