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The paper is devoted to proving the existence of a compact random attractor for the random
dynamical system generated by stochastic three-component reversible Gray-Scott system with
multiplicative white noise.

1. Introduction

LetO be an open bounded set of Rn (n ≤ 3)with a locally Lipschitz continuous boundary ∂O.
We consider the stochastic three-component reversible Gray-Scott system with multiplicative
noise

∂ũ

∂t
= d1�ũ − (F + k)ũ + ũ2ṽ −Gũ3 +Nw̃ + σũ ◦ dBt

dt
,

∂ṽ

∂t
= d2�ṽ + F(1 − ṽ) − ũ2ṽ +Gũ3 + σṽ ◦ dBt

dt
,

∂w̃

∂t
= d3�w̃ + kũ − (F +N)w̃ + σw̃ ◦ dBt

dt
,

(1.1)

where ũ = ũ(x, t), ṽ = ṽ(x, t), and w̃ = w̃(x, t) are real-valued functions on O × [τ,+∞),
τ ∈ R; all the parameters are arbitrarily given positive constants; Bt is a Brownian motion
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and ◦ denotes the Stratonovich sense of the stochastic term. In this work, we consider the
homogenous Neumann boundary condition

∂ũ

∂ν
(x, t) =

∂ṽ

∂ν
(x, t) =

∂w̃

∂ν
(x, t) = 0, x ∈ ∂O, (1.2)

where ∂/∂ν is the outward normal derivative, and with an initial condition

ũ(x, 0) = ũ0(x), ṽ(x, 0) = ṽ0(x), w̃(x, 0) = w̃0(x), x ∈ O. (1.3)

The three-component reversible Gray-Scott model was firstly introduced by Mahara
et al. [1]. Recently in [2], You gave the existence of global attractor for system (1.1) when
σ = 0 with Neumann boundary condition (1.2) on a bounded domain of space dimension
n ≤ 3 by the method of the rescaling and grouping estimate. However, the reactions and
diffusions are often affected by stochastic factors then it is important and meaningful to
take the asymptotic behavior of solutions to consideration. Particularly, the dynamics of
certain systems frequently follows some self-organization process where the development
of new, complex structures takes place primarily in and through the system itself. This
self-organization is normally triggered by internal variation processes, which are usually
called fluctuations or noise, that have a positive influence on the system. For instance, recent
theoretical studies and experiments with cultured glial cells and the Belousov-Zhabotinsky
reaction have shown that noise may play a constructive role on the dynamical behavior of
spatially extended systems [3–5]. Therefore, one cannot ignore the role of noise in chemical
and biological self-organization and its relationship with the environmental selection of
emergent patterns [6]. In [7–9], the influence of additive noise on Gray-Scott systems was
discussed. As pointed in [10, 11], the effects of additive and multiplicative noises are
fundamentally different in nonlinear systems. While the effect of additive noise does not
depend on the state of the system, the effect of multiplicative noise is state dependent.
Natural systems in which the effect of noise on the system’s dynamics does depend on
the recent state are autocatalytic chemical reactions or growth processes in developmental
biology. More generally speaking, in each systemwhose dynamics shows some degree of self-
referentiality, the effect of exogenous noise will depend on the recent system’s state. If noise
is multiplicative, “new” phenomena can occur; that is, the noisy system can exhibit behavior,
which is qualitatively different from that of the deterministic system, a phenomenon that has
been coined noise-induced transitions.

A fundamental problem in the study of dynamics of a stochastic partial differential
equation is to show that it generates a random dynamical system (or stochastic flow). One
of the most interesting concepts of the theory of random dynamical systems is the random
attractor, which was introduced in the 90s of the last century (see [12]). An attractor for an
autonomous dynamical system is a compact set in the phase space, attracting the image
of particular sets of initial states under the evolution of the dynamical system. However,
the random case is more complicated, because random attractors depend on the random
parameter and have their own temporal dynamics induced by the noise (cf. the definition
in Section 3). Moreover, the existence of a random attractor to the stochastic reversible Gray-
Scott system, especially of three components, is widely open to the best of our knowledge.
According to methodology of [2] of nondissipative coupling of three variables and the
coefficients barrier, we consider system (1.1)–(1.3), which gives partly an answer to the
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problems of random perturbations proposed in [13]. In this paper, we use the notions and
frameworks in [12, 14, 15] to study the stochastic three-component reversible Gray-Scott
system with multiplicative white noise.

The paper is organized as follows. In Section 2, we give the existence and uniqueness
of solution. Section 3 is devoted to the existence of a random attractor.

2. Existence and Uniqueness of Solutions

Let (Ω,F, P) be a probability space, and {θt : Ω → Ω, t ∈ R} is a family of measure preserving
transformations such that (t, ω) �→ θtω is measurable, θ0 = id, and θt+s = θtθs for all s, t ∈ R.
The flow θt together with the probability space (Ω,F, P, (θt)t∈R) is called as a measurable
dynamical system.

A random dynamical system (RDS) on a Polish space (X, d) with Borel σ-algebra B
over θ on (Ω,F, P) is a measurable map

ϕ : R+ ×Ω ×X −→ X, (t, ω, x) �−→ ϕ(t, ω)x, (2.1)

such that P -almost surely (P -a.s.)we have

(i) ϕ(0, ω) = id on X;

(ii) (cocycle property) ϕ(t + s,ω) = ϕ(t, θsω)ϕ(s,ω) for all s, t ≥ 0.

An RDS is continuous or differentiable if ϕ(t, ω) : X → X is continuous or differen-
tiable.

A map B : Ω → 2X is said to be a closed (compact) random set if B(ω) is closed
(compact) for P -a.s. ω ∈ Ω and if ω �→ d(x, B(ω)) is P -a.s. measurable for all x ∈ X.

Consider the product Hilbert spaces L2(O), H = [L2(O)]3, and H1(O), E = [H1(O)]3

with the usual inner products and norms

(u, v) =
∫

Ω
uvdx, |u| = (u, u)1/2 ∀u, v ∈ L2(O),

((u, v)) =
n
∑

i=1

(Diu,Div) + F(u, v), ‖u‖ = ((u, u))1/2 ∀u, v ∈ H1(O).

(2.2)

Obviously, for fixed F the scalar product and norm defined above are equivalent to the
usual scalar product and norm in H1(O). And the norm of Lp(O) will be denoted by | · |Lp
if p /= 2, X = (L6(O))3.

Define the unbounded positive linear operator

A (D(A) −→ H) = ˜Δ − FI, (2.3)
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where

˜Δ =

⎛

⎝

d1� 0 0
0 d2� 0
0 0 d3�

⎞

⎠,

D(A) =
{

(

φ, ϕ, ψ
) ∈
[

H2(O)
]3

:
∂φ

∂ν
=
∂ϕ

∂ν
=
∂ψ

∂ν
= 0 on ∂O

}

.

(2.4)

By the Lumer-Phillips theorem and the generation theorem for analytic semigroup [16], the
operator A in (2.3) is linear, sectorial, closed, and defined and is the generator of an analytic
C0-semigroup {eAt, t ≥ 0} on the Hilbert spaceH. Its spectral set consists of only nonnegative
eigenvalues, denoted by μi = λi + F, i ≥ 0, where λi are the corresponding eigenvalues of ˜Δ
satisfying

0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λi ≤ · · · (λi −→ ∞ as i −→ ∞). (2.5)

By the fact thatH1(O) ↪→ L6(O) is a continuous embedding for n ≤ 3 and by the generalized
Hölder inequality, one has

∣

∣

∣u2v
∣

∣

∣ ≤ |u|2L6 |v|L6 , for u, v ∈ L6(O). (2.6)

Therefore, the nonlinear mapping defined on E,

f(ũ, ṽ, w̃) =

⎛

⎜

⎝

−kũ + ũ2ṽ −Gũ3 +Nw̃

F − ũ2ṽ +Gũ3

kũ −Nw̃

⎞

⎟

⎠ : E −→ H, (2.7)

is locally Lipschitz continuous. Thus, the initial boundary problem (1.1)–(1.3) is formulated
as an initial value problem of the stochastic three-component reversible Gray-Scott system
with multiplicative noise

dg̃

dt
= Ag̃ + f

(

g̃
)

+ σg̃ ◦ dBt
dt

, (2.8)

and an initial condition

g̃(0) = g̃0 = (ũ0, ṽ0, w̃0) ∈ H, (2.9)

where g̃(t) = (ũ(t, ·), ṽ(t, ·), w̃(t, ·)). Bt is a one-dimensional two-sided Wiener process on a
probability space (Ω,F, P), where

Ω = {ω ∈ C(R,Rm) : ω(0) = 0}, (2.10)
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the Borel σ-algebra F on Ω is generated by the compact open topology, and P is the
corresponding Wiener measure on F. We can define a family of measure-preserving and
ergodic transformations (a flow) {θt}t∈R by

θtω(·) = ω(· + t) −ω(t). (2.11)

By means of the change of variables

u(t) = α(t)ũ(t),

v(t) = α(t)ṽ(t)

w(t) = α(t)w̃(t),

with α(t) = e−σBt , (2.12)

system (1.1) can be written as

∂u

∂t
= d1�u − (F + k)u + α−2(t)u2v −Gα−2(t)u3 +Nw, (2.13)

∂v

∂t
= d2�v + F(α(t) − v) − α−2(t)u2v +Gα−2(t)u3, (2.14)

∂w

∂t
= d3�w + ku − (F +N)w. (2.15)

That is g(t, ·) = (u(t, ·), v(t, ·), w(t, ·)) satisfies

dg

dt
= Ag + ˜f

(

g,ω
)

, (2.16)

with initial condition

g(0) = g̃(0) = g0 = (u0, v0, w0) ∈ H, (2.17)

where

˜f
(

g,ω
)

=

⎛

⎜

⎝

−ku + α−2(t)u2v −Gα−2(t)u3 +Nw

F − α−2(t)u2v +Gα−2(t)u3

ku −Nw

⎞

⎟

⎠. (2.18)

Due to the fact that H1(O) ↪→ L6(O) and (2.6), we know that ˜f(g,ω) is locally Lipschitz
continuous with respect to g and bounded for every ω ∈ Ω. By the same method in [17,
Chapters II and XV], we can prove for P -a.s. every ω ∈ Ω the local existence and uniqueness
of the weak solution g(t), t ∈ [τ, T] for some τ < T , of (2.16) with g(τ) = g0, which is
continuously depending on the initial data g0 ∈ H and turns out to be a strong solution
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on (τ, T] by [16, Theorem 48.5]. One can show that for P -a.s. every ω ∈ Ω, the following
statements hold for all τ < T .

(i) If g̃(0, ω) ∈ H, then g̃(t, ω) lies in

C([τ, T);H) ∩ C1((τ, T);H) ∩ L2([τ, T);E). (2.19)

(ii) g̃(t, g̃(0, ω)) is jointly continuous in t and g̃(0, ω) in [τ, T) ×H.

(iii) The solution mapping of (2.16) satisfies the property of an RDS.

This system has a unique solution for every ω ∈ Ω. Hence the solution mapping

˜S(t, ω) : g̃(τ,ω) �−→ g̃(t, ω) (2.20)

generates an RDS. So the transformation

̂S(t, ω) : α−1(t)g̃(τ,ω) �−→ α−1(t)g̃(t, ω) (2.21)

also determines an RDS corresponding to system (1.1).
We will prove the existence of a nonempty compact random attractor for the RDS

̂S(t, ω).

3. Existence of a Random Attractor

A random set K(ω) is said to absorb the set B ⊂ X for an RDS ϕ if P -a.s. there exists tB(ω)
such that

ϕ(t, θ−tω)B ⊂ K(ω) ∀t ≥ tB(ω). (3.1)

A random set A(ω) is said to be a random attractor associated to the RDS ϕ if P -a.s.:

(i) A(ω) is a random compact set, that is, P -a.s. ω ∈ Ω, A(ω) is compact, and for all
x ∈ X and P -a.s. the map x �→ dist(x,A(ω)) is measurable.

(ii) ϕ(t, ω)A(ω) = A(θtω) for all t ≥ 0 (invariance).

(iii) For all bounded B ⊂ X,

lim
t→∞

dist
(

ϕ(t, θ−tω)B,A(ω)
)

= 0, (3.2)

where dist(·, ·) denotes the Hausdorff semidistance:

dist(Y,Z) = sup inf
x∈Y y∈Z

d
(

x, y
)

, Y, Z ∈ X. (3.3)
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Proposition 3.1 (see [14, 15]). Let φ be an RDS on a Polish space (X, d)with Borel σ-algebra B over
the flow {θt}t∈R on a probability space (Ω,F, P). Suppose there exists a random compact set K(ω)
such that for any bounded nonrandom set B ⊂ X P -a.s

dist
(

ϕ(t, θ−tω)B,K(ω)
) −→ 0 as t −→ +∞. (3.4)

Then the set

A(ω) =
⋃

B⊂X
ΛB(ω) (3.5)

is a unique random attractor for φ, where the union is taken over all bounded B ⊂ X and ΛB(ω) is the
omega-limit set of B given by

ΛB(ω) =
⋂

s≥0

⋃

t≥s
φ(t, θ−tω)B. (3.6)

Now, we will show the existence of a random attractor for the RDS (2.16).

Lemma 3.2. There exists a random variable r1(ω) > 0, depending on F, G, σ, and μ, such that for all
ρ > 0 there exists t(ω) ≤ −1 such that the following holds P -a.s. For all t0 ≤ t(ω), and for all g̃0 ∈ H
with |g̃0| ≤ ρ, the solution g(t, ω; t0, α(t0)g̃0) of system (2.16) over [t0,∞), with g(t0) = α(t0, ω)g̃0,
satisfies the inequality

∣

∣g
(−1, ω; t0, α(t0, ω)g̃0

)∣

∣

2 ≤ r21(ω). (3.7)

Proof. Define

W(t, x) =
N

k
w(t, x), μ =

k

N
. (3.8)

Then (2.13)–(2.15) can be written as

∂u

∂t
= d1�u − (F + k)u + α−2(t)u2v −Gα−2(t)u3 + kW, (3.9)

∂v

∂t
= d2�v + F(α(t) − v) − α−2(t)u2v +Gα−2(t)u3, (3.10)

μ
∂W

∂t
= μd3�W + ku − (μF + k

)

W. (3.11)
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Taking the inner products of (3.9)–(3.11)withGu(t), v(t), andGW(t), respectively. Then sum
up the resulting equalities. By the Neumann boundary condition (1.2), we get

1
2
d

dt

(

G|u|2+|v|2+μG|W |2
)

+G(F+k)|u|2+F|v|2+G(μF+k)|W |2+d1G‖u‖2+d2‖v‖2+μGd3‖W‖2

≤
∫

Ω
Fα(t)vdx + 2kG

∫

Ω
uWdx − α−2(t)

∫

Ω

(

Gu2 − uv
)2
dx

≤ kG|u|2 + kG|W |2 + F

2
|v|2 + Fα2(t)

2
|O|,

(3.12)

where |O| denotes the volume of O. Set

d = min{d1, d2, d3}, C1 =
F|O|

min
{

1, G,G/μ
} . (3.13)

Then (3.12) yields

d

dt

∣

∣g(t)
∣

∣

2 + d
∥

∥g(t)
∥

∥

2 + F
∣

∣g(t)
∣

∣

2 ≤ C1α
2(t). (3.14)

Applying Gronwall’s inequality to (3.14) and then integrating in [t0,−1], with t0 ≤ −1 we
have

∣

∣g(−1)∣∣2 ≤ ∣∣α(t0)g0
∣

∣

2
e−F(−1−t0) + C1

∫−1

t0

e−F(−1−s)α2(s)ds

≤ eF
(

eFt0
∣

∣α(t0)g0
∣

∣

2 + C1

∫−1

t0

eFsα2(s)ds

)

.

(3.15)

Consequently, give B(0, ρ) ⊂ H, P -a.s. there exists t(ω, ρ) ≤ −1 such that for t0 ≤ t(ω, ρ) and
all g0 ∈ B(0, ρ),

∣

∣g
(−1, ω; t0, α(t0)g̃0

)∣

∣

2 ≤ r21(ω), (3.16)

with

r21(ω) = e
F

(

1 + C1

∫−1

−∞
eFsα2(s)ds

)

. (3.17)

Indeed, it is enough to choose t(ω, ρ) such that

eFt0α2(t0)ρ2 ≤ 1, (3.18)

and take into account (3.15) and the fact that P -a.s. eFsα2(s) = eFse−2σWs → 0 as s → −∞.
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If we now return to (3.14) and integrate for t ∈ [−1, 0], we have

∣

∣g(t)
∣

∣

2 ≤ ∣∣g(−1)∣∣2e−F(t+1) + C1

∫ t

−1
e−F(t−s)α2(s)ds,

d

∫0

−1

∥

∥g(s)
∥

∥

2
ds ≤ ∣∣g(−1)∣∣2 + C1

∫0

−1
α2(s)ds.

(3.19)

Thus, we can conclude that given B(0, ρ) ⊂ H and P -a.s. there exists t(ω, ρ) ≤ −1 such that
for t0 ≤ t(ω, ρ) and for all g0 ∈ B(0, ρ),

∣

∣g
(

t, ω; t0, g0
)∣

∣

2 ≤ e−F(t+1)r21(ω) + C1

∫ t

−1
e−F(t−s)α2(s)ds,

d

∫0

−1

∥

∥g(s,ω; t0, g0)
∥

∥

2
ds ≤ r21(ω) + C1

∫0

−1
α2(s)ds.

(3.20)

To prove the absorption at time t = 0, we need the following proposition.

Proposition 3.3. There exists a random variable r3(ω) > 0, depending on λ1, σ, and d, such that
for all ρ′ > 0 there exists t(ω) ≤ −1 such that the following holds P -a.s. For all t0 ≤ t(ω) and
for all g̃0 ∈ H with |g̃0| ≤ ρ′, the solution g(t, ω; t0, α(t0)g0) of system (2.16) over [t0,∞), with
g(t0) = α(t0, ω)g̃0, satisfies the inequality

∣

∣g
(−1, ω; t0, α(t0, ω)g̃0

)∣

∣

6
X ≤ r23(ω). (3.21)

Also, for t ∈ [−1, 0] one has

∣

∣g(t)
∣

∣

6
X ≤ e−F(t+1)r23(ω) + C4

∫ t

−1
e−F(t−τ)α6(τ)dτ. (3.22)

Proof. Letting V (t, x) = v(t, x)/G, (3.9)–(3.11) can be written as

∂u

∂t
= d1�u − (F + k)u +Gα−2(t)u2V −Gα−2(t)u3 + kW, (3.23)

∂V

∂t
= d2�v +

F

G
α(t) − FV − α−2(t)u2V + α−2(t)u3, (3.24)

μ
∂W

∂t
= μd3�W + ku − (μF + k

)

W. (3.25)
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Take the inner products ((3.23), u5(t)), ((3.24), GV 5(t)) and ((3.25), W5(t)) and sum up the
resulting equalities. By the Neumann boundary condition, we get

1
6
d

dt

(

|u|6L6 +G|V |6L6 + μ|W |6L6

)

+ 5
(

d1
∥

∥

∥u2∇u
∥

∥

∥

2
+ d2G

∥

∥

∥V 2∇V
∥

∥

∥

2
+ μd3G

∥

∥

∥W2∇W
∥

∥

∥

2
)

= −(F + k)
∫

Ω
u6ds + F

∫

Ω
α(t)V 5dx −GF

∫

Ω
V 6dx

− (μF + k
)

∫

Ω
W6dx + k

∫

Ω
u5Wdx + k

∫

Ω
uW5dx

−Gα−2(t)
∫

Ω

(

u8 − u7V − u3V 5 + u2V 6
)

dx.

(3.26)

By using Young’s inequality, we obtain

−Gα−2(t)
∫

Ω

(

u8 − u7V − u3V 5 + u2V 6
)

dx ≤ 0,

k

∫

Ω
u5Wdx + k

∫

Ω
uW5dx ≤ k|u|6L6 + k|W |6L6 .

(3.27)

From (3.27), (3.26) yields

d

dt

(

|u|6L6 +G|V |6L6 + μ|W |6L6

)

+ F
(

|u|6L6 +G|V |6L6 + μ|W |6L6

)

≤ F|O|
G5

α6(t), (3.28)

that is,

d

dt

(

|u|6L6 +G−5|v|6L6 + μ−5|w|6L6

)

+ F
(

|u|6L6 +G−5|v|6L6 + μ−5|w|6L6

)

≤ F|O|
G5

α6(t). (3.29)

By denoting

C4 =
F|O|

G5 min
{

1, G−5, μ−5} , (3.30)

then (3.29) implies that

d

dt

∣

∣g(t)
∣

∣

6
X + F

∣

∣g(t)
∣

∣

6
X ≤ C4α

6(t). (3.31)

Integrating in [t0,−1], with t0 ≤ −1 we have

∣

∣g(−1)∣∣6X ≤ ∣∣α(t0)g0
∣

∣

6
Xe

−F(−1−t0) + C4

∫−1

t0

e−F(−1−s)α6(s)ds. (3.32)
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Consequently, given B(0, ρ′) ⊂ H, P -a.s. there exists t(ω, ρ′) ≤ −1 such that for all t0 ≤ t(ω, ρ′)
and for all g0 ∈ B(0, ρ′),

∣

∣g
(−1, ω, t0, α(t0)g0

)∣

∣

6
X ≤ r23(ω), (3.33)

with

r23(ω) = e
F

(

1 + C4

∫−1

−∞
eFsα6(s)ds

)

. (3.34)

In fact, it is enough to choose t(ω, ρ′) to satisfy

eFt0α6(t0)ρ′
6 ≤ 1, (3.35)

and take into (3.32) and the fact that P -a.s. eFsα6(s) = eFse−6σWs → 0 as s → −∞. Also, from
(3.32) and for t ∈ [−1, 0] we get

∣

∣g(t)
∣

∣

6
X ≤ e−F(t+1)r23(ω) + C4

∫ t

−1
e−F(t−τ)α6(τ)dτ. (3.36)

Lemma 3.4. There exists a random variable r2(ω) > 0, depending on F, G,N, d, k, and σ, such that
for all ρ > 0 there exists t(ω) ≤ −1 such that the following holds P -a.s. For all t0 ≤ t(ω) and for all
g̃0 ∈ H with |g̃0| ≤ ρ, there exists a unique solution g(t, ω; t0, α(t0)g0) of system (2.16) over [t0,∞),
with g(t0) = α(t0, ω)g̃0, and put g̃(t, ω; t0, g̃0) := α−1(t, ω)g(t, ω; t0, g̃0). Then

∥

∥g̃
(

0, ω; t0, g̃0
)∥

∥

2 ≤ r22(ω). (3.37)

Proof. To get a bound in E, we multiply (2.13)–(2.15) by −Δu, −Δv, and − −Δw, respectively.
Add up the three equalities, and due to the Neumann boundary condition, we have

1
2
d

dt

(

‖u‖2+‖v‖2+‖w‖2
)

+d1|�u|2+d2|�v|2+d3|�w|2+(F+k)‖u‖2+F‖v‖2+(F+N)‖w‖2

= −α−2(t)
∫

Ω
u2v�udx +Gα−2(t)

∫

Ω
u3�udx −N

∫

Ω
w�udx

− Fα(t)
∫

Ω
�vdx + α−2(t)

∫

Ω
u2v�vdx −Gα−2(t)

∫

Ω
u3�vdx

− k
∫

Ω
u�wdx

≤ d1
2
|�u|2 + d2

2
|�v|2 + d3

2
|�w|2 + α−4(t)

(

1
d1

+
1
d2

)∫

Ω
u4v2dx

+
N2

d1

∫

Ω
w2dx +

k2

2d3

∫

Ω
u2dx +

G2α−4(t)
d2

∫

Ω
u6dx,

(3.38)
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that is,

d

dt

(

‖u‖2 + ‖v‖2 + ‖w‖2
)

+ F
(

‖u‖2 + ‖v‖2 + ‖w‖2
)

≤ α−4(t)
(

4
3d1

+
4
3d2

+
2G2

d2

)

∫

Ω

(

u6 + v6
)

dx +
2N2

d1
|w|2 + k2

d3
|u|2

≤ C2α
−4(t)

∣

∣g
∣

∣

6
X + C3

∣

∣g
∣

∣

2
.

(3.39)

Here d = min{d1, d2, d3}, C2 = (1/d)(8/3 + 2G2), C3 = (1/d)max{2N2, k2}. Then from (3.39)
we have

d

dt

∥

∥g
∥

∥

2 + F
∥

∥g
∥

∥

2 ≤ C2α
−4(t)

∣

∣g
∣

∣

6
X + C3

∣

∣g
∣

∣

2
. (3.40)

Integrating (3.40) in [s, 0], s ∈ [−1, 0], we obtain

∥

∥g(0)
∥

∥

2 ≤ ∥∥g(s)∥∥2 + C2

∫0

s

α−4(τ)
∣

∣g(τ)
∣

∣

6
Xdτ + C3

∫0

s

∣

∣g(τ)
∣

∣

2
dτ. (3.41)

Integrating (3.41) in [−1, 0] and by (3.20),

∥

∥g(0)
∥

∥

2 ≤
∫0

−1

∥

∥g(τ)
∥

∥

2
dτ + C2

∫0

−1
α−4(τ)

∣

∣g(τ)
∣

∣

6
Xdτ + C3

∫0

−1

∣

∣g(τ)
∣

∣

2
dτ

≤
(

1
d
+
C3

F

)

(

r21(ω) + C1

∫0

−1
α2(τ)dτ

)

+ C2 sup
−1≤t≤0

α−4(t)
∫0

−1

∣

∣g(τ)
∣

∣

6
X.

(3.42)

It is now straightforward from (3.31) and (3.36) that

∥

∥g(0)
∥

∥

2 =
∥

∥g̃(0)
∥

∥

2 ≤
(

1
d
+
C3

F

)

(

r21(ω) + C1

∫0

−1
α2(τ)dτ

)

+
C2

F
sup
−1≤t≤0

α−4(t)

(

r23(ω) + C4

∫0

−1
α6(τ)dτ

)

.

(3.43)

Consequently, P -a.s. there exists r2(ω) such that given ρ > 0, there exists ˜t(ω) ≤ −1 such that
for all t0 ≤ ˜t(ω) and g̃0 ∈ H with |g̃0| ≤ ρ,

∥

∥g̃
(

0, ω; t0, g̃0
)∥

∥

2 ≤ r22(ω), (3.44)



Journal of Applied Mathematics 13

where

r22(ω) = (C5 + C6)eF + C1C5

∫−1

−∞
eF(s+1)α2(s)ds + C1C5

∫0

−1
α2(s)ds

+ C4C6

∫−1

−∞
eF(s+1)α6(s)ds + C4C6

∫0

−1
α6(s)ds,

C5 =
(

1
d
+
C3

F

)

, C6 =
C2

F
sup
−1≤t≤0

α−4(t).

(3.45)

Thus, we can have the main result.

Theorem 3.5. The RDS ̂S(t, ω) has a nonempty compact random attractorA(ω).

Proof. This follows from Lemma 3.2 and Lemma 3.4 combined with the embedding of E ↪→ H
and Proposition 3.1.

Remark 3.6. It is necessary and interesting for us to consider the Hausdorff dimension of the
random attractor which is generated by the stochastic three-component reversible Gray-Scott
systemwithmultiplicative white noise, but it seems impossibile to apply the results in [18, 19]
directly because of the higher-order terms. In order to verify the differentiability properties
for the cocycle generated by the random system, we need to check condition (2.7)–(2.13) in
[19]. Considering the linearized equation (2.13)–(2.15), we have

∂ ˜U

∂t
= d1� ˜U − (F + k) ˜U + 2uve2σWt

˜U + u2 ˜Ve2σWt − 3Ge2σWtu2 ˜U +N˜W,

∂ ˜V

∂t
= d1� ˜V − F ˜V − 2uve2σWt

˜U − u2 ˜Ve2σWt + 3Gu2e2σWt
˜U,

∂˜W

∂t
= d1�˜W + k ˜U − (F +N)˜W.

(3.46)

Letting Φ(t) = ( ˜U, ˜V ,˜W), q(t) = g̃(t) − g(t) −Φ(t), then

q(t) =
(

q1(t), q2(t), q3(t)
)

=
(

ũ − u − ˜U, ṽ − v − ˜V , w̃ −w − ˜W
)

(3.47)

satisfies

∂q1
∂t

= d1�q1 − (F + k)q1 + α(t)
(

ũ2ṽ − u2v
)

− 2ũṽe2σWt(t) ˜U − ũ2e2σWt
˜V

+ 3Gũ2e2σWt
˜U −Gα(t)

(

ũ3 − u3
)

+Nq3,

∂q2
∂t

= d1�q2 − Fq2 − α(t)
(

ũ2ṽ − u2v
)

+ 2ũṽe2σWt
˜U + ũ2e2σWt

˜V

− 3Gũ2e2σWt
˜U +Gα(t)

(

ũ3 − u3
)

,

∂q3
∂t

= d1�q3 + kq1 − (F +N)q3.

(3.48)
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Here, let

g̃(t) = g̃
(

t, ω; 0, g̃0
)

= (ũ(t, ω; 0, ũ0), ṽ(t, ω; 0, ṽ0), w̃(t, ω; 0, w̃0)),

g(t) = g
(

t, ω; 0, g0

)

= (u(t, ω; 0, u0), v(t, ω; 0, v0), w(t, ω; 0, w0))
(3.49)

be two solutions of system (1.1). From (3.48), it seems hard to get the conclusion.
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