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We study a competition system of the growth of two species of plankton with competitive and
allelopathic effects on each other on time scales. With the help of Mawhin’s continuation theorem
of coincidence degree theory, a set of easily verifiable criteria is obtained for the existence of at least
two periodic solutions for this model. Some new existence results are obtained. An example and
numerical simulation are given to illustrate the validity of our results.

1. Introduction

The allelopathic interactions in the phytoplanktonic world have been studied by many
researchers. For instance, see [1–4] and references cited therein. Maynard-Smith [2] and
Chattopadhyay [3] proposed the following two-species Lotka-Volterra competition system,
which describes the changes of size and density of phytoplankton:

dN1(t)
dt

= N1(t)[r1 − a11N1(t) − a12N2(t) − b1N1(t)N2(t)],

dN2(t)
dt

= N2(t)[r2 − a21N1(t) − a22N2(t) − b2N1(t)N2(t)],

(1.1)

where b1 and b2 are the rates of toxic inhibition of the first species by the second and vice
versa, respectively.

Naturally, more realistic models require the inclusion of the periodic changing of
environment caused by seasonal effects of weather, food supplies, and so forth. For such
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systems, as pointed out by Freedman and Wu [5] and Kuang [6], it would be of interest to
study the existence of periodic solutions. This motivates us to modify system (1.1) to the form

dN1(t)
dt

= N1(t)[r1(t) − a11(t)N1(t) − a12(t)N2(t) − b1(t)N1(t)N2(t)],

dN2(t)
dt

= N2(t)[r2(t) − a21(t)N1(t) − a22(t)N2(t) − b2(t)N1(t)N2(t)],

(1.2)

where ri(t), aij(t) > 0, bi(t) > 0 (i, j = 1, 2) are continuous ω-periodic functions.
If the estimates of the population size and all coefficients in (1.2) are made at equally

spaced time intervals, then we can incorporate this aspect in (1.2) and obtain the following
discrete analogue of system (1.2):

N1(k + 1) = N1(k) exp{r1(k) − a11(k)N1(k) − a12(k)N2(k) − b1(k)N1(k)N2(k)},
N2(k + 1) = N2(k) exp{r2(k) − a21(k)N1(k) − a22(k)N2(k) − b2(k)N1(k)N2(k)},

(1.3)

where ri, aij > 0, bi > 0 (i, j = 1, 2) are ω-periodic, that is,

ri(k +ω) = ri(k), bi(k +ω) = bi(k), aij(k +ω) = aij(k), (1.4)

for any Z (the set of all integers), ω is a fixed positive integer. System (1.3) was considered
by Zhang and Fang [7]. However, dynamics in each equally spaced time interval may vary
continuously. So, it may be more realistic to assume that the population dynamics involves
the hybrid discrete-continuous processes. For example, Gamarra and Solé pointed out that
such hybrid processes appear in the population dynamics of certain species that feature
nonoverlapping generations: the change in population from one generation to the next is
discrete and so is modelled by a difference equation, while within-generation dynamics vary
continuously (due to mortality rates, resource consumption, predation, interaction, etc.) and
thus are described by a differential equation [8, page 619]. The theory of calculus on time
scales (see [9, 10] and references cited therein) was initiated by Hilger in his Ph.D. thesis in
1988 [11] in order to unify continuous and discrete analysis, and it has become an effective
approach to the study of mathematical models involving the hybrid discrete-continuous
processes. This motivates us to unify systems (1.2) and (1.3) to a competition system on time
scales T of the form

xΔ
1 (t) = r1(t) − a11(t) exp{x1(t)} − a12(t) exp{x2(t)} − b1(t) exp{x1(t)} exp{x2(t)},

xΔ
2 (t) = r2(t) − a21(t) exp{x1(t)} − a22(t) exp{x2(t)} − b2(t) exp{x1(t)} exp{x2(t)},

(1.5)

where ri(t), aij(t) > 0, bi(t) > 0 (i, j = 1, 2) are rd-continuous ω-periodic functions.
In (1.5), let Ni(t) = exp{xi(t)}, i = 1, 2. If T = R (the set of all real numbers), then (1.5)

reduces to (1.2). If T = Z (the set of all integers), then (1.5) reduces to (1.3).
To our knowledge, few papers have been published on the existence of multiple

periodic solutions for this model. Motivated by the work of Chen [12], we study the
existence of multiple periodic solutions of (1.5) by applying Mawhin’s continuation theorem
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of coincidence degree theory [13]. Some new results are obtained. Even in the special case
when T = Z, our conditions are also easier to verify than that of [7].

2. Preliminaries on Time Scales

In this section, we briefly present some foundational definitions and results from the calculus
on time scales so that the paper is self-contained. For more details, one can see [9–11].

Definition 2.1. A time scale T is an arbitrary nonempty closed subset of the real numbers R.

Let ω > 0. Throughout this paper, the time scale T is assumed to be ω-periodic, that
is, t ∈ T implies t + ω ∈ T. In particular, the time scale T under consideration is unbounded
above and below.

Definition 2.2. We define the forward jump operator σ : T → T, the backward jump operator
ρ : T → T, and the graininess μ : T → R

+ = [0,∞) by

σ(t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t}, μ(t) = σ(t) − t for t ∈ T, (2.1)

respectively. If σ(t) = t, then t is called right-dense (otherwise: right-scattered), and if ρ(t) = t,
then t is called left-dense (otherwise: left-scattered).

Definition 2.3. Assume f : T → R is a function and let t ∈ T. Then we define fΔ(t) to be the
number (provided it exists) with the property that given any ε > 0, there is a neighborhood
U of t (i.e.,U = (t − δ, t + δ) ∩ T for some δ > 0) such that

∣
∣
∣

[

f(σ(t)) − f(s)
] − fΔ(t)[σ(t) − s]

∣
∣
∣ ≤ |σ(t) − s| ∀s ∈ U. (2.2)

In this case, fΔ(t) is called the delta (or Hilger) derivative of f at t. Moreover, f is said to be
delta or Hilger differentiable on T if fΔ(t) exists for all t ∈ T. A function F : T → R is called
an antiderivative of f : T → R provided FΔ(t) = f(t) for all t ∈ T. Then we define

∫ s

r

f(t)Δt = F(s) − f(r) for r, s ∈ T. (2.3)

Definition 2.4. A function f : T → R is said to be rd-continuous if it is continuous at right-
dense points in T and its left-sided limits exist (finite) at left-dense points in T. The set of
rd-continuous functions f : T → R will be denoted by Crd(T).

Lemma 2.5. Every rd-continuous function has an antiderivative.

Lemma 2.6. If a, b ∈ T, α, β ∈ R, and f, g ∈ Crd(T), then

(a)
∫b

a[αf(t) + βg(t)]Δt = α
∫b

a f(t)Δt + β
∫b

a g(t)Δt

(b) if f(t) ≥ 0 for all a ≤ t < b, then
∫b

a f(t)Δt ≥ 0

(c) if |f(t)| ≤ g(t) on [a, b) := {t ∈ T : a ≤ t < b}, then | ∫ba f(t)Δt| ≤ ∫ba g(t)Δt.
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For convenience, we now introduce some notation to be used throughout this paper.
Let

κ = min{[0,∞) ∩ T}, Iω = [κ, κ +ω] ∩ T, gu = sup
t∈Iω

g(t), gl = inf
t∈Iω

g(t),

g =
1
ω

∫

Iω

g(s)Δs =
1
ω

∫κ+ω

κ

g(s)Δs,

(2.4)

where g ∈ Crd(T) is an ω-periodic real function, that is, g(t +ω) = g(t) for all t ∈ T.

Lemma 2.7 (see [14]). Let t1, t2 ∈ Iω and t ∈ T. If g : T → R is ω- periodic, then

g(t) ≤ g(t1) +
∫κ+ω

κ

∣
∣g(s)

∣
∣Δs, g(t) ≥ g(t2) −

∫κ+ω

κ

∣
∣g(s)

∣
∣Δs. (2.5)

Lemma 2.8 (see [15]). Assume that {fn}n∈N is a function on J such that

(i) {fn}n∈N is uniformly bounded on J ,

(ii) {fΔ
n }n∈N is uniformly bounded on J .

Then there is a subsequence of {fn}n∈N which converges uniformly on J .

3. Existence of Multiple Periodic Solutions

In this section, in order to obtain the existence of multiple periodic solutions of (1.5), we first
make the following preparations [13].

LetX, Z be normed vector spaces, let L : domL ⊂ X → Z be a linear mapping, and let
N: X → Z be a continuous mapping. The mapping L will be called a Fredholm mapping of
index zero if dimKerL = codimImL < +∞ and ImL is closed in Z. If L is a Fredholmmapping
of index zero, there then exist continuous projectors P : X → X and Q : Z → Z such that
ImP = KerL, ImL = KerQ = Im(I − Q). If we define LP : domL ∩ KerP → ImL as the
restriction L|domL∩KerP of L to domL ∩ KerP , then LP is invertible. We denote the inverse of
that map byKP . IfΩ is an open bounded subset ofX, themappingNwill be called L-compact
on Ω if QN(Ω) is bounded and KP (I − Q)N : Ω → X is compact, that is, continuous and
such thatKP (I−Q)N(Ω) is relatively compact. Since ImQ is isomorphic to KerL, there exists
isomorphism J : ImQ → KerL.

Mawhin’s continuation theorem of coincidence degree theory is a very powerful tool
to deal with the existence of periodic solutions of differential equations, difference equations
and dynamic equations on time scales. For convenience, we introduceMawhin’s continuation
theorem [13, page 40] as follows.

Lemma 3.1 (continuation theorem). Let L be a Fredholm mapping of index zero and let N : Ω →
Z be L-compact on Ω. Suppose

(a) Lx/=λNx for every x ∈ domL ∩ ∂Ω and every λ ∈ (0, 1),
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(b) QNx/= 0 for every x ∈ ∂Ω ∩ KerL, and Brouwer degree

degB(JQN,Ω ∩ KerL, 0)/= 0. (3.1)

Then Lx = Nx has at least one solution in domL ∩Ω.

In the following, we shall use the notation

αij = ajibi − aiibj , α′
ij = ajibi − aiibje

(Rj+rj )ω,

α′′
ij =

(

ajibie
(Rj+rj )ω − aiibj

)

e(Ri+ri)ω,

βij = aiiajj + birj − aijaji − bjri,

β′ij = aiiajje
(Rj+rj )ω + birj − aijajie

(Ri+ri)ω − bjrie
(Ri+ri+Rj+rj )ω,

β′′ij = aiiajje
(Ri+ri)ω + birje

(Ri+ri+Rj+rj )ω − aijajie
(Rj+rj )ω − bjri,

β∗ij = aiiajj + birj − aijajie
(Ri+ri)ω − bjrie

(Ri+ri+Rj+rj )ω,

γij = riajj − rjaij , γ ′ij =
(

riajje
(Rj+rj )ω − rjaij

)

e(Ri+ri)ω,

γ ′′ij = riajj − rjaije
(Rj+rj )ω, γ∗ij = riajj − rjaije

(Ri+ri+Rj+rj )ω, i /= j, i, j = 1, 2,

N1
(

α, β, γ
)

=
β −

√

β2 − 4αγ

2α
, N2

(

α, β, γ
)

=
β +

√

β2 − 4αγ

2α

(

α/= 0, β2 − 4αγ > 0
)

.

(3.2)

We make the following assumptions.

(H1) Ri = (1/ω)
∫κ+ω
κ |ri(t)|Δt ≥ (1/ω)

∫κ+ω
κ ri(t)Δt > 0.

(H2) γ∗ij = riajj − rjaije
(Ri+ri+Rj+rj )ω > 0, i /= j, i, j = 1, 2.

(H3) α12 > 0.

Next, we introduce some lemmas.

Lemma 3.2 (see [16, Lemma 3.2]). Consider the following algebraic equations:

a11N1 + a12N2 + b1N1N2 = r1,

a21N1 + a22N2 + b2N1N2 = r2.
(3.3)

Assuming that (H1), (H2) hold, then the following conclusions hold.

(i) If α12 > 0, then (3.3) have two positive solutions:

(

Ni

(

α12, β12, γ12
)

,N1
(

α21, β21, γ21
))

, i = 1, 2. (3.4)
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(ii) If α21 > 0, then (3.3) have two positive solutions:

(

N1
(

α12, β12, γ12
)

,Ni

(

α21, β21, γ21
))

, i = 1, 2. (3.5)

Lemma 3.3. Assume that (H1)–(H3) hold, then the following conclusions hold.

(i) β12 > 0, β212 − 4α12γ12 > 0,

(ii) β∗12 > 0, β∗212 − 4α12γ
′
12 > 0.

Proof. The proof of (i) is the same as (i) of Lemma 3.5 in [7]. We omit it.

(ii) We have

β∗12 =

(

b1
a11

+
a12

r1e(R2+r2)ω

)

γ∗21 +

(

r1α12e
(R1+r1+R2+r2)ω

a11
+

a11γ
′
12

r1e(R1+r1+R2+r2)ω

)

> 0,

β∗212 − 4α12γ
′
12 =

(

b1
a11

+
a12

r1e(R2+r2)ω

)2

γ∗221 +

(

r1α12e
(R1+r1)ω

a11
− a11γ

′
12

r1e(R1+r1)ω

)2

+ 2

(

b1
a11

+
a12

r1e(R2+r2)ω

)(

r1α12e
(R1+r1+R2+r2)ω

a11
+

a11γ
′
12

r1e(R1+r1+R2+r2)ω

)

γ∗21 > 0.

(3.6)

Lemma 3.4. Assume that (H1)–(H3) hold, then the following conclusions hold.

N1
(

α12, β12 +m, γ12 − n
)

< N1
(

α12, β12, γ12
)

< N1
(

α12, β
∗
12, γ

′
12

)

< N2
(

α12, β
∗
12, γ

′
12

)

< N2
(

α12, β12, γ12
)

< N2
(

α12, β12 +m, γ12 − n
)

,
(3.7)

where

m = a11a22

(

e(R1+r1)ω − 1
)

+ b1r2
(

e(R1+r1+R2+r2)ω − 1
)

> 0,

n = a12r2
(

e(R2+r2)ω − 1
)

> 0.
(3.8)

Proof. Under the conditions that α > 0, β > 0, γ > 0, β2 − 4αγ > 0, we have

N1
(

α, β, γ
)

=
2γ

β +
√

β2 − 4αγ
, N2

(

α, β, γ
)

=
β +

√

β2 − 4αγ

2α
. (3.9)

Thus N1(α, β, γ) (N2(α, β, γ)) is increasing (decreasing) in the first variable, decreasing
(increasing) in the second variable, increasing (decreasing) in the third variable. Notice that

α′′
12 > α12 > α′

12 > 0, γ ′12 > γ12 > γ ′′12 > γ∗12 > 0, β12 > β∗12. (3.10)
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So from (3.9), (3.10), and (H1)–(H3), we obtain that

N1
(

α12, β12 +m, γ12 − n
)

< N1
(

α12, β12, γ12
)

< N1
(

α12, β
∗
12, γ

′
12

)

< N2
(

α12, β
∗
12, γ

′
12

)

< N2
(

α12, β12, γ12
)

< N2
(

α12, β12 +m, γ12 − n
)

.
(3.11)

Theorem 3.5. Assume that (H1)–(H3) hold. Then system (1.5) has at least two ω-periodic solutions.

Proof. Take

X = Z =
{

x = (x1, x2)T : xi ∈ C
(

T,R2
)

, xi(t +ω) = xi(t) ∀t ∈ T, i = 1, 2
}

,

‖x‖ =

[
2∑

i=1

(

max
t∈Iω

|xi(t)|
)2
]1/2

, x ∈ X (or Z).
(3.12)

It is easy to verify that X and Z are both Banach spaces.
Define the following mappings L : X → Z, N : X → Z, P : X → X and Q : Z → Z

as follows:

Nx =

⎛

⎜
⎜
⎜
⎜
⎝

r1(t) −
2∑

j=1

a1j(t) exp
{

xj(t)
} − b1(t) exp{x1(t)} exp{x2(t)}

r2(t) −
2∑

j=1

a2j(t) exp
{

xj(t)
} − b2(t) exp{x2(t)} exp{x1(t)}

⎞

⎟
⎟
⎟
⎟
⎠

,

Lx =

(

xΔ
1

xΔ
2

)

,

Px =
1
ω

∫κ+ω

κ

x(t)Δt = Qx, x ∈ X(orZ).

(3.13)

We first show that L is a Fredholm mapping of index zero and N is L-compact on Ω
for any open bounded set Ω ⊂ X. The argument is quite standard. For example, one can see
[14, 17, 18]. But for the sake of completeness, we give the details here.

It is easy to see that KerL={x ∈ X : (x1(t), x2(t))
T = (h1, h2)

T ∈ R
2 for t ∈ T}, ImL={x ∈

X :
∫κ+ω
κ x(t)Δt = 0} is closed in Z, and dimKerL = codimImL = 2. Therefore, L is a Fredholm

mapping of index zero. Clearly, P and Q are continuous projectors such that

ImP = KerL, KerQ = ImL = Im(I −Q). (3.14)

On the other hand, Kp: ImL → domL ∩ KerP , the inverse to L, exists and is given by

Kp(x) =
∫ t

κ

x(s)Δs − 1
ω

∫κ+ω

κ

∫η

κ

x(s)ΔsΔη. (3.15)
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Obviously,QN andKp(I −Q)N are continuous. By Lemma 2.8, it is not difficult to show that

Kp(I −Q)N(Ω) is compact for any open bounded set Ω ⊂ X. Moreover, QN(Ω) is bounded.
Hence, N is L-compact on Ω for any open bounded set Ω ⊂ X.

Corresponding to the operator equation Lx = λNx, λ ∈ (0, 1), one has

xΔ
i (t) = λ

⎡

⎣ri(t) −
2∑

j=1

aij(t) exp
{

xj(t)
} − bi(t) exp{xi(t)} exp{xk(t)}

⎤

⎦, (3.16)

where i, k = 1, 2, k /= i. Suppose x(t) = (x1(t), x2(t))
T ∈ X is a solution of system (3.16) for

some λ ∈ (0, 1). Integrating (3.16) over the interval [κ, κ +ω], we have

riω =
2∑

j=1

∫κ+ω

κ

aij(t) exp
{

xj(t)
}

Δt +
∫κ+ω

κ

bi(t) exp{xi(t)} exp{xk(t)}Δt, (3.17)

where i, k = 1, 2, k /= i.
It follows from (3.16) and (3.17) that

∫κ+ω

κ

∣
∣
∣xΔ

i (t)
∣
∣
∣Δt = λ

∫κ+ω

κ

∣
∣
∣
∣
∣
∣

ri(t) −
2∑

j=1

aij(t) exp
{

xj(t)
} − bi(t) exp{xi(t)} exp{xk(t)}

∣
∣
∣
∣
∣
∣

Δt

<

∫κ+ω

κ

|ri(t)|Δt +
2∑

j=1

∫κ+ω

κ

aij(t) exp
{

xj(t)
}

Δt

+
∫κ+ω

κ

bi(t) exp{xi(t)} exp{xk(t)}Δt =
(

Ri + ri
)

ω, i = 1, 2.

(3.18)

That is

∫κ+ω

κ

∣
∣
∣xΔ

i (t)
∣
∣
∣Δt <

(

Ri + ri
)

ω, i = 1, 2. (3.19)

Since x(t) ∈ X, there exist ξi, ηi, such that

xi(ξi) = min
t∈[κ,κ+ω]

xi(t), xi

(

ηi
)

= max
t∈[κ,κ+ω]

xi(t), i = 1, 2. (3.20)

From (3.17), (3.20), one obtains

a11 exp
{

x1
(

η1
)}

+ a12 exp
{

x2
(

η2
)}

+ b1 exp
{

x1
(

η1
)}

exp
{

x2
(

η2
)} ≥ r1, (3.21)

a21 exp{x1(ξ1)} + a22 exp{x2(ξ2)} + b2 exp{x1(ξ1)} exp{x2(ξ2)} ≤ r2. (3.22)
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We can derive from (3.22) that

x2
(

η2
) ≤ x2(ξ2) +

∫κ+ω

κ

∣
∣
∣xΔ

2 (t)
∣
∣
∣Δt < ln

r2 − a21 exp{x1(ξ1)}
a22 + b2 exp{x1(ξ1)}

+
(

R2 + r2
)

ω, (3.23)

which, together with (3.21), leads to

exp
{

x1
(

η1
)} ≥ r1 − a12 exp

{

x2
(

η2
)}

a11 + b1 exp
{

x2
(

η2
)}

≥
r1
(

a22 + b2 exp{x1(ξ1)}
)

− a12 exp
{(

R2 + r2
)

ω
}(

r2 − a21 exp{x1(ξ1)}
)

a11

(

a22 + b2 exp{x1(ξ1)}
)

+ b1 exp
{(

R2 + r2
)

ω
}(

r2 − a21 exp{x1(ξ1)}
) .

(3.24)

From (3.19), we have

x1(ξ1) ≥ x1
(

η1
) −

∫κ+ω

κ

∣
∣
∣xΔ

1 (t)
∣
∣
∣Δt > x1

(

η1
) −

(

R1 + r1
)

ω. (3.25)

That is

exp{x1(ξ1)} > exp
{

x1
(

η1
)} · exp

(

−
(

R1 + r1
)

ω
)

, (3.26)

which, together with (3.24), leads to

exp
{(

R1 + r1
)

ω
}

exp{x1(ξ1)}

>
r1
(

a22 + b2 exp{x1(ξ1)}
)

− a12 exp
{(

R2 + r2
)

ω
}(

r2 − a21 exp{x1(ξ1)}
)

a11

(

a22 + b2 exp{x1(ξ1)}
)

+ b1 exp
{(

R2 + r2
)

ω
}(

r2 − a21 exp{x1(ξ1)}
) .

(3.27)

Therefore, we have

α′′
12 exp(2x1(ξ1)) − β′′12 exp{x1(ξ1)} + γ ′′12 < 0. (3.28)

So from (3.10), one obtains

α12 exp(2x1(ξ1)) −
(

β12 +m
)

exp{x1(ξ1)} + γ12 − n < 0, (3.29)

where

m = a11a22

(

e(R1+r1)ω − 1
)

+ b1r2
(

e(R1+r1+R2+r2)ω − 1
)

> 0,

n = a12r2
(

e(R2+r2)ω − 1
)

> 0.
(3.30)
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According to (i) of Lemma 3.3, we obtain

N1
(

α12, β12 +m, γ12 − n
)

< exp{x1(ξ1)} < N2
(

α12, β12 +m, γ12 − n
)

. (3.31)

In a similar way as the above proof, one can conclude from

a21 exp
{

x1
(

η1
)}

+ a22 exp
{

x2
(

η2
)}

+ b2 exp
{

x1
(

η1
)}

exp
{

x2
(

η2
)} ≥ r2,

a11 exp{x1(ξ1)} + a12 exp{x2(ξ2)} + b1 exp{x1(ξ1)} exp{x2(ξ2)} ≤ r1,
(3.32)

that

α′
12 exp

(

2x1
(

η1
)) − β′12 exp

{

x1
(

η1
)}

+ γ ′12 > 0. (3.33)

Noticing that α12 > α′
12, β

′
12 > β∗12, one has

α12 exp
(

2x1
(

η1
)) − β∗12 exp

{

x1
(

η1
)}

+ γ ′12 > 0. (3.34)

According to (ii) of Lemma 3.3, one has

exp
{

x1
(

η1
)}

> N2
(

α12, β
∗
12, γ

′
12

)

, or exp
{

x1
(

η1
)}

< N1
(

α12, β
∗
12, γ

′
12

)

. (3.35)

It follows from (3.19) and (3.31) that

x1
(

η1
) ≤ x1(ξ1) +

∫κ+ω

κ

∣
∣
∣xΔ

1 (t)
∣
∣
∣Δt

< lnN2
(

α12, β12 +m, γ12 − n
)

+
(

R1 + r1
)

ω := H.

(3.36)

On the other hand, it follows from (3.17) and (3.20) that

aiiω exp(xi(ξi)) ≤
∫κ+ω

κ

aii(t) exp{xi(t)}Δt < riω, i = 1, 2; (3.37)

that is

xi(ξi) < ln
ri
aii

, i = 1, 2. (3.38)

From (3.19) and (3.38), one obtains

xi(t) ≤ xi(ξi) +
∫κ+ω

κ

∣
∣
∣xΔ

i (t)
∣
∣
∣Δt < ln

ri
aii

+
(

Ri + ri
)

ω, i = 1, 2. (3.39)
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It follows from (3.17) and (3.20) that

r2ω =
2∑

j=1

∫κ+ω

κ

a2j(t) exp
{

xj(t)
}

Δt

+
∫κ+ω

κ

b2(t) exp{x2(t)} exp{x1(t)}Δt

≤
2∑

j=1

a2jω exp
{

xj

(

ηj
)}

+ b2ω exp
{

x1
(

η1
)}

exp
{

x2
(

η2
)}

,

(3.40)

which implies that

exp
{

x2
(

η2
)} ≥ r2 − a21 exp

{

x1
(

η1
)}

a22 + b2 exp
{

x1
(

η1
)} . (3.41)

From (3.39) and (3.41), we have

x2
(

η2
) ≥ ln

a11r2 − a21r1 exp
{(

R1 + r1
)

ω
}

a11a22 + b2r1 exp
{(

R1 + r1
)

ω
} := M, (3.42)

which leads to

x2(t) ≥ x2
(

η2
) −

∫κ+ω

κ

∣
∣
∣xΔ

2 (t)
∣
∣
∣Δt > M −

(

R2 + r2
)

ω. (3.43)

By (3.39) and (3.43), we obtain that

|x2(t)| < max
{∣
∣
∣
∣
ln

r2
a22

+
(

R2 + r2
)

ω

∣
∣
∣
∣
,
∣
∣
∣M −

(

R2 + r2
)

ω
∣
∣
∣

}

:= A. (3.44)

Now, let us consider QNx with x = (x1, x2)
T ∈ R

2. Note that

QN(x1, x2) =

⎛

⎝
r1 − a11 exp(x1) − a12 exp(x2) − b1 exp(x1) exp(x2)

r2 − a21 exp(x1) − a22 exp(x2) − b2 exp(x1) exp(x2)

⎞

⎠. (3.45)

According to Lemma 3.2, we can show that QNx = 0 has two distinct solutions

x̂i =
(

lnNi

(

α12, β12, γ12
)

, lnN1
(

α21, β21, γ21
))

, i = 1, 2. (3.46)

Choose C > 0 such that

C >
∣
∣lnN1

(

α21, β21, γ21
)∣
∣. (3.47)
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Let

Ω1 =

{

x ∈ X

∣
∣
∣
∣
∣

x1(t) ∈
(

ln N1
(

α12, β12 +m, γ12 − n
)

, lnN1
(

α12, β
∗
12, γ

′
12

))

,

|x2(t)| < A + C.

}

,

Ω2 =

⎧

⎨

⎩
x ∈ X

∣
∣
∣
∣
∣
∣

min
t∈Iω

x1(t) ∈
(

lnN1
(

α12, β12 +m, γ12 − n
)

, lnN2
(

α12, β12 +m, γ12 − n
))

,

max
t∈Iω

x1(t) ∈
(

lnN2
(

α12, β
∗
12, γ

′
12

)

,H
)

, |x2(t)| < A + C.

⎫

⎬

⎭
,

(3.48)

Then bothΩ1 andΩ2 are bounded open subsets ofX. It follows from Lemma 3.2, Lemma 3.4,
and (3.47) that x̂i ∈ Ωi, i = 1, 2. With the help of (3.31), (3.35), (3.36), (3.44), and Lemma 3.4,
it is easy to see thatΩ1 ∩Ω2 = φ andΩi satisfies the requirement (a) in Lemma 3.1 for i = 1, 2.
Moreover, QNx/= 0 for x ∈ ∂Ωi ∩ KerL (i = 1, 2). A direct computation gives

degB(JQN,Ωi ∩ KerL, 0)/= 0. (3.49)

Here J is taken as the identity mapping since ImQ = KerL. So far we have proved that Ωi

satisfies all the assumptions in Lemma 3.1. Hence (1.5) has at least two ω-periodic solutions
x̆i with x̆i ∈ DomL ∩ Ωi (i = 1, 2). Obviously x̆i (i = 1, 2) are different. The proof is complete.

Example 3.6. As an application of Theorem 3.5, we consider the following system:

xΔ
1 (t) = 0.02 + 0.002 cos(0.4πt) − (1 + 0.001 cos(0.4πt)) exp{x1(t)}

− (0.1 + 0.0137 cos(0.4πt)) exp{x2(t)}
− (2 + 0.95 cos(0.4πt)) exp{x1(t)} exp{x2(t)},

xΔ
2 (t) = 0.041 + 0.04 cos(0.4πt) − (1 + 0.038 cos(0.4πt)) exp{x1(t)}

− (1 + 0.0379 cos(0.4πt)) exp{x2(t)}
− (1 + 0.039 cos(0.4πt)) exp{x2(t)} exp{x1(t)}.

(3.50)

If T = R, then (3.50) reduces to the following system:

dx1(t)
dt

= 0.02 + 0.002 cos(0.4πt) − (1 + 0.001 cos(0.4πt)) exp{x1(t)}

− (0.1 + 0.0137 cos(0.4πt)) exp{x2(t)}
− (2 + 0.95 cos(0.4πt)) exp{x1(t)} exp{x2(t)},

dx2(t)
dt

= 0.041 + 0.04 cos(0.4πt) − (1 + 0.038 cos(0.4πt)) exp{x1(t)}

− (1 + 0.0379 cos(0.4πt)) exp{x2(t)}
− (1 + 0.039 cos(0.4πt)) exp{x2(t)} exp{x1(t)}.

(3.51)
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Figure 1: Blue lines stand for x∗
1(t), x

∗
2(t), red lines stand for x∗∗

1 (t), x∗∗
2 (t).

A direct computation gives that

R1 = r1 = 0.02, R2 = r2 = 0.041,

a11 = a22 = 1, a12 = 0.1, a21 = 1,

b1 = 2, b2 = 1, ω = 5,

α12 = a21b1 − a11b2 = 1,

γ∗12 = r1a22 − r2a12e
(R1+r1+R2+r2)ω = 0.02 − 0.0041e0.61 > 0,

γ∗21 = r2a11 − r1a21e
(R2+r2+R1+r1)ω = 0.041 − 0.02e0.61 > 0.

(3.52)

So according to Theorem 3.5, System (3.51) has at least two 5-periodic solutions (x∗
1(t), x

∗
2(t))

and (x∗∗
1 (t), x∗∗

2 (t)). The simulation results given in Figure 1 verify the above conclusion. Set
Ni(t) = exp{xi(t)} (i = 1, 2), then (3.51) can be changed into the following system:

dN1(t)
dt

= N1(t)[0.02 + 0.002 cos(0.4πt) − (1 + 0.001 cos(0.4πt))N1(t)

−(0.1 + 0.0137 cos(0.4πt))N2(t) − (2 + 0.95 cos(0.4πt))N1(t)N2(t)],

dN2(t)
dt

= N2(t)[0.041 + 0.04 cos(0.4πt) − (1 + 0.038 cos(0.4πt))N1(t)

−(1 + 0.0379 cos(0.4πt))N2(t) − (1 + 0.039 cos(0.4πt))N2(t)N1(t)].
(3.53)
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Therefore, System (3.53) has at least two positive 5-periodic solutions. Similar to the proof of
Theorem 3.5, we can prove the following result.

Theorem 3.7. In addition to (H1) and (H2), assume further that system (1.5) satisfies

(H3)
′
α21 > 0.

Then system (1.5) has at least two ω-periodic solutions.
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