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We present the best possible power mean bounds for the productMα
p(a, b)M

1−α
−p (a, b) for any p > 0,

α ∈ (0, 1), and all a, b > 0 with a/= b. Here,Mp(a, b) is the pth power mean of two positive numbers
a and b.

1. Introduction

For p ∈ R, the pth power mean Mp(a, b) of two positive numbers a and b is defined by

Mp(a, b) =

⎧
⎪⎨

⎪⎩

(
ap + bp

2

)1/p

, p /= 0,
√
ab, p = 0.

(1.1)

It is well known that Mp(a, b) is continuous and strictly increasing with respect to
p ∈ R for fixed a, b > 0 with a/= b. Many classical means are special cases of the power
mean, for example, M−1(a, b) = H(a, b) = 2ab/(a + b), M0(a, b) = G(a, b) =

√
ab and

M1(a, b) = A(a, b) = (a + b)/2 are the harmonic, geometric and arithmetic means of a
and b, respectively. Recently, the power mean has been the subject of intensive research. In
particular, many remarkable inequalities and properties for the power mean can be found in
literature [1–22].
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Let L(a, b) = (a−b)/(loga− log b), P(a, b) = (a−b)/[4 arctan(
√
a/b)−π] and I(a, b) =

1/e(aa/bb)1/(a−b) be the logarithmic, Seiffert and identric means of two positive numbers a
and b with a/= b, respectively. Then it is well known that

min{a, b} < H(a, b) < G(a, b) < L(a, b) < P(a, b) < I(a, b) < A(a, b) < max{a, b}, (1.2)

for all a, b > 0 with a/= b.
In [23–29], the authors presented the sharp power mean bounds for L, I, (IL)1/2 and

(L + I)/2 as follows:

M0(a, b) < L(a, b) < M1/3(a, b), M2/3(a, b) < I(a, b) < Mlog 2(a, b),

M0(a, b) <
√

L(a, b)I(a, b) < M1/2(a, b),
1
2
(L(a, b) + I(a, b)) < M1/2(a, b),

(1.3)

for all a, b > 0 with a/= b.
Alzer and Qiu [12] proved that the inequality

1
2
(L(a, b) + I(a, b)) > Mp(a, b) (1.4)

holds for all a, b > 0 with a/= b if and only if p ≤ (log 2)/(1 + log 2) = 0.40938 . . ..
The following sharp bounds for the sum αA(a, b) + (1 − α)L(a, b), and the products

Aα(a, b)L1−α(a, b) and Gα(a, b)L1−α(a, b) in terms of power means were proved in [5, 8]:

Mlog 2/(log 2−logα)(a, b) < αA(a, b) + (1 − α)L(a, b) < M(1+2α)/3(a, b),

M0(a, b) < Aα(a, b)L1−α(a, b) < M(1+2α)/3(a, b),

M0(a, b) < Gα(a, b)L1−α(a, b) < M(1−α)/3(a, b),

(1.5)

for any α ∈ (0, 1) and all a, b > 0 with a/= b.
In [2, 7] the authors answered the questions: for any α ∈ (0, 1), what are the greatest

values p1 = p1(α), p2 = p2(α), p3 = p3(α), and p4 = p4(α), and the least values q1 = q1(α),
q2 = q2(α), q3 = q3(α), and q4 = q4(α), such that the inequalities

Mp1(a, b) < Pα(a, b)L1−α(a, b) < Mq1(a, b),

Mp2(a, b) < Aα(a, b)G1−α(a, b) < Mq2(a, b),

Mp3(a, b) < Gα(a, b)H1−α(a, b) < Mq3(a, b),

Mp4(a, b) < Aα(a, b)H1−α(a, b) < Mq4(a, b),

(1.6)

hold for all a, b > 0 with a/= b?
It is the aim of this paper to present the best possible power mean bounds for the

product Mα
p(a, b)M

1−α
−p (a, b) for any p > 0, α ∈ (0, 1) and all a, b > 0 with a/= b.
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2. Main Result

Theorem 2.1. Let p > 0, α ∈ (0, 1) and a, b > 0 with a/= b. Then

(1) M(2α−1)p(a, b) = Mα
p(a, b)M

1−α
−p (a, b) = M0(a, b) for α = 1/2,

(2) M(2α−1)p(a, b) > Mα
p(a, b)M

1−α
−p (a, b) > M0(a, b) for α > 1/2 and M(2α−1)p(a, b) <

Mα
p(a, b)M

1−α
−p (a, b) < M0(a, b) for α < 1/2, and the bounds M(2α−1)p(a, b) and

M0(a, b) for the product Mα
p(a, b)M

1−α
−p (a, b) in either case are best possible.

Proof. From (1.1) we clearly see that Mp(a, b) is symmetric and homogenous of degree 1.
Without loss of generality, we assume that b = 1, a = x > 1.

(1) If α = 1/2, then (1.1) leads to

Mα
p(x, 1)M

1−α
−p (x, 1) =

(
1 + xp

2

)1/p(1 + x−p

2

)−1/p

=
(
1 + xp

2

)1/p( 2xp

1 + xp

)1/p

= x = M2
0(x, 1) = M2

(2α−1)p(x, 1).

(2.1)

(2) Firstly, we compare the value of M(2α−1)p(x, 1) to the value of Mα
p(x, 1)M

1−α
−p (x, 1)

for α ∈ (0, 1/2) ∪ (1/2, 1). From (1.1)we have

log
[
Mα

p(x, 1)M
1−α
−p (x, 1)

]
− logM(2α−1)p(x, 1)

=
α

p
log

1 + xp

2
− 1 − α

p
log

1 + x−p

2
− 1
(2α − 1)p

log
1 + x(2α−1)p

2
.

(2.2)

Let

f(x) =
α

p
log

1 + xp

2
− 1 − α

p
log

1 + x−p

2
− 1
(2α − 1)p

log
1 + x(2α−1)p

2
, (2.3)

then simple computations lead to

f(1) = 0, (2.4)

f ′(x) =
g(x)

x(1 + xp)
(
1 + x(2α−1)p) , (2.5)

where

g(x) = (α − 1)x2αp + αxp − αx(2α−1)p + 1 − α,

g(1) = 0,
(2.6)

g ′(x) = αpxp−1h(x), (2.7)
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where

h(x) = 2(α − 1)x(2α−1)p − (2α − 1)x2(α−1)p + 1,

h(1) = 0,
(2.8)

h′(x) = −2p(1 − α)(2α − 1)x2(α−1)p−1(xp − 1). (2.9)

If α ∈ (1/2, 1), then (2.9) implies that h(x) is strictly decreasing in [1,+∞). Therefore,
M(2α−1)p(x, 1) > Mα

p(x, 1)M
1−α
−p (x, 1) follows easily from (2.2)–(2.8) and the monotonicity of

h(x).
If α ∈ (0, 1/2), then (2.9) leads to the conclusion that h(x) is strictly increasing in

[1,+∞). Therefore, M(2α−1)p(x, 1) < Mα
p(x, 1)M

1−α
−p (x, 1) follows easily from (2.2)–(2.8) and

the monotonicity of h(x).
Secondly, we compare the value of M0(x, 1) to the value of Mα

p(x, 1)M
1−α
−p (x, 1). It

follows from (1.1) that

log
[
Mα

p(x, 1)M
1−α
−p (x, 1)

]
− logM0(x, 1)

=
α

p
log

1 + xp

2
− 1 − α

p
log

1 + x−p

2
− 1
2
logx.

(2.10)

Let

F(x) =
α

p
log

1 + xp

2
− 1 − α

p
log

1 + x−p

2
− 1
2
logx, (2.11)

then simple computations lead to

F(1) = 0, (2.12)

F ′(x) =
(2α − 1)(xp − 1)

x(1 + xp)
(
1 + x(2α−1)p) . (2.13)

If α ∈ (1/2, 1), then (2.13) implies that F(x) is strictly increasing in [1,+∞). Therefore,
Mα

p(x, 1)M
1−α
−p (x, 1) > M0(x, 1) follows easily from (2.10)–(2.12) and the monotonicity of

F(x).
If α ∈ (0, 1/2), then (2.13) leads to the conclusion that F(x) is strictly decreasing in

[1,+∞). Therefore, Mα
p(x, 1)M

1−α
−p (x, 1) < M0(x, 1) follows easily from (2.10)–(2.12) and the

monotonicity of F(x).
Next, we prove that the bound M(2α−1)p(a, b) for the product Mα

p(a, b)M
1−α
−p (a, b) in

either case is best possible.
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If α ∈ (0, 1/2), then for any ε ∈ (0, (1 − 2α)p) and x > 0 we have

Mα
p(1 + x, 1)M1−α

−p (1 + x, 1) −M(2α−1)p+ε(1 + x, 1)

=
[
1 + (1 + x)p

2

]α/p[1 + (1 + x)−p

2

](α−1)/p

−
[
1 + (1 + x)(2α−1)p+ε

2

]1/[(2α−1)p+ε]
.

(2.14)

Letting x → 0 and making use of Taylor’s expansion, one has

[
1 + (1 + x)p

2

]α/p[1 + (1 + x)−p

2

](α−1)/p
−
[
1 + (1 + x)(2α−1)p+ε

2

]1/[(2α−1)p+ε]

=

[

1 +
α

2
x +

α
(
p + α − 2

)

8
x2 + o

(
x2
)
]

×
[

1 +
1 − α

2
x − (1 − α)

(
p + α + 1

)

8
x2 + o

(
x2
)
]

−
[

1 +
1
2
x +

(2α − 1)p + ε − 1
8

x2 + o
(
x2
)]

=
[

1 +
1
2
x +

(2α − 1)p − 1
8

x2 + o
(
x2
)]

−
[

1 +
1
2
x +

(2α − 1)p + ε − 1
8

x2 + o
(
x2
)]

= −ε
8
x2 + o

(
x2
)
.

(2.15)

Equations (2.14) and (2.15) imply that for any α ∈ (0, 1/2) and ε ∈ (0, (1 − 2α)p) there
exists δ1 = δ1(ε) > 0, such thatMα

p(1 + x, 1)M1−α
−p (1 + x, 1) < M(2α−1)p+ε(1 + x, 1) for x ∈ (0, δ1).

If α ∈ (1/2, 1), then for any ε ∈ (0, (2α − 1)p) and x > 0 we have

Mα
p(1 + x, 1)M1−α

−p (1 + x, 1) −M(2α−1)p−ε(1 + x, 1)

=
[
1 + (1 + x)p

2

]α/p[1 + (1 + x)−p

2

](α−1)/p

−
[
1 + (1 + x)(2α−1)p−ε

2

]1/[(2α−1)p−ε]
.

(2.16)
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Letting x → 0 and making use of Taylor’s expansion, one has

[
1 + (1 + x)p

2

]α/p[1 + (1 + x)−p

2

](α−1)/p
−
[
1 + (1 + x)(2α−1)p−ε

2

]1/[(2α−1)p−ε]

=

[

1 +
α

2
x +

α
(
p + α − 2

)

8
x2 + o

(
x2
)
]

×
[

1 +
1 − α

2
x − (1 − α)

(
p + α + 1

)

8
x2 + o

(
x2
)
]

−
[

1 +
1
2
x +

(2α − 1)p − ε − 1
8

x2 + o
(
x2
)]

=
[

1 +
1
2
x +

(2α − 1)p − 1
8

x2 + o
(
x2
)]

−
[

1 +
1
2
x +

(2α − 1)p − ε − 1
8

x2 + o
(
x2
)]

=
ε

8
x2 + o

(
x2
)
.

(2.17)

Equations (2.16) and (2.17) imply that for any α ∈ (1/2, 1) and ε ∈ (0, (2α − 1)p) there
exists δ2 = δ2(ε) > 0, such thatMα

p(1 + x, 1)M1−α
−p (1 + x, 1) > M(2α−1)p−ε(1 + x, 1) for x ∈ (0, δ2).

Finally, we prove that the boundM0(a, b) for the productMα
p(a, b)M

1−α
−p (a, b) in either

case is best possible.
If α ∈ (0, 1/2), then for any ε > 0 we clearly see that

lim
x→+∞

Mα
p(x, 1)M

1−α
−p (x, 1)

M−ε(x, 1)
= +∞. (2.18)

Equation (2.18) implies that for any α ∈ (0, 1/2) and ε > 0 there exists T1 = T1(ε) > 1,
such that Mα

p(x, 1)M
1−α
−p (x, 1) > M−ε(x, 1) for x ∈ (T1,+∞).

If α ∈ (1/2, 1), then for any ε > 0 we have

lim
x→+∞

Mα
p(x, 1)M

1−α
−p (x, 1)

Mε(x, 1)
= 0. (2.19)

Equation (2.19) implies that for any α ∈ (1/2, 1) and ε > 0 there exists T2 = T2(ε) > 1,
such that Mα

p(x, 1)M
1−α
−p (x, 1) < Mε(x, 1) for x ∈ (T2,+∞).
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