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We consider a generalized ε-vector equilibrium problem which contain vector equilibrium
problems and vector variational inequalities as special cases. By using the KKM theorem,we obtain
some existence theorems for the generalized ε-vector equilibrium problem. We also investigate
the duality of this generalized ε-vector equilibrium problem and discuss the equivalence relation
between solutions of primal and dual problems.

1. Introduction

It is known that vector equilibrium problems provide a unified model for several
different problems appearing in the fields of vector variational inequality problems, vector
complementarity problems, vector optimization problems, and vector saddle point problems.
Many important results for various kinds of vector equilibrium problems and their extensions
have been extensively investigated, see [1–8] and the references therein. Ansari et al. [9]
introduced an implicit vector variational problemwhich contain vector equilibrium problems
and vector variational inequalities as special cases. They also established an equivalent
relationship between the solution sets for an implicit variational problem and its dual
problem. Li and Zhao [10] introduced a dual scheme for a mixed vector equilibrium problem
by using the method of Fenchel conjugate functions and established a relationship between
the solution sets of the primal and dual problems. Sun and Li [11] introduced a dual
scheme for an extended Ky Fan inequality. By using the obtained duality assertions, they
also obtained some Farkas-type results which characterize the optimal value of this extended
Ky Fan inequality.
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From the computational viewpoint, the algorithms proposed in the literature for
solving nonlinear optimization problems, in general, can only obtain approximate solutions
(ε-optimal solutions) of such problems. In this regard, many researchers have studied
optimality conditions for ε-solutions for scalar and vector optimization problems, see [12–
16] and the references cited therein.

However, there are very little results for optimality conditions for ε-solution (approx-
imate solution) of vector equilibrium problems. Moreover, the study of approximate vector
equilibrium problems is very important since many approximate optimization problemsmay
be considered as their special cases, see [17–19] and the references cited therein. Sach et
al. [20] introduced new versions of ε-dual problems of a vector quasi-equilibrium problem
with set-valued maps and obtained an ε-duality result between approximate solutions of
the primal and dual problems. X. B. Li and S. J. Li [21] considered parametric scalar and
vector equilibrium problems and obtained sufficient conditions for Hausdorff continuity
and Berge continuity of approximate solution mappings for parametric scalar and vector
equilibrium problems. Sun and Li [22] considered a generalized multivalued ε-vector
variational inequality, formulated its dual problem, and proved duality results between the
primal and dual problems.

To the best of our knowledge, there is no paper to deal with the generalized ε-vector
equilibrium problems. Motivated by the work reported in [3–5, 9, 22], in this paper, we first
introduce a generalized ε-vector equilibrium problem (GVEP)ε and establish an existence
theorem for (GVEP)ε by using the known KKM Theorem. Then, we discuss duality results
between (GVEP)ε and its dual problem. We also show that our results on existence contain
known results in the literature as special cases.

The rest of this paper is organized as follows. In Section 2, we recall some basic
definitions and introduce a generalized ε-vector equilibrium problem (GVEP)ε. In Section 3,
by using the known KKM Theorem, we establish an existence theorem for the (GVEP)ε. As
a special case, we also derive some existence results for a generalized ε-vector variational
inequality introduced and studied by Sun and Li [22]. In Section 4, we give a dual ε-vector
variational inequality (DVEP)ε for (GVEP)ε and prove an equivalence relation between
(GVEP)ε and (DVEP)ε.

2. Mathematical Preliminaries

Throughout this paper, let X and Y be two Banach spaces, and let L(X,Y ) be the set of all
linear continuous operators from X to Y . Let K ⊆ Y be a convex cone with a nonempty
interior int K. Given x, y ∈ Y , we define the following ordering relations:

y <K x ⇐⇒ y − x ∈ − intK, y /<K x ⇐⇒ y − x /∈ − intK,

y ≤K x ⇐⇒ y − x ∈ −K, y�K x ⇐⇒ y − x /∈ −K.
(2.1)

Given two sets A, B ⊆ Y , we also consider the following set ordering relationships:

A<K B ⇐⇒ y <K x, ∀y ∈ A, x ∈ B,

A/<K B ⇐⇒ y /<K x, ∀y ∈ A, x ∈ B,

A≤K B ⇐⇒ y ≤K x, ∀y ∈ A, x ∈ B,

A�K B ⇐⇒ y�K x, ∀y ∈ A, x ∈ B.

(2.2)
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Let ϕ : X×X → Y and g : X → Y be two vector-valued mappings satisfying ϕ(x, x) =
0, for any x ∈ X. Consider the following generalized ε-vector equilibrium problem (GVEP)ε:

Find x0 ∈ X such that ϕ(x0, x) + g(x) − g(x0) + ε‖x − x0‖/<K 0, for any x ∈ X, (GVEP)ε

where ε ∈ K. We say that x0 is an ε-solution of (GVEP)ε if and only if

ϕ(x0, x) + g(x) − g(x0) + ε‖x − x0‖/<K 0, for any x ∈ X. (2.3)

If ε = 0, then (GVEP)ε collapses to the following generalized vector equilibrium
problem (GVEP), introduced and studied by Li and Zhao [10]:

Find x0 ∈ X such that ϕ(x0, x) + g(x) − g(x0)/<K 0, for any x ∈ X. (GVEP)

If g = 0 and ε = 0, then (GVEP)ε becomes the following vector equilibrium problem
(VEP)

Find x0 ∈ X such that ϕ(x0, x)/<K 0, for any x ∈ X. (VEP)

Let T : X → L(X,Y ) be a vector-valued mapping. If ϕ(x0, x) = 〈T(x0), x − x0〉, for
any x ∈ X, (GVEP)ε collapses to the following generalized ε-vector variational inequality
(GVVI)ε, introduced and studied by Sun and Li [22]:

Find x0 ∈ X such that 〈T(x0), x − x0〉 + g(x) − g(x0) + ε‖x − x0‖/<K 0, for any x ∈ X,
(GVVI)ε

where ε ∈ K and 〈T(x0), x − x0〉 is the evaluation of T(x0) at x − x0.
In this paper, we consider the generalized ε-vector equilibrium problem (GVEP)ε

and establish the existence theorem for solutions of (GVEP)ε. Then, we give a dual ε-
vector equilibrium problem (DVEP)ε for (GVEP)ε and prove an equivalence relation between
(GVEP)ε and (DVEP)ε.

At first, let us recall some important definitions.

Definition 2.1 (see [23]). Let Q be a nonempty subset of Y . A point ŷ ∈ Q is said to be a weak
maximal point of Q, if there is no y′ ∈ Q such that ŷ <K y′. The set of all maximal points of
Q is called the weak maximum of Q and is denoted by WMaxKQ. The weak minimum of
Q, WMinKQ, is defined analogously.

Definition 2.2 (see [23]). Let g : X → Y be a vector-valued mapping. g is said to beK-convex
if for any x1, x2 ∈ X and α ∈ [0, 1],

g(αx1 + (1 − α)x2)≤K αg(x1) + (1 − α)g(x2). (2.4)

Furthermore, g is said to be K-concave, if −g is K-convex.
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Definition 2.3 (see [24]). A vector mapping g : X → Y is said to be ε-convex with ε ∈ K if for
any x1, x2 ∈ X and α ∈ [0, 1],

g(αx1 + (1 − α)x2)≤K αg(x1) + (1 − α)g(x2) + εα(1 − α)‖x1 − x2‖. (2.5)

Definition 2.4 (see [22]). Let g : X → Y be an ε-convex mapping with ε ∈ K.

(i) A set-valued mapping g∗
x0,ε : L(X,Y ) ⇒ Y defined by

g∗
x0,ε(Λ) = WMaxK

{〈Λ, x〉 − g(x) − ε‖x − x0‖ : x ∈ X
}

, for any Λ ∈ L(X,Y ), (2.6)

is called the ε-conjugate mapping of g at x0 ∈ X.

(ii) A set-valued mapping g∗∗
x0,ε : X ⇒ Y defined by

g∗∗
x0,ε(x) = WMaxK

{〈Λ, x〉 − g∗
x0,ε(Λ) : Λ ∈ L(X,Y )

}

, for any x ∈ X, (2.7)

is called the ε-biconjugate mapping of g at x0 ∈ X.

Definition 2.5 (see [25]). Let g : X → Y be a given mapping. A subdifferential of g at x0 ∈ X
is defined as

∂g(x0) =
{

Λ ∈ L(X,Y ) : g(x) − g(x0)/<K 〈Λ, x − x0〉, ∀x ∈ X
}

. (2.8)

Definition 2.6 (see [26]). Let g : X → Y be a given mapping with ε ∈ K. An ε-subdifferential
of g at x0 ∈ X is defined as

∂εg(x0) =
{

Λ ∈ L(X,Y ) : g(x) − g(x0)/<K 〈Λ, x − x0〉 − ε‖x − x0‖, ∀x ∈ X
}

. (2.9)

Remark 2.7. (i) It is easy to note that, when ε = 0, ∂εg(x0) = ∂g(x0) and ∂εg(x0) = ∂(g + ε‖ ·
−x0‖)(x0).

(ii) Note that Li and Guo [26, Section 3] have given some existence theorems of ε-
subdifferential for a vector-valued mapping under the condition that the coneK is connected
(i.e., K ∪ (−K) = Y ).

Next, we give KKM theorem needed for the proof of the existence results.

Definition 2.8 (see [27]). A set-valued mapping G : X ⇒ Y is called the KKM mapping if, for
each finite subset {x1, x2, . . . , xn} of X,

co{x1, x2, . . . , xn} ⊂
n
⋃

i=1

G(xi), (2.10)

where co{x1, x2, . . . , xn} is the convex hull of {x1, x2, . . . , xn}.

Theorem 2.9 (see [27, KKM Theorem]). Let G : X ⇒ Y be a KKM mapping. If for each x ∈ X,
G(x) is closed and is compact for at least one x ∈ X, then,

⋂

x∈X G(x)/= ∅.
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3. Existence Theorems for (GVEP)ε

In this section, we prove some existence results for the generalized ε-vector equilibrium
problem (GVEP)ε by using the known KKM theorem. As a special case, we derive some
existence results for the generalized ε-vector variational inequality (GVVI)ε.

Theorem 3.1. Suppose that the following conditions are satisfied:

(i) ϕ : X ×X → Y and g : X → Y are two continuous mappings;

(ii) for any y ∈ X, By := {x ∈ X : ϕ(x, y) + g(y) − g(x) + ε‖x − y‖<K 0} is convex;
(iii) there exists a nonempty compact subset C and x′ ∈ C such that for any y ∈ X \C, one has

ϕ
(

x′, y
)

+ g
(

y
) − g

(

x′) + ε
∥

∥x′ − y
∥

∥<K 0. (3.1)

Then, the generalized ε-vector equilibrium problem (GVEP)ε is solvable.

Proof. Define a set-valued mapping G : X ⇒ X by: for any x ∈ X,

G(x) :=
{

y ∈ X : ϕ
(

x, y
)

+ g
(

y
) − g(x) + ε

∥

∥x − y
∥

∥/<K 0
}

. (3.2)

We first prove that G is a KKM mapping. In fact, suppose that G(x) is not a
KKM mapping. Then, there exists a finite subset {x′

1, x
′
2, . . . , x

′
n} of X such that

co
{

x′
1, x

′
2, . . . , x

′
n

}

/⊂
n
⋃

i=1

G
(

x′
i

)

. (3.3)

Let y′ ∈ co{x′
1, x

′
2, . . . , x

′
n}. Then, y′ =

∑n
i=1 αix

′
i for some αi ∈ [0, 1], i = 1, 2, . . . , n with

∑n
i=1 αi = 1 and

y′ /∈
n
⋃

i=1

G
(

x′
i

)

. (3.4)

So, for any i ∈ {1, 2, . . . , n}, we have

ϕ
(

x′
i, y

′) + g
(

y′) − g
(

x′
i

)

+ ε
∥

∥x′
i − y′∥

∥<K 0. (3.5)

Hence,

{

x′
1, x

′
2, . . . , x

′
n

} ⊂ By′ . (3.6)

Since By′ is convex, we have

co
{

x′
1, x

′
2, . . . , x

′
n

} ⊂ By′ . (3.7)



6 Journal of Applied Mathematics

By y′ ∈ co{x′
1, x

′
2, . . . , x

′
n}, we have

y′ ∈ By′ . (3.8)

Thus, we have

ϕ
(

y′, y′) + g
(

y′) − g
(

y′) + ε
∥

∥y′ − y′∥
∥<K 0, (3.9)

which is a contradiction. Therefore, G is a KKM mapping.
Next, we prove that, for any x ∈ X, G(x) is closed. Indeed, let any sequence {yn}with

yn ∈ G(x) and yn → y0. Then,

ϕ
(

x, yn

)

+ g
(

yn

) − g(x) + ε
∥

∥x − yn

∥

∥/<K 0. (3.10)

Taking limit in (3.10) with ϕ and g being two continuous mappings, we have

ϕ
(

x, y0
)

+ g
(

y0
) − g(x) + ε

∥

∥x − y0
∥

∥/<K 0. (3.11)

Thus, y0 ∈ G(x) and G(x) is closed.
Assumption (iii) implies that G(x′) ⊂ C. Hence, G(x′) is compact. Therefore, the

assumptions of Theorem 2.9 hold. By Theorem 2.9, we have

⋂

x∈X
G(x)/= ∅. (3.12)

Hence, there exist x0 ∈ X such that

ϕ(x, x0) + g(x0) − g(x) + ε‖x − x0‖/<K 0, (3.13)

for any x ∈ X. This completes the proof.

Now, we give an example to illustrate Theorem 3.1.

Example 3.2. LetX = R, Y = R2, C = [−1, 1], K = R2
+, and ε = (0, 1). Suppose that ϕ : R×R →

R2 and g : R → R2 are defined by

ϕ
(

x, y
)

=
(

−2x2 + y2,−2x2 + y2 − ∣

∣x − y
∣

∣

)

, (3.14)

g(x) =
(

−2x2,−2x2
)

, (3.15)
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respectively. Then, assumption (i) in Theorem 3.1 is clearly satisfied. It can be checked that,
for any y ∈ R,

By =
{

x ∈ X :
(

−2x2 + y2,−2x2 + y2 − ∣

∣x − y
∣

∣

)

+
(

−2y2,−2y2
)

−
(

−2x2,−2x2
)

+
(

0,
∣

∣x − y
∣

∣

)

<R2
+
0
}

=
{

x ∈ X :
(

−y2,−y2
)

<R2
+
0
}

.

(3.16)

Obviously, By is a convex set. Thus, assumption (ii) of Theorem 3.1 holds.
Obviously, [−1, 1] is a nonempty compact set. Let x′ = 1 ∈ [−1, 1]. For any y ∈ R \

[−1, 1], we have

ϕ
(

x′, y
)

+ g
(

y
) − g

(

x′) + ε
∥

∥x′ − y
∥

∥ =
(

−2 + y2,−2 + y2 − ∣

∣1 − y
∣

∣

)

+
(

−2y2,−2y2
)

− (−2,−2) + (

0,
∣

∣1 − y
∣

∣

)

=
(

−y2,−y2
)

<R2
+
0.

(3.17)

Thus, assumption (iii) of Theorem 3.1 holds. Obviously, x0 = 0 is a solution of (GVEP)ε.

Remark 3.3. When the function g isK-concave and ϕ(·, y) isK-convex, we have that condition
(ii) of Theorem 3.1 holds, that is, By is convex.

Indeed, let x1, x2 ∈ By and α ∈ [0, 1]. Then, we have

ϕ
(

x1, y
)

+ g
(

y
) − g(x1) + ε

∥

∥x1 − y
∥

∥ ∈ − intK,

ϕ
(

x2, y
)

+ g
(

y
) − g(x2) + ε

∥

∥x2 − y
∥

∥ ∈ − intK.
(3.18)

Since g is K-concave and ϕ(·, y) is K-convex, we have

ϕ
(

x1 + (1 − α)x2, y
)

+ g
(

y
) − g(αx1 + (1 − α)x2) + ε

∥

∥αx1 + (1 − α)x2 − y
∥

∥

∈ α
[

ϕ
(

x1, y
)

+ g
(

y
) − g(x1) + ε

∥

∥x1 − y
∥

∥

]

+ (1 − α)
[

ϕ
(

x2, y
)

+ g
(

y
) − g(x2) + ε

∥

∥x2 − y
∥

∥

] −K −K −K

⊆ − intK − intK −K −K −K

= − intK.

(3.19)

So, By is convex and we have the following corollary.

Corollary 3.4. Suppose that the following conditions are satisfied:

(i) ϕ(·, y) : X → Y is a continuous K-convex mapping and g : X → Y is a continuous
K-concave mapping;
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(ii) there exists a nonempty compact subset C and x′ ∈ C such that for any y ∈ X \C, one has

ϕ
(

x′, y
)

+ g
(

y
) − g

(

x′) + ε
∥

∥x′ − y
∥

∥<K 0. (3.20)

Then, the generalized ε-vector equilibrium problem (GVEP)ε is solvable.

By Theorem 3.1 and Corollary 3.4, we can derive the following existence results for the
generalized ε-vector variational inequality (GVVI)ε.

Theorem 3.5. Suppose that the following conditions are satisfied:

(i) T : X → L(X,Y ) and g : X → Y are two continuous mappings;

(ii) for any y ∈ X, By := {x ∈ X : 〈T(y), x − y〉 + g(x) − g(y) + ε‖x − y‖<K 0} is convex;
(iii) there exists a nonempty compact subset C and x′ ∈ C such that for any y ∈ X \C, one has

〈

T
(

y
)

, x′ − y
〉

+ g
(

x′) − g
(

y
)

+ ε
∥

∥x′ − y
∥

∥<K 0. (3.21)

Then, the generalized ε-vector variational inequality (GVVI)ε is solvable.

Remark 3.6. If the function g is K-convex, we can prove that condition (ii) of Theorem 3.5
holds by the similar method of Remark 3.3.

Corollary 3.7. Suppose that the following conditions are satisfied:

(i) T : X ⇒ L(X,Y ) is a continuous mapping, and g : X → Y is a continuous K-convex
mapping;

(ii) there exists a nonempty compact subset C and x′ ∈ C such that for any y ∈ X \C, one has
〈

T
(

y
)

, x′ − y
〉

+ g
(

x′) − g
(

y
)

+ ε
∥

∥x′ − y
∥

∥<K 0. (3.22)

Then, the generalized ε-vector variational inequality (GVVI)ε is solvable.

Remark 3.8. (i) In case when T is a set-valued mapping, similar results of Theorem 3.5 and
Corollary 3.7 have been studied by Sun and Li [22].

(ii) Theorem 3.5 and Corollary 3.7 can be viewed as an extension of Theorem 1 in Yang
[3].

4. Dual Results for (GVEP)ε

In this section, we first introduce the dual generalized ε-vector equilibrium problems for
(GVEP)ε. Then, we establish an equivalence between primal and dual problems.

We first recall that g is said to be externally stable at x ∈ X if g(x) ∈ g∗∗
x0,ε(x). The

external stability was introduced in [25] when the vector conjugate function is defined via
the set of efficient points.

The following result plays an important role in our study.
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Lemma 4.1. Let g : X → Y and x0 ∈ X. Then,

Λ ∈ ∂εg(x0) ⇐⇒ 〈Λ, x0〉 − g(x0) ∈ g∗
x0,ε(Λ). (4.1)

Proof. It follows from the definitions of the ε-conjugate function and the ε-subdifferentials
that

Λ ∈ ∂εg(x0) (4.2)

if and only if

g(x) − g(x0)/<K 〈Λ, x − x0〉 − ε‖x − x0‖, for any x ∈ X, (4.3)

equivalently,

〈Λ, x〉 − g(x) − ε‖x − x0‖/>K 〈Λ, x0〉 − g(x0), for any x ∈ X, (4.4)

which means that

〈Λ, x0〉 − g(x0) ∈ g∗
x0,ε(Λ), (4.5)

and the proof is completed.

It is shown in [28] that, if ϕ(x0, ·) is convex, then ∂ϕx0(x)/= ∅, where ∂ϕx0(x) denotes
the subdifferential of ϕ with respect to its second component. Now, we define the dual
generalized ε-vector equilibrium problem (DVEP)ε of (GVEP)ε as follows:

Find x0 ∈ X, −Γ0 ∈ ∂ϕx0(x0), and y0 ∈ g∗
x0,ε(Γ0) such that y0 − 〈Γ0, x0〉/>K g∗

x0,ε(Γ) − 〈Γ, x0〉,
for any Γ ∈ L(X,Y ).

(DVEP)ε

Moreover, (x0,Γ0) is called a solution of (DVEP)ε.

Remark 4.2. In [8], Sach et al. gave some examples to prove that the dual problems of [3, 5]
are not suitable for the duality property of vector variational inequalities, and hence, all
possible applications of them cannot be seen to be justified. This fact shows that, when
dealing with duality in vector variational inequality problems which are generalizations of
those considered in [3, 5], we must use dual problems different from those of [3, 5]. So, in
this section we consider this problem (DVEP)ε called the dual problem of (GVEP)ε.

In the following, we will discuss the relationships between the solutions of (GVEP)ε
and (DVEP)ε.

Theorem 4.3. Suppose that g is externally stable at x0 ∈ X. If x0 is a solution of (GVEP)ε and
∂ε(ϕx0 +g)(x0) = ∂ϕx0(x0)+∂εg(x0), then, there exists Γ0 ∈ L(X,Y ) such that (x0,Γ0) is a solution
of (DVEP)ε.
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Proof. If x0 is a solution of (GVEP)ε, then,

ϕ(x0, x) + g(x) − g(x0) + ε‖x − x0‖/<K 0, for any x ∈ X. (4.6)

So, it is easy to see that

(

ϕ(x0, x) + g(x)
) − (

ϕ(x0, x0) + g(x0)
)

/<K 〈0, x − x0〉 − ε‖x − x0‖, for any x ∈ X, (4.7)

which means that

0 ∈ ∂ε
(

ϕx0 + g
)

(x0). (4.8)

Hence,

0 ∈ ∂ϕx0(x0) + ∂εg(x0), (4.9)

or, equivalently, there exists Γ0 ∈ L(X,Y ) such that

Γ0 ∈ −∂ϕx0(x0) ∩ ∂εg(x0). (4.10)

Then, from (4.1), we get

〈Γ0, x0〉 − g(x0) ∈ g∗
x0,ε(Γ0). (4.11)

Since g is externally stable at x0 ∈ X, we have

g(x0) ∈ g∗∗
x0,ε(x0) = WMaxK

{〈Γ, x0〉 − g∗
x0,ε(Γ) : Γ ∈ L(X,Y )

}

. (4.12)

Thus,

g(x0)/<K 〈Γ, x0〉 − g∗
x0,ε(Γ), for any Γ ∈ L(X,Y ). (4.13)

By (4.11), there exists y0 ∈ g∗
x0,ε(Γ0) such that

y0 = 〈Γ0, x0〉 − g(x0). (4.14)

By (4.13) and (4.14), we get

y0 − 〈Γ0, x0〉/>K g∗
x0,ε(Γ) − 〈Γ, x0〉, for any Γ ∈ L(X,Y ), (4.15)

and the proof is completed.
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Theorem 4.4. If (x0,Γ0) is a solution of (DVEP)ε and ∂ε(ϕx0 + g)(x0) = ∂ϕx0(x0) + ∂εg(x0), then,
x0 is a solution of (GVEP)ε.

Proof. This is obtained by inverting the reasoning in the proof of Theorem 4.3 step by step.

Remark 4.5. Although the equality of the approximate subdifferentials used in Theorems
4.3 and 4.4 is difficult to be verified, Li and Guo [26, Section 5] have given some sufficient
conditions for the validity of the equality under the condition that the cone K is connected
(i.e., K ∪ (−K) = Y ).

Now, we give an example to illustrate Theorem 4.4.

Example 4.6. Let X = R, Y = R2, K = R2
+, and ε = (1, 1). Suppose that ϕ : R × R → R2 and

g : R → R2 are defined by

ϕ(x0, x) = (|x0|, |x0|), (4.16)

g(x) =
(

x − |x|, x2 − |x|
)

, (4.17)

respectively. Then, for x0 = 0, we have

∂ε
(

ϕx0 + g
)

(x0) = ∂εg(x0) = {1, 0},
∂ϕx0(x0) = {0, 0}. (4.18)

Obviously,

∂ε
(

ϕx0 + g
)

(x0) = ∂ϕx0(x0) + ∂εg(x0). (4.19)

Moreover, for any Γ = (Γ1,Γ2) ∈ R2,

g∗
x0,ε(Γ) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

{

(

y1, y2
) ∈ R2 : y2 ≤

Γ22
4
, y1 = 0

}

, if Γ1 = 1,
{

(

y1, y2
) ∈ R2 : y2 = − 1

(Γ1 − 1)2
y2
1 +

Γ2
Γ1 − 1

y1, y1 ≥ Γ2(Γ1 − 1)
2

}

, if Γ1 /= 1.

(4.20)

Then, for Γ0 = (0, 0) ∈ ∂ϕx0(x0), we obtain that

g∗
x0,ε(Γ0) =

{

(

y1, y2
) ∈ R2 : y2 = −y2

1 , y1 ≥ 0
}

,

y0 = 〈Γ0, x0〉 − g(x0) = (0, 0) ∈ g∗
x0,ε(Γ0).

(4.21)

Obviously, (x0,Γ0) is a solution of (DVEP)ε and x0 is a solution of (GVEP)2ε.
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