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This paper discusses the MHD Falkner-Skan flow over a porous surface. The solution to nonlinear
problem is first constructed and analyzed for the emerging parameters

1. Introduction

Motivated by significant applications in packed bed reactor, geothermal system, extractions
of crude oil, water or nuclear pollution, and so forth, the wedge flow over shaped bodies has
attracted the attention of various researchers as the early formulation given by Falkner and
Skan [1]. Later, Asaithambi [2] analyzed the Falkner-Skan equation by using finite difference
scheme. Magnetohydrodynamics effects on the Falkner Skan wedge flow are studied by Ab-
basbandy and Hayat [3, 4]. They used Hankel-Pade and homotopy analysis methods for the
derivation of the solutions. Rajagopal et al. [5] discussed the Falkner-Skan flow of a non-New-
tonian fluid. Massoudi and Ramezan [6] extended the idea of Rajagopal et al. [5] for suction
and blowing cases. Forced convection boundary layer flow over a wedge with uniform suc-
tion or injection is analyzed by Yih [7]. Kuo [8] discussed the heat transfer for the Falkner-
Skan wedge flow by using differential transformation method. Numerical treatment for the
Falkner-Skanwedge flow of a power law fluid saturating the porous space has been discussed
by Kim [9]. More recently, Hayat et al. [10] extended the idea of Kim [9] to study the mixed
convection flow. In this paper, Falkner-Skan flow over a porous surface is considered. Case of
uniform suction/blowing is taken into account. Stream function formulation and suitable
transformations reduce the arising problem to ordinary differential equation which has been
solved by a homotopy analysis method HAM [11–23]. Finally the solutions are sketched and
analyzed.



2 Journal of Applied Mathematics

2. Problem Statement

We consider the two-dimensional Falkner-Skan flow in an incompressible magnetohydrody-
namic (MHD) viscous fluid. Under the usual boundary layer approximations, the equations
which govern the Falkner-Skan flow are

∂u

∂x
+
∂v

∂y
= 0,

u
∂u

∂x
+ v

∂u

∂y
= U

dU

dx
+ ν

∂2v

∂y2
− σB2u

ρ
(u −U),

(2.1)

where u and v are the velocity components in the x and y directions, respectively, ρ is the fluid
density, ν is the kinematic viscosity of the fluid, σ is the electrical conductivity,U is the chara-
cteristic velocity, and a uniform magnetic field B is applied. The induced magnetic field is
neglected in view of small magnetic Reynolds number. The boundary conditions are

u = Uw, v = Vw, at y = 0,

u −→ U(x), as y −→ ∞,
(2.2)

where

U(x) = axm,

B(x) = B0x
(m−1)/2,

(2.3)

where Vw is the porous velocity andUw is the surface velocity.
Denoting by Ψ the stream function and defining
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the continuity equations are automatically satisfied and the other equations yield
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f(0) = γ, f ′(0) = λ,

f ′(∞) = 1.

(2.5)
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Table 1: [10, 10] homotopy-Pade approximation atm = 2, λ = 0, γ = 0.

M Present results Numerical results by Abbasbandy and Hayat [4]

1 1.719465 1.71946540
2 2.439498 2.43949833
5 5.190959 5.19095945
10 10.096775 10.09677545
50 50.019440 50.01944071
100 100.009721 100.00972170

Table 2: [10, 10] homotopy-Pade approximation atm = −3/5, λ = 0, γ = 0.

M Present results Numerical results by Abbasbandy and Hayat [4]

3 2.273388 2.27338836
4 3.488148 3.48814857
5 4.600754 4.60075494
10 9.806464 9.80646420
15 14.871674 14.87167484
20 19.903937 19.90393701

Here primes denote the differentiation with respect to η and β, M, Pr, and β are the dimen-
sionless numbers. These are defined as

M2 =
2σB2

0

ρa(1 +m)
, β =

2m
m + 1

, λ =
Uw

U
, γ = −Vw

(
(m + 1)

vU

2x

)−1/2
. (2.6)

3. Homotopy Analysis Solutions

The velocity can be expressed as the set of base function

{
ηk exp

(−nη), k, nη ≥ 0
}

(3.1)

by selecting the initial guess

f0
(
η
)
= γ + η − 1 − λ

δ

(
1 − δ exp(−η)) (3.2)

and the auxiliary linear operator Lf
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(
f
)
=
d3f

dη3
+ δ

d2f

dη2
, (3.3)
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Figure 1: The h curve of f ′′(0) at 20th order of approximation forM = 5 and δ = 6.
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Figure 2: The h curve of f ′′(0) at 20th order of approximation form = −3/5, M = 3 and δ = 3.
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Figure 3: Velocity profiles for suction/injection parameter γ = 1, 0,−1 for λ = 2.
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Figure 4: Velocity profiles for suction/injection parameter γ = 2, 0,−2 for λ = 2.
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Figure 5: Skin friction coefficient for different values of stretching parameter β = 4, 3, 2, 1, 0.

with

Lf

[
C1 + C2 exp

(
2η
)
+ C3 exp

(−η)] = 0, (3.4)

in whichCi, (i = 1−3) are the arbitrary constants. If p ∈ [0, 1] is the embedding parameter and
�f , is the nonzero auxiliary parameter, then the zeroth-order deformation problem is given as
follows:

(
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(
η; p
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[
f̂
(
η; p
)]
,
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)
= 1,

(3.5)
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Figure 6: Shear stress f ′′(0) versus the stretching parameter β for various values of the wall suction/injec-
tion parameter γ = 1, 0,−1.
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Figure 7: Shear stress f ′′(0) versus the stretching parameter β for various values λ = 1, 0.5, 0 and −0.5.

in which the nonlinear operatorNf is of the following form:
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(3.6)

For p = 0 and p = 1, the aforementioned zeroth-order deformation equation has the solutions:
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η; 0
)
= f0
(
η
)
, f̂

(
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)
= f
(
η
)
. (3.7)
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when p increases from 0 to 1, f̂(η; p) vary from f0(η) to the exact solutions f(η). In view of
Taylor’s theorem and (3.7), we can write
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)
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η
)
+
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)
pm, (3.8)

where
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. (3.9)

The auxiliary parameter is so properly chosen that the series (3.8) converge at p = 1. Hence
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Themth-order deformation problem is
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4. Analysis and Discussion

Here convergence is checked at 20th order of approximations. Figures 1 and 2 show the � cur-
ves at various values of the emerging parameters. The range of � curves is −0.8 ≤ � ≤ −0.4 for
Figure 1 and −0.8 ≤ � ≤ −0.4 for Figure 2, respectively. It is obvious from these figures that
auxiliary parameter h is necessary for the convergence purposes. Tables 1 and 2 are made
to give the comparison with numerical results at [10, 10] order of approximation for various
values of magnetic parameterM and Falkner-Skan flow parameterm. The results are similar
to those of Abbasbandy and Hayat [4]. Figure 3 is plotted for various values of suction/injec-
tion parameter γ . For positive values of γ , the velocity decreases whereas for negative values
the velocity increases. In Figure 4with the fixed value of slip condition λ = 2, the peak value of
velocity is high when compared with Figure 3. The skin friction versus γ is sketched in
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Figure 5 for various values of β with slip velocity equal to zero. It is obvious that with an
increase in β the skin friction increases. Figure 6 is prepared for different values of γ . It is
shown that f ′′(0) decreases for injection and increases for suction. The skin friction versus
stretching parameter β is displayed in Figure 7. It is noticed that for negative values of slip
velocity, the skin friction increases.
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