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This paper is concerned with delay-dependent stability for continuous systems with two additive
time-varying delay components. By constructing a new class of Lyapunov functional and using a
new convex polyhedron method, a new delay-dependent stability criterion is derived in terms of
linear matrix inequalities. The obtained stability criterion is less conservative than some existing
ones. Finally, numerical examples are given to illustrate the effectiveness of the proposed method.

1. Introduction

Robust stability of dynamic interval systems covering interval matrices and interval poly-
nomials has attracted considerable attention over last decades. Reference [1] presents some
necessary and sufficient conditions for the quadratic stability and stabilization of dynamic
interval systems. It is well known that time delay frequently occurs in many industrial and
engineering systems, such as manufacturing systems, telecommunication, and economic sys-
tems, and is a major cause of instability and poor performance. Over the past decades, much
efforts have been invested in the stability analysis of time-delay systems [2–16]. Reference
[2] deals with the problem of quadratic stability analysis and quadratic stabilization for
uncertain linear discrete time systems with state delay. Reference [3] deals with the quadratic
stability and linear state-feedback and output-feedback stabilization of switched delayed
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linear dynamic systems. However, almost all the reported results mentioned above on time-
delay systems are based on the following basic mathematical model:

ẋ(t) = Ax(t) +Adx(t − d(t)), (1.1)

where d(t) is a time delay in the state x(t), which is often assumed to be either constant or
time-varying satisfying certain conditions, for example,

0 � d(t) � d < ∞, ḋ(t) � τ < ∞. (1.2)

Sometimes in practical situations, however, signals transmitted from one point to
another may experience a few segments of networks, which can possibly induce successive
delays with different properties due to the variable network transmission conditions. Thus,
in recent papers [15, 16], a new model for time-delay systems with multiple additive time-
varying delay components has been proposed:

ẋ(t) = Ax(t) +Adx

(
t −

n∑
i=1
di(t)

)
, (1.3)

0� di(t)� di < ∞, ḋi(t) � τi < ∞. (1.4)

To make the stability analysis simpler, we proceed by considering the system (1.3) with two
additive delay components as follows:

ẋ(t) = Ax(t) +Adx(t − d1(t) − d2(t)),

x(t) = φ(t), t ∈ [−d, 0].
(1.5)

Here, x(t) ∈ R
n is the state vector; d1(t) and d2(t) represent the two delay components in

the state, and we denote d(t) = d1(t) + d2(t); A, Ad are system matrices with appropriate
dimensions. It is assumed that

0� d1(t) � d1 < ∞, ḋ1(t) � τ1 < ∞,

0 � d2(t)� d2 < ∞, ḋ2(t) � τ2 < ∞,
(1.6)

and d = d1 + d2, τ = τ1 + τ2. φ(t) is the initial condition on the segment [−d, 0].
The purpose of our paper is to derive new stability conditions under which system

(1.5) is asymptotically stable for all delays d1(t) and d2(t) satisfying (1.6). One possible
approach to check the stability of this system is to simply combine d1(t) and d2(t) into one
delay d(t)with

0 � d(t) � d1 + d2 < ∞, ḋ(t)� τ1 + τ2 < ∞. (1.7)
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Then, the system (1.5) becomes

ẋ(t) = Ax(t) +Adx(t − d(t)),

x(t) = φ(t), t ∈ [−d, 0].
(1.8)

By using some existing stability conditions, the stability of system (1.8) can be readily check-
ed. As discussed in [15, 16], however, since this approach does not make full use of the infor-
mation on d1(t) and d2(t), it would be inevitably conservative for some situations. Recently,
some new delay-dependent stability criteria have been obtained for system (1.5) in [15, 16],
by making full use of the information on d1(t) and d2(t). However, the stability result is con-
servative because of overly bounding some integrals appearing in the derivative of the Lya-
punov functional. On the one hand, the integral − ∫ t

t−d1
ẋT (s)Z1ẋ(s)ds in [15]was enlarged as

− ∫ t
t−d1(t)

ẋT (s)Z1ẋ(s)ds, with − ∫ t−d1(t)
t−d1

ẋT (s)Z1ẋ(s)ds discarded. On the other hand, some in-

tegrals were estimated conservatively. Take − ∫ t
t−d1(t)

ẋT (s)Z1ẋ(s)ds as an example, by intro-
ducing

0 = 2ζTS

[
x(t) − x(t − d1(t)) −

∫ t

t−d1(t)
ẋ(s)ds

]
(1.9)

with an appropriate vector ζ(t) and a matrix S, respectively, it was estimated as

2ζT (t)S[x(t) − x(t − d1(t))] + ζT (t)d1SZ
−1
1 STζ(t) (1.10)

with d1(t)SZ−1
1 ST enlarged as d1SZ

−1
1 ST .

The problem of delay-dependent stability criterion for continuous systems with two
additive time-varying delay components has been considered in this paper. By constructing
a new class of Lyapunov functional and using a new convex polyhedron method, a new
stability criterion is derived in terms of linear matrix inequalities. The obtained stability crit-
erion is less conservative than some existing ones. Finally, numerical examples are given to
indicate less conservatism of the stability results.

Definition 1.1. LetΦ1, Φ2, . . . , ΦN : Rm → Rn be a given finite number of functions such that
they have positive values in an open subsetD ofRm. Then, a reciprocally convex combination
of these functions over D is a function of the form

1
α1

Φ1 +
1
α2

Φ2 + · · · + 1
αN

ΦN : D −→ Rn, (1.11)

where the real numbers αi satisfy αi > 0 and
∑

i αi = 1.

The following Lemma 1.2 suggests a lower bound for a reciprocally convex com-
bination of scalar positive functions Φi = fi.
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Lemma 1.2 (See [10]). Let f1, f2, . . . , fN : Rm → R have positive values in an open subset D of
Rm. Then, the reciprocally convex combination of fi over D satisfies

min
{αi |αi>0,

∑
i αi=1}

∑
i

1
αi
fi(t) =

∑
i

fi(t) +max
gi,j (t)

∑
i /= j

gi,j(t) (1.12)

subject to

{
gi,j : Rm −→ R, gj,i(t) Δ gi,j(t),

[
fi(t) gi,j(t)

gi,j(t) fj(t)

]
� 0

}
. (1.13)

In the following, we present a new stability criterion by a convex polyhedron method and Lemma 1.2.

2. Main Results

Theorem 2.1. System (1.5) with delays d1(t) and d2(t) satisfying (1.6) is asymptotically stable
if there exist symmetric positive definite matrices P , Q1, Q2, Q3, Q4, Q5, Q6, Z, Z1, Z2 and any
matrices S12, N, M, L, S, P1, P2 with appropriate dimensions, such that the following LMIs hold:

[
Z S12

∗ Z

]
� 0, (2.1)

E13 =

⎡
⎢⎢⎣
E −d1N −d2L

∗ −d1Z1 0

∗ ∗ −d2Z2

⎤
⎥⎥⎦ < 0, (2.2)

E14 =

⎡
⎢⎢⎣
E −d1N −d2S

∗ −d1Z1 0

∗ ∗ −d2Z2

⎤
⎥⎥⎦ < 0, (2.3)

E23 =

⎡
⎢⎢⎣
E −d1M −d2L

∗ −d1Z1 0

∗ ∗ −d2Z2

⎤
⎥⎥⎦ < 0, (2.4)

E24 =

⎡
⎢⎢⎣
E −d1M −d2S

∗ −d1Z1 0

∗ ∗ −d2Z2

⎤
⎥⎥⎦ < 0, (2.5)
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where

E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E11 E12 ST
12 0 0 0 0 E18

∗ E22 E23 0 0 0 0 AT
dP

T
2

∗ ∗ E33 0 0 0 0 0

∗ ∗ ∗ E44 0 0 0 0

∗ ∗ ∗ ∗ −Q4 0 0 0

∗ ∗ ∗ ∗ ∗ E66 0 0

∗ ∗ ∗ ∗ ∗ ∗ −Q6 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ E88

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
[
N + L 0 0 M −N −M S − L −S 0

]

+
[
N + L 0 0 M −N −M S − L −S 0

]T
,

E11 = Q1 +Q2 +Q3 +Q4 +Q5 +Q6 − Z + P1A +ATPT
1 , E12 = −ST

12 + Z + P1Ad,

E18 = P − P1 +ATPT
2 , E22 = −(1 − τ)Q1 − 2Z + S12 + ST

12, E23 = −ST
12 + Z,

E33 = −Q2 − Z, E44 = −(1 − τ1)Q3, E66 = −(1 − τ2)Q5,

E88 = d2Z + d1Z1 + d2Z2 − P2 − PT
2 .

(2.6)

Proof. Construct a new Lyapunov functional candidate as

V (x(t)) =V1(x(t)) + V2(x(t)) + V3(x(t)) + V4(x(t)),

V1(x(t)) =xT (t)Px(t),

V2(x(t)) =
∫ t

t−d(t)
xT (s)Q1x(s)ds +

∫ t

t−d
xT (s)Q2x(s)ds +

∫ t

t−d1(t)
xT (s)Q3x(s)ds

+
∫ t

t−d1

xT (s)Q4x(s)ds +
∫ t

t−d2(t)
xT (s)Q5x(s)ds +

∫ t

t−d2

xT (s)Q6x(s)ds,

V3(x(t)) =d
∫0

−d

∫ t

t+θ
ẋT (s)Zẋ(s)dsdθ,

V4(x(t)) =
∫0

−d1

∫ t

t+θ
ẋT (s)Z1ẋ(s)dsdθ +

∫0

−d2

∫ t

t+θ
ẋT (s)Z2ẋ(s)dsdθ.

(2.7)

Remark 2.2. Our paper fully uses the information about d(t), d1(t), and d2(t), but [15, 16]
only use the information about d1(t) and d2(t), when constructing the Lyapunov functional
V (x(t)). So the Lyapunov functional in our paper is more general than that in [15, 16], and
the stability criteria in our paper may be more applicable.
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The time derivative of V (x(t)) along the trajectory of system (1.5) is given by

V̇1(x(t)) = 2xT (t)Pẋ(t), (2.8)

V̇2(x(t)) = xT (t)(Q1 +Q2 +Q3 +Q4 +Q5 +Q6)x(t) − (1 − τ)xT (t − d(t))Q1x(t − d(t))

− xT (t − d)Q2x(t − d) − (1 − τ1)xT (t − d1(t))Q3x(t − d1(t))

− xT (t − d1)Q4x(t − d1) − (1 − τ2)xT (t − d2(t))Q5x(t − d2(t))

− xT (t − d2)Q6x(t − d2),

(2.9)

V̇3(x(t)) = d2ẋT (t)Zẋ(t) − d

∫ t−d(t)

t−d
ẋT (s)Zẋ(s)ds − d

∫ t

t−d(t)
ẋT (s)Zẋ(s)ds, (2.10)

V̇4(x(t)) = ẋT (t)(d1Z1 + d2Z2)ẋ(t) −
∫ t−d1(t)

t−d1

ẋT (s)Z1ẋ(s)ds −
∫ t

t−d1(t)
ẋT (s)Z1ẋ(s)ds

−
∫ t−d2(t)

t−d2

ẋT (s)Z2ẋ(s)ds −
∫ t

t−d2(t)
ẋT (s)Z2ẋ(s)ds.

(2.11)

The V̇3(x(t)) is upper bounded by

V̇3(x(t)) � d2ẋT (t)Zẋ(t) − d

d − d(t)
ζT (t)(e2 − e3)Z(e2 − e3)Tζ(t)

− d

d(t)
ζT (t)(e1 − e2)Z(e1 − e2)Tζ(t)

(2.12)

� d2ẋT (t)Zẋ(t) − ζT (t)

⎡
⎣e

T
2 − eT3

eT1 − eT2

⎤
⎦

T⎡
⎣ Z S12

ST
12 Z

⎤
⎦
⎡
⎣e

T
2 − eT3

eT1 − eT2

⎤
⎦ζ(t), (2.13)

where the inequality in (2.12) comes from the Jensen inequality lemma, and that of (2.13)
from Lemma 1.2 as

−ζT (t)

⎡
⎢⎢⎢⎢⎣

√
β

α
(e2 − e3)T

−
√

α

β
(e1 − e2)T

⎤
⎥⎥⎥⎥⎦

T⎡
⎣ Z S12

ST
12 Z

⎤
⎦

⎡
⎢⎢⎢⎢⎣

√
β

α
(e2 − e3)T

−
√

α

β
(e1 − e2)T

⎤
⎥⎥⎥⎥⎦ζ(t) � 0, (2.14)
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where

ζT (t) =
[
xT (t) xT (t − d(t)) xT (t − d) xT (t − d1(t)) xT (t − d1) xT (t − d2(t))

xT (t − d2) ẋT (t)
]
,

e1 =
(
I 0 0 0 0 0 0 0

)T
, e2 =

(
0 I 0 0 0 0 0 0

)T
, e3 =

(
0 0 I 0 0 0 0 0

)T
,

(2.15)

α = (d − d(t))/d, β = d(t)/d. Note that when d(t) = d or d(t) = 0, one can obtain ζT (t)(e2 −
e3) = 0 or ζT (t)(e1 − e2) = 0, respectively. So the relation (2.13) also holds.

By the Jensen inequality lemma, it is easy to obtain

−
∫ t

t−d1(t)
ẋT (s)Z1ẋ(s)ds � −d1(t)UT

1Z1U1,

−
∫ t−d1(t)

t−d1

ẋT (s)Z1ẋ(s)ds � −(d1 − d1(t))UT
2Z1U2,

−
∫ t

t−d2(t)
ẋT (s)Z2ẋ(s)ds � −d2(t)UT

3Z2U3,

−
∫ t−d2(t)

t−d2

ẋT (s)Z2ẋ(s)ds � −(d2 − d2(t))UT
4Z2U4,

(2.16)

where

U1 =
1

d1(t)

∫ t

t−d1(t)
ẋ(s)ds, U2 =

1
d1 − d1(t)

∫ t−d1(t)

t−d1

ẋ(s)ds,

U3 =
1

d2(t)

∫ t

t−d2(t)
ẋ(s)ds, U4 =

1
d2 − d2(t)

∫ t−d2(t)

t−d2

ẋ(s)ds,

(2.17)

lim
d1(t)→ 0

1
d1(t)

∫ t

t−d1(t)
ẋ(s)ds = ẋ(t),

lim
d1(t)→d1

1
d1 − d1(t)

∫ t−d1(t)

t−d1

ẋ(s)ds = ẋ(t − d1),

lim
d2(t)→ 0

1
d2(t)

∫ t

t−d2(t)
ẋ(s)ds = ẋ(t),

lim
d2(t)→d2

1
d2 − d2(t)

∫ t−d2(t)

t−d2

ẋ(s)ds = ẋ(t − d2).

(2.18)
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From the Leibniz-Newton formula, the following equations are true for any matrices
N, M, L, S, P1, P2 with appropriate dimensions

2ζT (t)N[x(t) − x(t − d1(t)) − d1(t)U1] = 0,

2ζT (t)M[x(t − d1(t)) − x(t − d1) − (d1 − d1(t))U2] = 0,

2ζT (t)L[x(t) − x(t − d2(t)) − d2(t)U3] = 0,

2ζT (t)S[x(t − d2(t)) − x(t − d2) − (d2 − d2(t))U4] = 0,

2
[
xT (t)P1 + ẋT (t)P2

]
[−ẋ(t) +Ax(t) +Adx(t − d(t))] = 0.

(2.19)

Hence, according to (2.8)–(2.19), we can obtain

V̇ (x(t)) � ξT (t)Eξ(t), (2.20)

where

ξT (t) =
[
ζT(t) UT

1 UT
2 UT

3 UT
4

]
,

E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

E −d1(t)N −(d1 − d1(t))M −d2(t)L −(d2 − d2(t))S

∗ −d1(t)Z1 0 0 0

∗ ∗ −(d1 − d1(t))Z1 0 0

∗ ∗ ∗ −d2(t)Z2 0

∗ ∗ ∗ ∗ −(d2 − d2(t))Z2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(2.21)

If E < 0, then there exists a scalar ε > 0, such that

V̇ (x(t)) � ξT (t)Eξ(t) � −εξT (t)ξ(t) � −εxT (t)x(t) < 0, ∀x(t)/= 0. (2.22)

The E < 0 leads for d1(t) → d1 to E1 < 0 and leads for d1(t) → 0 to E2 < 0, where

E1 =

⎡
⎢⎢⎢⎢⎢⎣

E −d1N −d2(t)L −(d2 − d2(t))S

∗ −d1Z1 0 0

∗ ∗ −d2(t)Z2 0

∗ ∗ ∗ −(d2 − d2(t))Z2

⎤
⎥⎥⎥⎥⎥⎦

< 0, (2.23)

E2 =

⎡
⎢⎢⎢⎢⎢⎣

E −d1M −d2(t)L −(d2 − d2(t))S

∗ −d1Z1 0 0

∗ ∗ −d2(t)Z2 0

∗ ∗ ∗ −(d2 − d2(t))Z2

⎤
⎥⎥⎥⎥⎥⎦

< 0. (2.24)
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It is easy to see that E1 results from E|d1(t)=d1 , where we deleted the zero row and the zero
column. Define

ξT1 (t) =
[
ζT (t) UT

1 UT
3 UT

4

]
,

ξT2 (t) =
[
ζT (t) UT

2 UT
3 UT

4

]
,

(2.25)

The LMI (2.23) and (2.24) imply (2.22) because

d1(t)
d1

ζT1 (t)E1ζ1(t) +
d1 − d1(t)

d1
ζT2 (t)E2ζ2(t) = ξT (t)Eξ(t) � −εxT (t)x(t) (2.26)

and E is convex in d1(t) ∈ [0, d1].
LMI (2.23) leads for d2(t) → d2 to LMI (2.2) and for d2(t) → 0 to LMI (2.3). It is easy

to see that E13 results from E1|d2(t)=d2 , where we deleted the zero row and the zero column.
The LMI (2.2) and (2.3) imply (2.23) because

d2(t)
d2

ζT13(t)E13ζ13(t) +
d2 − d2(t)

d2
ζT14(t)E14ζ14(t) = ξT1 (t)E1ξ1(t) < 0 (2.27)

and E1 is convex in d2(t) ∈ [0, d2], where

ξT13(t) =
[
ζT (t) UT

1 UT
3

]
,

ξT14(t) =
[
ζT (t) UT

1 UT
4

] (2.28)

E13 and E14 are defined in Theorem 2.1.
Similarly, the LMI (2.4) and (2.5) imply (2.24) because

d2(t)
d2

ζT23(t)E23ζ23(t) +
d2 − d2(t)

d2
ζT24(t)E24ζ24(t) = ξT2 (t)E2ξ2(t) < 0 (2.29)

and E2 is convex in d2(t) ∈ [0, d2], where

ξT23(t) =
[
ζT (t) UT

2 UT
3

]
,

ξT24(t) =
[
ζT (t) UT

2 UT
4

]
.

(2.30)

E23 and E24 are defined in Theorem 2.1. According to the above analysis, one can conclude
that the system (1.5)with delays d1(t) and d2(t) satisfying (1.6) is asymptotically stable if the
LMIs (2.1)–(2.5) hold.

From the proof of Theorem 2.1, one can obtain that E is negative definite in the
rectangle 0 � d1(t) � d1, 0 � d2(t) � d2, only if it is negative definite at all vertices. We
call this method as the convex polyhedron method.
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Remark 2.3. To avoid the emergence of the reciprocally convex combination in (2.12), similar
to [9], the integral terms in (2.10) can be upper bounded by

−d
∫ t

t−d
ẋT (s)Zẋ(s)ds � −[x(t − τ(t)) − x(t − d)]TZ[x(t − τ(t)) − x(t − d)]

− [x(t) − x(t − τ(t))]TZ[x(t) − z(t − τ(t))]

− (
1 − γ

)
[x(t − τ(t)) − x(t − d)]TZ[x(t − τ(t)) − x(t − d)]

− γ[x(t) − x(t − τ(t))]TZ[x(t) − x(t − τ(t))]

(2.31)

which results in a convex combination on γ . However, Theorem 2.1 directly handles the
inversely weighted convex combination of quadratic terms of integral quantities by utilizing
the result of Lemma 1.2, which achieves performance behavior identical to the approaches
based on the integral inequality lemma but with much less decision variables, comparable to
those based on the Jensen inequality lemma.

Remark 2.4. Compared to some existing ones, the estimation of V̇ (x(t)) in the proof of
Theorem 2.1 is less conservative due to the convex polyhedron method is employed. More
specifically, − ∫ t−d1(t)

t−d1
ẋT (s)Z1ẋ(s)ds is retained, while − ∫ t

t−d1
ẋT (s)Z1ẋ(s)ds is divided into

− ∫ t
t−d1(t)

ẋT (s)Z1ẋ(s)ds and − ∫ t−d1(t)
t−d1

ẋT (s)Z1ẋ(s)ds. When the two integrals together with
others are handled by using free weighting matrix method, instead of enlarging some term
d1(t)SZ−1

1 ST as d1SZ
−1
1 ST . The convex polyhedron method is employed to verify the negative

definiteness of V̇ (x(t)). Therefore, Theorem 2.1 is expected to be less conservative than some
results in the literature.

Remark 2.5. The case in which only two additive time-varying delay components appear
in the state has been considered, and the idea in this paper can be easily extended to the
system (1.3)with multiple additive delay components satisfying (1.4). Choose the Lyapunov
functional as

V (x(t)) = V1(x(t)) + V2(x(t)) + V3(x(t)) + V4(x(t)),

V1(x(t)) = xT (t)Px(t),

V2(x(t)) =
∫ t

t−d(t)
xT (s)Q1x(s)ds +

∫ t

t−d
xT (s)Q2x(s)ds +

n∑
i=1

∫ t

t−di(t)
xT (s)Q3ix(s)ds

+
n∑
i=1

∫ t

t−di

xT (s)Q4ix(s)ds,

V3(x(t)) = d

∫0

−d

∫ t

t+θ
ẋT (s)Zẋ(s)dsdθ,

V4(x(t)) =
n∑
i=1

∫0

−di

∫ t

t+θ
ẋT (s)Ziẋ(s)dsdθ.

(2.32)
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Table 1: Calculated delay bounds for different cases.

Stability conditions Delay bound d2 for given d1 Delay bound d1 for given d2

d1 = 1 d1 = 1.2 d1 = 1.5 d2 = 0.3 d2 = 0.4 d2 = 0.5
[6, 12, 14] 0.180 0.080 Infeasible 0.880 0.780 0.680
[15] 0.415 0.376 0.248 1.324 1.039 0.806
[16] 0.512 0.406 0.283 1.453 1.214 1.021
Theorem 2.1 0.873 0.673 0.373 1.573 1.473 1.373

Then, the corresponding stability result can be easily derived similar to the proof of
Theorem 2.1. The result is omitted due to complicated notation.

Remark 2.6. The stability condition presented in Theorem 2.1 is for the nominal system. How-
ever, it is easy to further extend Theorem 2.1 to uncertain systems, where the systemmatrices
A and Ad contain parameter uncertainties either in norm-bounded or polytopic uncertain
forms. The reason why we consider the simplest case is to make our idea more lucid and to
avoid complicated notations.

3. Illustrative Example

Example 3.1. Consider system (1.5)with the following parameters:

A =

[−2 0

0 −0.9

]
, Ad =

[−1 0

−1 −1

]
, assuming ḋ1(t) � 0.1, ḋ2(t) � 0.8. (3.1)

Our purpose is to calculate the upper bound d1 of delay d1(t), or d2 of delay d2(t),
when the other is known, below which the system is asymptotically stable. By combining the
two delay components together, some existing stability results can be applied to this system.
The calculation results obtained by Theorem 2.1, in this paper, Theorem 1 in [6, 12, 15, 16],
[14, Theorem 2] for different cases are listed in Table 1. It can be seen from the Table 1 that
Theorem 2.1, in this paper, yields the least conservative stability test than other results.

Example 3.2. Consider system (1.5)with the following parameters:

A =

[
0.0 1.0

−1.0 −2.0

]
, Ad =

[
0.0 0.0

−1.0 1.0

]
. (3.2)

We assume condition 1: ḋ1(t) � 0.2, ḋ2(t) � 0.5; condition 2: ḋ1(t) � 0.2, ḋ2(t) � 0.3, and un-
der the two cases above, respectively. Table 2 lists the corresponding upper bounds of d2 for
given d1. This numerical illustrates the effectiveness of the derived results.
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Table 2: Allowable upper bound of d2 for various d1.

d1 0.3 0.5 0.7 0.9
Condition 1 d2 0.767 0.567 0.367 0.067
Condition 2 d2 0.968 0.768 0.568 0.368

4. Conclusions

This paper has investigated the stability problem for continuous systems with two additive
time-varying delay components. By constructing a new class of Lyapunov functional and
using a new convex polyhedron method, a new delay-dependent stability criterion is derived
in terms of linear matrix inequalities. The obtained stability criterion is less conservative than
some existing ones. Finally, numerical examples are given to illustrate the effectiveness of the
proposed method.
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